Bài tập ôn tập các trường hợp đồng dạng của tam giác

15 2.942

Bài tập về tam giác đồng dạng

Bài tập ôn tập các trường hợp đồng dạng của tam giác là tài liệu học tập lớp 8 nhằm bồi dưỡng kiến thức môn Toán 8, giúp các em học sinh nắm thực hành các dạng bài tập liên quan tới tam giác đồng dạng. Chúc các em học tốt!

Bài tập ôn tập các trường hợp đồng dạng của tam giác

Bài 1: Cho tam giác vuông ABC (Â = 900) có AB = 9cm, AC = 12cm. Tia phân giác góc A cắt BC tại D. Từ D kẻ DE vuông góc với AC (E thuộc AC) .

a) Tính độ dài các đoạn thẳng BD, CD và DE.

b) Tính diện tích các tam giác ABD và ACD.

Bài 2: Cho hình thang ABCD (AB //CD). Biết AB = 2,5cm; AD = 3,5cm; BD = 5cm; và góc DAB = DBC.

a) Chứng minh hai tam giác ADB và BCD đồng dạng.

b) Tính độ dài các cạnh BC và CD.

Bài 3: Cho tam giác ABC vuông tai A, AB =15 cm; AC = 20 cm . Kẻ đ­ường cao AH

a/ Chứng minh: ΔABC đồng dạng ΔHBA từ đó suy ra: AB2 = BC. BH

b/ Tính BH và CH.

Bài 4: Cho tam giác ABC vuông tai A, đư­ờng cao AH ,biết AB = 15 cm, AH = 12cm

a/ CM: ΔAHB đồng dạng ΔCHA

b/ Tính các đoạn BH, CH, AC

Bài 5: Cho hình bình hành ABCD, trên tia đối của tia DA lấy DM = AB, trên tia đối của tia BA lấy BN = AD. Chứng minh:

a) ΔCBN và ΔCDM cân.

b) ΔCBN đồng dạng ΔMDC

c) Chứng minh M, C, N thẳng hàng.

Bài 6: Cho tam giác ABC (AB < AC), hai đường cao BE và CF gặp nhau tại H, các đường thẳng kẻ từ B song song với CF và từ C song song với BE gặp nhau tại D. Chứng minh

a) ΔABE đồng dạng ΔACF

b) AE . CB = AB . EF

c) Gọi I là trung điểm của BC. Chứng minh H, I, D thẳng hàng.

Bài 7: Cho tam giác ABC có các góc đều nhọn. Các đường cao AD, BE, CF cắt nhau ở H.

a) CMR: AE . AC = AF . AB

b) CMR: ΔAFE đồng dạng ΔACB

c) CMR: ΔFHE đồng dạng ΔBHC

d ) CMR: BF . BA + CE . CA = BC2

Bài 8: Cho hình thang cân MNPQ (MN // PQ, MN < PQ), NP = 15 cm, đường cao NI = 12 cm, QI = 16 cm

a) Tính độ dài IP, MN

b) Chứng minh rằng: QN ⊥ NP

c) Tính diện tích hình thang MNPQ

d) Gọi E là trung điểm của PQ. Đường thẳng vuông góc với EN tại N cắt đường thẳng PQ tại K. Chứng minh rằng : KN 2 = KP. KQ

Bài 9: Cho hình bình hành ABCD , trên tia đối của tia DA lấy DM = AB, trên tia đối của tia BA lấy BN = AD. Chứng minh :

d) ΔCBN và ΔCDM cân.

e) ΔCBN đồng dạng ΔMDC

f) Chứng minh M, C, N thẳng hàng.

Bài 10: Cho tam giác ABC (AB < AC), hai đường cao BE và CF gặp nhau tại H, các đường thẳng kẻ từ B song song với CF và từ C song song với BE gặp nhau tại D. Chứng minh

a) ΔABE đồng dạng ΔACF

b) AE . CB = AB . EF

c) Gọi I là trung điểm của BC. Chứng minh H, I, D thẳng hàng.

Bài 11: Cho tam giác ABC có các góc đều nhọn. Các đường cao AD, BE, CF cắt nhau ở H.

a) CMR: AE . AC = AF . AB

b) CMR ΔAFE đồng dạng ΔACB

c) CMR: ΔFHE đồng dạng ΔBHC

d ) CMR : BF . BA + CE . CA = BC2

Bài 12: Cho tam giác ABC cân tại A và M là trung điểm của BC. Lấy các điểm D,E theo thứ tự thuộc các cạnh AB, AC sao cho góc DME bằng góc B.

a) Chứng minh ΔBDM đồng dạng với ΔCME

b) Chứng minh BD.CE không đổi.

c) Chứng minh DM là phân giác của góc BDE

Bài 13: Cho tam giác ABC vuông tại A, có AB = 6cm; AC = 8cm. Vẽ đường cao AH (H ∈ BC)

a) Tính độ dài cạnh BC.

b) Chứng minh tam giác HBA đồng dạng với tam giác ABC

c) Vẽ phân giác AD của góc A ((D ∈ BC). Chứng minh rằng điểm H nằm giữa hai điểm B và D.

Bài 14: Cho tam giác ABC vuông tại A, có AB = 6cm; AC = 8cm, BC = 10cm. Đường cao AH (H ∈ BC);

a) Chỉ ra các cặp tam giác đồng dạng.

b) Cho AD là đường phân giác của tam giác ABC (D ∈ BC). Tính độ dài DB và DC;

c) Chứng minh rằng AB2 = BH .HC

d) Vẽ đường thẳng vuông góc với AC tại C cắt đường phân giác AD tại E. Chứng minh tam giác ABD đồng dạng tam giác ECD

Bài 15: Cho tam giác ABC vuông tại A, có AB = 3cm; AC = 4cm. Vẽ đường cao AH (H ∈ BC)

a) Tính độ dài BC.

b) Chứng minh tam giác HBA đồng dạng với tam giác HAC

c) Chứng minh HA2 = HB.HC

d) Kẻ đường phân giác AD (D ∈ BC). Tính các độ dài DB và DC?

Bài 16: Cho hình thang ABCD (AB // CD) có và AD = 3cm, AD = 5 cm, BC= 4 cm.

a) Chứng minh tam giác DAB đồng dạng với tam giác CBD.

b) Từ câu a tính độ dài DB, DC.

c) Tính diện tích hình thang ABCD, biết diện tích tam giác ABD bằng 5 cm2.

Ngoài Bài tập ôn tập các trường hợp đồng dạng của tam giác, mời các bạn tham khảo thêm Giải bài tập SGK môn Toán 8, Giải SBT môn Toán 8 để đạt kết quả cao trong học tập cũng như thi cử.

Đánh giá bài viết
15 2.942
Toán lớp 8 Xem thêm