Bài tập toán nâng cao lớp 8
Bài tập toán nâng cao lớp 8 được VnDoc sưu tầm và đăng tải. Tài liệu này giúp chủ yếu về các bài tập nhân và chia các đa thức theo dạng tư cơ bản đến nâng cao theo từng mảng bài tập nhưng vẫn bám sát theo chương trình SGK lớp 8 môn Toán. Việc làm bài tập này cùng dạng nhiều lần sẽ giúp các em nhuần nhuyễn và rèn luyện kỹ năng giải bài tốt. Các bài tập sẽ chia theo từng chuyên đề dưới đây là nội dung chi tiết các em tham khảo nhé:
Bài tập Toán lớp 8 nâng cao
1. NHÂN CÁC ĐA THỨC
Bài 1: Cho m số mà mỗi số bằng 3n – 1 và n số mà mỗi số bằng 9 – 3m. Biết tổng tất cả các số đó bằng 5 lần tổng m + n. Tìm m?
Bài 2: Tìm x, biết:
a,
b,
c,
Bài 3: Cho a2 + b2 + c2 = 0. Chứng minh rằng A = B = C với:
Bài 4: Cho a + b + c = 2; ab + bc + ca = – 5 và abc = 3. Hãy tính giá trị cửa biểu thức:
Bài 5: Tìm các hệ số a, b, c thỏa mãn
Bài 6: Tính giá trị:
B = x15 – 8x14 + 8x13 – 8x2 + ... – 8x2 + 8x – 5 với x = 7
Bài 7: Cho ba số tự nhiên liên tiếp. Tích của hai số đầu nhỏ hơn tích của hai số sau là 50. Hỏi đã cho ba số nào?
Bài 8: Chứng minh rằng nếu: thì (x2 + y2 + z2) (a2 + b2 + c2) = (ax + by + cz)2
2. CÁC HẰNG ĐẲNG THỨC ĐÁNG NHỚ
1. Rút gọn các biểu thức sau:
a. A = 1002 – 992 + 982 – 972 + ... + 22 – 12
b. B = 3(22 + 1) (24 + 1) ... (264 + 1) + 12
c. C = (a + b + c)2 + (a + b – c)2 – 2(a + b)2
2. Chứng minh rằng:
a. a3 + b3 = (a + b)3 – 3ab (a + b)
b. a3 + b3 + c3 – 3abc = (a + b + c) (a2 + b2 c2 – ab – bc – ca)
Suy ra các kết quả:
i. Nếu a3 + b3 + c3 = 3abc thì a + b + c = 0 hoặc a = b = c
ii. Cho
iii. Cho a3 + b3 + c3 – 3abc (abc ≠ 0)
Tính
3. Tìm giá trị nhỏ nhất của các biểu thức
a. A = 4x2 + 4x + 11
b. B = (x – 1) (x + 2) (x + 3) (x + 6)
c. C = x2 – 2x + y2 – 4y + 7
4. Tìm giá trị lớn nhất của các biểu thức
a. A = 5 – 8x – x2
b. B = 5 – x2 + 2x – 4y2 – 4y
5. a. Cho a2 + b2 + c2 = ab + bc + ca chứng minh rằng a = b = c
b. Tìm a, b, c biết a2 – 2a + b2 + 4b + 4c2 – 4c + 6 = 0
6. Chứng minh rằng:
a. x2 + xy + y2 + 1 > 0 với mọi x, y
b. x2 + 4y2 + z2 – 2x – 6z + 8y + 15 > 0 Với mọi x, y, z
7. Chứng minh rằng:
x2 + 5y2 + 2x – 4xy – 10y + 14 > 0 với mọi x, y.
8. Tổng ba số bằng 9, tổng bình phương của chúng bằng 53. Tính tổng các tích của hai số trong ba số ấy.
9. Chứng minh tổng các lập phương của ba số nguyên liên tiếp thì chia hết cho 9.
10. Rút gọn biểu thức:
A = (3 + 1) (32 + 1) (34 + 1) ... (364 + 1)
11. a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.
b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương.
3. PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ
1. Phân tích đa thức thành nhân tử:
a. x2 – x – 6
b. x4 + 4x2 – 5
c. x3 – 19x – 30
2. Phân tích thành nhân tử:
a. A = ab(a – b) + b(b – c) + ca(c – a)
b. B = a(b2 – c2) + b(c2 – a2) + c(a2 – b2)
c. C = (a + b + c)3 – a3 – b3 – c3
3. Phân tích thành nhân tử:
a. (1 + x2)2 – 4x (1 – x2)
b. (x2 – 8)2 + 36
c. 81x4 + 4
d. x5 + x + 1
4. a. Chứng minh rằng: n5 – 5n3 + 4n chia hết cho 120 với mọi số nguyên n.
b. Chứng minh rằng: n3 – 3n2 – n + 3 chia hết cho 48 với mọi số lẻ n.
5. Phân tích các đa thức sau đây thành nhân tử
1. a3 – 7a – 6
2. a3 + 4a2 – 7a – 10
3. a(b + c)2 + b(c + a)2 + c(a + b)2 – 4abc
4. (a2 + a)2 + 4(a2 + a) – 12
5. (x2 + x + 1) (x2 + x + 2) – 12
6. x8 + x + 1
7. x10 + x5 + 1
6. Chứng minh rằng với mọi số tự nhiên lẻ n:
1. n2 + 4n + 8 chia hết cho 8
2. n3 + 3n2 – n – 3 chia hết cho 48
7. Tìm tất cả các số tự nhiên n để:
1. n4 + 4 là số nguyên tố
2. n1994 + n1993 + 1 là số nguyên tố
8. Tìm nghiệm nguyên của phương trình:
1. x + y = xy
2. p(x + y) = xy với p nguyên tố
3. 5xy – 2y2 – 2x2 + 2 = 0
4. CHIA ĐA THỨC
Bài 1. Xác định a để cho đa thức x3 – 3x + a chia hết cho (x – 1)2
Bài 2. Tìm các giá trị nguyên của n để
Bài 3. Tìm dư trong phép chia đa thức: f(x) = x1994+ x1993+ 1 cho
a. x – 1
b. x2 – 1
c. x2 + x + 1
Bài 4. 1. Xác định các số a va b sao cho:
a. x4 + ax2 + b chia hết cho:
i. x2 – 3x + 2
ii. x2 + x + 1
b. x4 – x3 – 3x2 + ax + b chia cho x2 – x – 2 có dư là 2x – 3
c. 2x2 + ax + b chia cho x + 1 dư – 6 chia cho x – 2 dư 21
4.2. Chứng minh rằng
f(x) = (x2 – x + 1)1994 + (x2 + x – 1)1994 – 2
chia hết cho x – 1. Tìm dư trong phép chia f(x) cho x2 – 1
Bài 5. Tìm n nguyên để
Bài 6. Chứng minh rằng:
a. 1110 – 1 chia hết cho 100
b. 9 . 10n + 18 chia hết cho 27
c. 16n – 15n – 1 chia hết cho 255
Bài 7. Tìm tất cả các số tự nhiên n để 2n – 1 chia hết cho 7
Bài 8. Chứng minh rằng:
a. 20n + 16n – 3n – 1 : 323 với n chẵn
b. 11n + 2 + 122n + 1 : 133
c.