Bài tập ôn tập các trường hợp đồng dạng của tam giác

Bài tập về tam giác đồng dạng

Bài tập về các trường hợp đồng dạng của tam giác được VnDoc sưu tầm và giới thiệu tới các bạn học sinh cùng quý thầy cô tham khảo. Nội dung tài liệu sẽ giúp các bạn học sinh học tốt môn Toán lớp 8 hiệu quả hơn. Mời các bạn tham khảo.

Bài tập tam giác đồng dạng được VnDoc sưu tầm, chọn lọc gồm hơn 50 bài tập đa dạng được phân loại từ cơ bản đến nâng cao. Với bài tập về các trường hợp đồng dạng của tam giác này sẽ giúp các em học sinh ôn tập các kiến thức về định lý Ta-lét, các trường hợp đồng dạng của tam giác như cạnh-góc-cạnh, cạnh-cạnh-cạnh, góc-góc,...để chuẩn bị cho các bài thi học kì đạt hiệu quả nhất. Sau đây mời các bạn học sinh cùng tham khảo tải về bản đầy đủ chi tiết.

Lưu ý: Nếu không tìm thấy nút Tải về bài viết này, bạn vui lòng kéo xuống cuối bài viết để tải về.

Nội dung của Bài tập về các trường hợp đồng dạng của tam giác

I. Bài tập tam giác đồng dạng

Bài 1: Cho tam giác ABC vuông tại A , đường cao AH. Chứng minh :

a/ AH.BC = AB.AC

b/AB² = BH.BC

c/AH² = BH.CH

d/Gọi M là trung điểm của BH , N là trung điểm của AH .Chứng minh :CN AM .

Bài 2: Cho tam giác ABC vuông tại A , đường cao AH chia cạnh huyền thành 2 đoạn BH = 9cm và HC = 16cm.Tính AB , AC , BC.

Bài 3: Cho tam giác ABC vuông tại A , đường cao AH , biết AB = 21cm ; AC = 28cm .

a/Tính AH

b/ Kẻ HD AB; HE AC .Tính diện tích tam giác AED.

Bài 4: Cho tam giác ABC vuông tại A có AB = 15cm , AC = 20cm .Kẻ đường cao AH , trung tuyến AM.

a/ Tính AH ; BC. b/ Tính BH,CH. c/ Tính diện tích tam giác AHM.

Bài 5: Cho có ba góc nhọn, đường cao AH . Vẽ HD vuông góc AB tại D, HE vuông góc AC tại E.

a) Chứng minh: tam giác AHB đồng dạng với tam giác ADH và tam giác AHC đồng dạng với tam giác AEH.

b) Chứng minh : AD.AB = AE.AC .

c) Cho AB = 12 cm, AC = 15 cm, BC = 18 cm. Tính độ dài đường phân giác AK của ( K thuộc BC)

Bài 6:Cho ABC có AB = 3 cm, AC = 4 cm, BC = 5 cm. Đường phân giác góc A cắt cạnh BC tại D. Qua D vẽ đường thẳng vuông góc với BC cắt AC tại E và BA tại K.

a/ Chứng minh ABC vuông

b/ Tính DB, DC.

c/ Chứng minh tam giác EDC đồng dạng với tam giác BDK

d/ Chứng minh DE = DB

Bài 7 : Cho ABC vuông tại A, cho biết AB = 15 cm , AC = 20 cm. Kẻ đường cao AH của ABC.

a)Chứng minh : tam giác AHB đồng dạng với tam giác CAB và suy ra AB² = BH.BC

b)Tính độ dài các đoạn thẳng BH và CH .

c)Kẻ HM vuông góc với AB và HN vuông góc với AC. Chứng minh : AM.AB = AN.AC

d)Chứng minh : tam giác AMN đồng dạng với tam giác ACB

Bài 8:Cho tam giác ABC vuông tại A. Đường phân giác của góc A cắt cạnh huyền BC tại D. Qua D kẻ đường thẳng vuông góc với BC và cắt AC tại E.

a) Chứng minh tam giác DEC đồng dạng với tam giác ABC.

b) Chứng minh : DB = DE.

Bài 9: Cho tam giác ABC vuông tại A có AB = 16cm , BC = 20cm .Kẻ đường phân giác BD ( D thuộc AC)

a) Tính CD và AD

b) Từ C kẻ CH vuông góc với BD tại H . Chứng minh : tam giác ABD đồng dạng với tam giác HCD

c) Tính diện tích tam giác HCD .

II. Bài tập bổ sung

Bài 1: Cho tam giác vuông ABC (Â = 900) có AB = 9cm, AC = 12cm. Tia phân giác góc A cắt BC tại D. Từ D kẻ DE vuông góc với AC (E thuộc AC) .

a) Tính độ dài các đoạn thẳng BD, CD và DE.

b) Tính diện tích các tam giác ABD và ACD.

Bài 2: Cho hình thang ABCD (AB //CD). Biết AB = 2,5cm; AD = 3,5cm; BD = 5cm; và góc DAB = DBC.

a) Chứng minh hai tam giác ADB và BCD đồng dạng.

b) Tính độ dài các cạnh BC và CD.

Bài 3: Cho tam giác ABC vuông tai A, AB =15 cm; AC = 20 cm . Kẻ đ­ường cao AH

a/ Chứng minh: ΔABC đồng dạng ΔHBA từ đó suy ra: AB2 = BC. BH

b/ Tính BH và CH.

Bài 4: Cho tam giác ABC vuông tai A, đư­ờng cao AH ,biết AB = 15 cm, AH = 12cm

a/ CM: ΔAHB đồng dạng ΔCHA

b/ Tính các đoạn BH, CH, AC

Bài 5: Cho hình bình hành ABCD, trên tia đối của tia DA lấy DM = AB, trên tia đối của tia BA lấy BN = AD. Chứng minh:

a) ΔCBN và ΔCDM cân.

b) ΔCBN đồng dạng ΔMDC

c) Chứng minh M, C, N thẳng hàng.

Bài 6: Cho tam giác ABC (AB < AC), hai đường cao BE và CF gặp nhau tại H, các đường thẳng kẻ từ B song song với CF và từ C song song với BE gặp nhau tại D. Chứng minh

a) ΔABE đồng dạng ΔACF

b) AE . CB = AB . EF

c) Gọi I là trung điểm của BC. Chứng minh H, I, D thẳng hàng.

Bài 7: Cho tam giác ABC có các góc đều nhọn. Các đường cao AD, BE, CF cắt nhau ở H.

a) CMR: AE . AC = AF . AB

b) CMR: ΔAFE đồng dạng ΔACB

c) CMR: ΔFHE đồng dạng ΔBHC

d ) CMR: BF . BA + CE . CA = BC2

Bài 8: Cho hình thang cân MNPQ (MN // PQ, MN < PQ), NP = 15 cm, đường cao NI = 12 cm, QI = 16 cm

a) Tính độ dài IP, MN

b) Chứng minh rằng: QN ⊥ NP

c) Tính diện tích hình thang MNPQ

d) Gọi E là trung điểm của PQ. Đường thẳng vuông góc với EN tại N cắt đường thẳng PQ tại K. Chứng minh rằng : KN 2 = KP. KQ

Bài 9: Cho hình bình hành ABCD , trên tia đối của tia DA lấy DM = AB, trên tia đối của tia BA lấy BN = AD. Chứng minh :

d) ΔCBN và ΔCDM cân.

e) ΔCBN đồng dạng ΔMDC

f) Chứng minh M, C, N thẳng hàng.

Bài 10: Cho tam giác ABC (AB < AC), hai đường cao BE và CF gặp nhau tại H, các đường thẳng kẻ từ B song song với CF và từ C song song với BE gặp nhau tại D. Chứng minh

a) ΔABE đồng dạng ΔACF

b) AE . CB = AB . EF

c) Gọi I là trung điểm của BC. Chứng minh H, I, D thẳng hàng.

Bài 11: Cho tam giác ABC có các góc đều nhọn. Các đường cao AD, BE, CF cắt nhau ở H.

a) CMR: AE . AC = AF . AB

b) CMR ΔAFE đồng dạng ΔACB

c) CMR: ΔFHE đồng dạng ΔBHC

d ) CMR : BF . BA + CE . CA = BC2

Bài 12: Cho tam giác ABC cân tại A và M là trung điểm của BC. Lấy các điểm D,E theo thứ tự thuộc các cạnh AB, AC sao cho góc DME bằng góc B.

a) Chứng minh ΔBDM đồng dạng với ΔCME

b) Chứng minh BD.CE không đổi.

c) Chứng minh DM là phân giác của góc BDE

Bài 13: Cho tam giác ABC vuông tại A, có AB = 6cm; AC = 8cm. Vẽ đường cao AH (H ∈ BC)

a) Tính độ dài cạnh BC.

b) Chứng minh tam giác HBA đồng dạng với tam giác ABC

c) Vẽ phân giác AD của góc A ((D ∈ BC). Chứng minh rằng điểm H nằm giữa hai điểm B và D.

Bài 14: Cho tam giác ABC vuông tại A, có AB = 6cm; AC = 8cm, BC = 10cm. Đường cao AH (H ∈ BC);

a) Chỉ ra các cặp tam giác đồng dạng.

b) Cho AD là đường phân giác của tam giác ABC (D ∈ BC). Tính độ dài DB và DC;

c) Chứng minh rằng AB2 = BH .HC

d) Vẽ đường thẳng vuông góc với AC tại C cắt đường phân giác AD tại E. Chứng minh tam giác ABD đồng dạng tam giác ECD

Bài 15: Cho tam giác ABC vuông tại A, có AB = 3cm; AC = 4cm. Vẽ đường cao AH (H ∈ BC)

a) Tính độ dài BC.

b) Chứng minh tam giác HBA đồng dạng với tam giác HAC

c) Chứng minh HA2 = HB.HC

d) Kẻ đường phân giác AD (D ∈ BC). Tính các độ dài DB và DC?

Bài 16: Cho hình thang ABCD (AB // CD) có và AD = 3cm, AD = 5 cm, BC= 4 cm.

a) Chứng minh tam giác DAB đồng dạng với tam giác CBD.

b) Từ câu a tính độ dài DB, DC.

c) Tính diện tích hình thang ABCD, biết diện tích tam giác ABD bằng 5 cm2.

-----------------

Ngoài Bài tập về các trường hợp bằng nhau của tam giác đồng dạng, mời các bạn học sinh tham khảo thêm các chuyên đề Toán lớp 8 khác như:

các đề thi học kì 2 môn Toán lớp 8 như:

mà chúng tôi đã sưu tầm và chọn lọc. Với bài tập về chuyên đề tam giác đồng dạng này giúp các bạn rèn luyện thêm kỹ năng giải đề và làm bài tốt hơn. Chúc các bạn học tập tốt!

Đánh giá bài viết
28 15.861
Bài tập Toán 8 Xem thêm