Bài tập Phân tích đa thức thành nhân tử nâng cao
Bài tập nâng cao Toán 8: Phân tích đa thức thành nhân tử
- A. Lý thuyết cần nhớ về phân tích đa thức thành nhân tử
- 1. Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
- 2. Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
- 3. Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử
- 4. Phân tích đa thức thành nhân tử bằng cách thêm bớt 1 hạng tử hoặc tách hạng tử
- 5. Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp
- B. Bài tập nâng cao về phân tích đa thức thành nhân tử
- C. Lời giải, đáp án bài tập nâng cao về phân tích đa thức thành nhân tử
Bài tập Phân tích đa thức thành nhân tử nâng cao được VnDoc biên soạn bao gồm đáp án chi tiết cho từng bài tập giúp các em học sinh luyện tập các dạng bài tập liên quan đến các cách phân tích đa thức thành nhân tử. Qua đó giúp các em học sinh ôn tập, củng cố và rèn luyện thêm kiến thức đã học trong chương trình Toán 8, Mời các em học sinh và quý thầy cô cùng tham khảo chi tiết.
Bản quyền thuộc về VnDoc.
Nghiêm cấm mọi hình thức sao chép nhằm mục đích thương mại.
A. Lý thuyết cần nhớ về phân tích đa thức thành nhân tử
1. Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
– Tìm nhân tử chung là các đơn thức, đa thức có mặt trong các hạng tử
– Viết nhân tử chung ra ngoài dấu ngoặc, viết các nhân tử còn lại của mỗi hạng tử vào trong dấu ngoặc (kèm dấu của chúng)
2. Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
– Biến đổi đa thức ban đầu về dạng quen thuộc của hằng đẳng thức, sau đó sử dụng hằng đẳng thức để làm xuất hiện nhân tử chung
3. Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử
– Kết hợp các hạng tử thích hợp (có nhân tử chung hoặc tạo thành hằng đẳng thức) thành một nhóm
4. Phân tích đa thức thành nhân tử bằng cách thêm bớt 1 hạng tử hoặc tách hạng tử
– Vận dụng thêm bớt hạng tử một cách linh hoạt để đưa về nhóm hạng tử chung hoặc dùng hằng đẳng thức
5. Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp
– Sử dụng các phương pháp theo thứ tự ưu tiên: đặt nhân tử chung → dùng hằng đẳng thức → nhóm nhiều hạng tử
B. Bài tập nâng cao về phân tích đa thức thành nhân tử
Bài 1: Phân tích đa thức thành nhân tử
a,
b,
c,
d,
e,
f,
Bài 2: Tính giá trị của biểu thức dưới đây, biết :
Bài 3: Tìm x biết:
a,
b,
Bài 4: Chứng minh rằng nếu
Bài 5: Phân tích các đa thức sau thành nhân tử:
a,
b,
Bài 6: Tính hợp lí
a) A = 75 . 20,9 + 52 . 20,9
b) B = 86 . 15 + 150 . 1,4
c) C = 93 . 92 + 14 . 16
d) D = 98,6 . 199 - 990 . 9,86
e) 0,78 . 1 300 + 50 . 6,5 - 39
f) D = 0,12 . 90 - 110 . 0,6 + 36 - 25 . 6
Bài 7: Chứng minh rằng:
a) A = n2(n + 1) + 2n(n + 1) luôn chia hết cho 6 với mọi số nguyên n
b) B = (4n + 3)2 – 25 luôn chia hết cho 8
c) C = 50n + 2 – 50n + 1 chia hết cho 245 với mọi số nguyên n.
Bài 8: Tìm tất cả các số tự nhiên n để giá trị của biểu thức sau là số nguyên tố:
A = 5n3 – 9n2 + 15n – 27
Bài 9: a) Chứng minh rằng 315 + 316 + 317 chia hết cho 13.
b) Chứng minh rằng hiệu các bình phương hai số lẻ bất kì thì chia hết cho 8.
C. Lời giải, đáp án bài tập nâng cao về phân tích đa thức thành nhân tử
Bài 1:
a,
b,
c,
d,
e,
f,
Bài 2:
Có
Lại có
Với x = – 2 thì A = 5
Với x = 3 thì A = 160
Bài 3:
a,
Vậy
b,
Vậy
Bài 4:
Có
Bài 5:
a,
Đặt
b,
Đặt
----------