Bài tập toán nâng cao lớp 8

Bài tập toán nâng cao lớp 8 được VnDoc sưu tầm và đăng tải. Gồm tổng hợp các bài tập về cơ bản vẫn bám sát theo chương trình SGK lớp 8 môn Toán. Ở đây chung tôi có tổng hợp bài tập theo từng mảng theo từng phần kiến thức. Việc làm bài tập này cùng dạng nhiều lần sẽ giúp các em nhuần nhuyễn và rèn luyện kỹ năng giải bài tốt. Các bài tập sẽ chia theo từng chuyên đề dưới đây là nội dung chi tiết các em tham khảo nhé

1. NHÂN CÁC ĐA THỨC

1. Tính giá trị:

B = x15 - 8x14 + 8x13 - 8x2 + ... - 8x2 + 8x – 5 với x = 7

2. Cho ba số tự nhiên liên tiếp. Tích của hai số đầu nhỏ hơn tích của hai số sau là 50. Hỏi đã cho ba số nào?

3. Chứng minh rằng nếu: thì (x2 + y2 + z2) (a2 + b2 + c2) = (ax + by + cz)2

2. CÁC HẰNG ĐẲNG THỨC ĐÁNG NHỚ

1. Rút gọn các biểu thức sau:

a. A = 1002 - 992+ 982 - 972 + ... + 22 - 12

b. B = 3(22 + 1) (24 + 1) ... (264 + 1) + 12

c. C = (a + b + c)2 + (a + b - c)2 - 2(a + b)2

2. Chứng minh rằng:

a. a3 + b3 = (a + b)3 - 3ab (a + b)

b. a3 + b3 + c3 - 3abc = (a + b + c) (a2 + b2 c2 - ab - bc - ca)

Suy ra các kết quả:

i. Nếu a3 + b3 + c3 = 3abc thì a + b + c = 0 hoặc a = b = c

Bài tập toán nâng cao lớp 8

3. Tìm giá trị nhỏ nhất của các biểu thức

a. A = 4x2 + 4x + 11

b. B = (x - 1) (x + 2) (x + 3) (x + 6)

c. C = x2 - 2x + y2 - 4y + 7

4. Tìm giá trị lớn nhất của các biểu thức

a. A = 5 - 8x - x2

b. B = 5 - x2 + 2x - 4y2 - 4y

5. a. Cho a2 + b2 + c2 = ab + bc + ca chứng minh rằng a = b = c

b. Tìm a, b, c biết a2 - 2a + b2 + 4b + 4c2 - 4c + 6 = 0

6. Chứng minh rằng:

a. x2 + xy + y2 + 1 > 0 với mọi x, y

b. x2 + 4y2 + z2 - 2x - 6z + 8y + 15 > 0 Với mọi x, y, z

7. Chứng minh rằng:

x2 + 5y2 + 2x - 4xy - 10y + 14 > 0 với mọi x, y.

8. Tổng ba số bằng 9, tổng bình phương của chúng bằng 53. Tính tổng các tích của hai số trong ba số ấy.

9. Chứng minh tổng các lập phương của ba số nguyên liên tiếp thì chia hết cho 9.

10. Rút gọn biểu thức:

A = (3 + 1) (32 + 1) (34 + 1) ... (364 + 1)

11. a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.

b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương.

3. PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ

1. Phân tích đa thức thành nhân tử:

a. x2 - x - 6

b. x4 + 4x2 - 5

c. x3 - 19x - 30

2. Phân tích thành nhân tử:

a. A = ab(a - b) + b(b - c) + ca(c - a)

b. B = a(b2 - c2) + b(c2 - a2) + c(a2 - b2)

c. C = (a + b + c)3 - a3 - b3 - c3

3. Phân tích thành nhân tử:

a. (1 + x2)2 - 4x (1 - x2)

b. (x2 - 8)2 + 36

c. 81x4 + 4

d. x5 + x + 1

4. a. Chứng minh rằng: n5 - 5n3 + 4n chia hết cho 120 với mọi số nguyên n.

b. Chứng minh rằng: n3 - 3n2 - n + 3 chia hết cho 48 với mọi số lẻ n.

5. Phân tích các đa thức sau đây thành nhân tử

1. a3 - 7a - 6

2. a3 + 4a2 - 7a - 10

3. a(b + c)2 + b(c + a)2 + c(a + b)2 - 4abc

4. (a2 + a)2 + 4(a2 + a) - 12

5. (x2 + x + 1) (x2 + x + 2) - 12

6. x8 + x + 1

7. x10 + x5 + 1

6. Chứng minh rằng với mọi số tự nhiên lẻ n:

1. n2 + 4n + 8 chia hết cho 8

2. n3 + 3n2 - n - 3 chia hết cho 48

7. Tìm tất cả các số tự nhiên n để:

1. n4 + 4 là số nguyên tố

2. n1994 + n1993 + 1 là số nguyên tố

8. Tìm nghiệm nguyên của phương trình:

1. x + y = xy

2. p(x + y) = xy với p nguyên tố

3. 5xy - 2y2 - 2x2 + 2 = 0

4. CHIA ĐA THỨC

1. Xác định a để cho đa thức x3- 3x + a chia hết cho (x - 1)2

2. Tìm các giá trị nguyên của n để \frac{{2{n^2} + 3n + 3}}{{2n - 1}}là số nguyên

3. Tìm dư trong phép chia đa thức: f(x)+x1994+ x1993+ 1 cho

a. x - 1

b. x2 - 1

c. x2 + x + 1

4. 1. Xác định các số a va b sao cho:

a. x4 + ax2 + b chia hết cho:

i. x2 - 3x + 2

ii. x2 + x + 1

b. x4 - x3 - 3x2 + ax + b chia cho x2 - x - 2 có dư là 2x - 3

c. 2x2 + ax + b chia cho x + 1 dư - 6 chia cho x - 2 dư 21

2. Chứng minh rằng

f(x) = (x2 - x + 1)1994 + (x2 + x - 1)1994 - 2

chia hết cho x - 1. Tìm dư trong phép chia f(x) cho x2 - 1

5. Tìm n nguyên để \frac{{2{n^2} + n - 7}}{{n - 2}} là số nguyên

6. Chứng minh rằng:

a. 1110 - 1 chia hết cho 100

b. 9 . 10n + 18 chia hết cho 27

c. 16n - 15n - 1 chia hết cho 255

6. Tìm tất cả các số tự nhiên n để 2n - 1 chia hết cho 7

7. Chứng minh rằng:

a. 20n + 16n - 3n - 1:323 với n chẵn

b. 11n + 2 + 122n + 1:133

c. {2^{{2^{2n}}}}+ 7 :7 với n > 1

Tính chất cơ bản và rút gọn phân thức

Tài liệu vẫn còn các bạn tải về để xem trọn vẹn nội dung

Trên đây VnDoc đã hướng dẫn các bạn học sinh Bài tập toán nâng cao lớp 8. Tài liệu này ngoài nắm chắc kiến thức sách giáo khoa, học sinh nên được tiếp cận với các dạng bài tập nâng cao, một phần là giúp các em nắm chắc kiến thức cơ bản và phần khác để tìm ra những em có năng khiếu hơn. Chúc các em học tốt, nếu các em thấy bài viết hữu ích hãy chia sẻ cho bạn bè của mình cùng biết nhé

Ngoài ra, VnDoc.com đã thành lập group chia sẻ tài liệu học tập THCS miễn phí trên Facebook: Tài liệu học tập lớp 8. Mời các bạn học sinh tham gia nhóm, để có thể nhận được những tài liệu mới nhất.

...................................

Ngoài Bài tập toán nâng cao lớp 8, các bạn học sinh còn có thể tham khảo các đề thi, học kì 1 lớp 8, học kì 2 lớp 8 các môn Toán, Văn, Soạn bài lớp 8, Soạn Văn Lớp 8 (ngắn nhất) mà chúng tôi đã sưu tầm và chọn lọc. Với đề thi lớp 8 này giúp các bạn rèn luyện thêm kỹ năng giải đề và làm bài tốt hơn. Chúc các bạn ôn thi tốt

Đánh giá bài viết
401 141.086
0 Bình luận
Sắp xếp theo
Toán 8 - Giải Toán 8 Xem thêm