Cho tam giác ABC - Các bài toán hình lớp 7 về tam giác

Các bài toán hình lớp 7 về tam giác

Trong chương trình Toán Hình học 7 có hẳn một chương được học về Tam giác, chính vì vậy những bài toán liên quan tới tam giác thường rất hay xuất hiện trong các bài kiểm tra Toán 7. Để giúp các em ôn tập các dạng Toán về tam giác, VnDoc gửi tới các em tài liệu Cho tam giác ABC - Các bài toán hình lớp 7 về tam giác. Đây là tài liệu hay giúp các em biết cách giải các dạng toán khác nhau về tam giác. Sau đây mời các em tham khảo.

Câu 1. Cho tam giác ABC vuông ở A(AB < AC), đường cao AH, biết AB = 6cm. Đường trung trực của BC cắt các đường thẳng AB, AC, BC theo thứ tự ở D, E và F biết DE = 5cm, EF = 4cm. Chứng minh:

a) Tam giác FEC đồng dạng với tam giác FBD

b) Tam giác AED đồng dạng với tam giác HAC

c) Tính BC, AH, AC

Hướng dẫn giải

Cho tam giác ABC - Các bài toán hình lớp 7 về tam giác

a. Ta có:

\Delta FEC,\Delta FBD vuông tại F, có \widehat{FEC}=\widehat{FBD} (cùng chắn \widehat{FCE})

\Rightarrow \Delta FEC\sim \Delta FBD

b. Xét \Delta AED vuông tại A và \Delta HAC vuông tại H, có \widehat{ADE}=\widehat{HCA} (cùng chắn \widehat{ABC})

\Rightarrow \Delta AED\sim \Delta HAC

c. Ta có: \frac{FE}{FB}=\frac{FC}{FD},\ (\Delta FED\sim\Delta FBD)

\begin{align}

& \left\{ \begin{matrix}

FB=FC \\

FD=FE+ED \\

\end{matrix} \right.\Rightarrow \frac{EF}{FB}=\frac{FB}{FE+ED}\Rightarrow F{{B}^{2}}=EF\left( FE+ED \right) \\

& \Rightarrow FB=\sqrt{4\left( 4+5 \right)}=6=FC\Rightarrow BC=FB+FC=6+6=12(cm) \\

\end{align}

Xét tam giác ABC vuông tại A ta có:

B{{C}^{2}}=A{{B}^{2}}+A{{C}^{2}} (Pitago)

\Rightarrow {{12}^{2}}={{6}^{2}}+A{{C}^{2}}\Rightarrow AC=\sqrt{{{12}^{2}}-{{6}^{2}}}=6\sqrt{3}\left( cm \right)

Xét tam giác CAH vuông tại H và tam giác CBA vuông tại A có:

\widehat{ECF} chung

\Rightarrow \Delta CAH\sim \Delta CBA\Rightarrow \frac{CA}{CB}=\frac{AH}{BA}=k\Rightarrow \frac{6\sqrt{3}}{12}=\frac{AH}{6}\Rightarrow AH=\frac{6\sqrt{3}.6}{12}=3\sqrt{3}\left( cm \right)

Bài 2:

Cho tam giác ABC cân tại A, vẽ trung tuyến AM. Từ M kẻ ME vuông góc với AB tại E, kẻ MF vuông góc với AC.

a) Chứng minh tam giác BEM bằng tam giác CFM

b) Chứng minh AM vuông góc với EF

c) Từ B kẻ đường thẳng vuông góc với AB tại B từ C kẻ đường vuông góc với AC tại C, 2 đường thẳng này cắt nhau tại D. Chứng minh rằng 3 điểm A, M, D thẳng hàng.

Hướng dẫn giải

Cho tam giác ABC - Các bài toán hình lớp 7 về tam giác

a. Xét tam giác BEM và CFM ta có:

BM = CM (vì AM là trung tuyến ứng với BC)

\widehat{ABC}=\widehat{ACB} (vì tam giác ABC cân ở A)

\widehat{BEM}=\widehat{ACB}={{90}^{0}}

\Rightarrow \Delta BEM=\Delta CFM(cạnh huyền – góc nhọn)

b. Từ câu a ta có \Delta BEM=\Delta CFM\Rightarrow BE=FC

Ta có: AE = AB – BE

Lại có: AF = AC – CF

Mà AB = AC, BE = CF

Vậy AE = AF

Trong một tam giác cân đường trung tuyến đồng thời là đường phân giác, đường trung trực, …. Nên AM là phân giác góc A \Rightarrow \widehat{BAM}=\widehat{CAM}

Xét tam giác AEI và tam giác AFI ta có:

AI là cạnh chung

AE = AF

\widehat{BAM}=\widehat{CAM}

\Rightarrow \Delta AEM=\Delta AFM(c. g. c)

\begin{align}

& \Rightarrow \widehat{AIE}=\widehat{AFM} \\

& \widehat{AIE}+\widehat{AIF}={{180}^{0}} \\

& \Rightarrow \widehat{AIE}=\widehat{AIF}={{180}^{0}}:2={{90}^{0}} \\

\end{align}

Vậy AM vuông góc với FE

c. Theo câu a ta có \Delta BEM=\Delta CFM\Rightarrow ME=MF

Vậy M thuộc phân giác góc A (1)

Xét tam giác vuông ABD và ACD có

AD là cạnh chung

\widehat{BAM}=\widehat{CAM}

\Rightarrow \Delta ABD=\Delta ACD(Cạnh huyền – góc nhọn)

Suy ra DB = DC nên D thuộc tia phân giác góc A (2)

Từ (1) và (2) ta có A, D, M thẳng hàng

Bài 3:

Cho ΔABC. Gọi I là 1 điểm trên cạnh BC. Qua I kẻ đường thẳng song song với cạnh AC cắt AB tại M. Qua I kẻ đường thẳng song song với cạnh AB cắt AC tại N.

a, Gọi O là trung điểm của cạnh AI. Chứng minh rằng ba điểm M, N, O thẳng hàng

b, Kẻ MH, NK, AD vuông góc với BC lần lượt tại H, K, D. Chứng minh rằng MH + NK = AD

c, Tìm vị trí của I để MN // BC

Bài 4. Cho tam giác ABC cân tại A có hai đường cao AH và BI cắt nhau tạo O và AB = 5cm, BC = 6cm. Tia BI cắt đường phân giác ngoài của góc A tại M

a) Tính AH?

b) Chứng tỏ: AM^2 = OM.MI

c) Tam giác MAB ~ tam giác AOB

d) IA.MB = 5.IM

Hướng dẫn giải

Cho tam giác ABC - Các bài toán hình lớp 7 về tam giác

a. Xét tam giác AHC vuông, áp dụng định lí Pitago ta dễ dàng tính được AH = 4

b. Xét \Delta AMI và tam giác \Delta OAM có:

\widehat{AMO} chung

\widehat{AIO}=\widehat{AIM}(gt)

\Rightarrow \Delta AIM\sim \Delta AOM(g. g)

\Rightarrow \frac{AM}{OM}=\frac{MI}{MA}\Rightarrow A{{M}^{2}}=OM.IM

C. Dễ thấy \Delta AIM\sim \Delta AOI\Rightarrow \widehat{BAH}=\widehat{OAI}\Rightarrow \widehat{BAO}=\widehat{BMA}

Xét tam giác BOA và tam giác BAM có:

\widehat{B} chung

\widehat{BAO}=\widehat{BMA}

\Rightarrow \Delta BOA=\Delta BAM

Bài 5. Cho tam giác DEF vuông tại D, đường cao DH và DE = 6cm, EF = 9cm.

a. Chứng minh: Tâm giác DEF đồng dạng tam giác HED.

b. Chứng minh: DF^2 = FH.EF.

c. Qua D kẻ đường thẳng a, từ E dựng EP và từ F dựng FQ vuông góc với a (P, Q thuộc a). Chứng minh: S_ {PDE} = \dfrac{4}{9} S_ {QDF}

Hướng dẫn giải

Cho tam giác ABC - Các bài toán hình lớp 7 về tam giác

a. Xét tam giác DEF và tam giác HED có:

\widehat{EDF}=\widehat{EHD}={{90}^{0}}

\widehat{E} chung

\Rightarrow \Delta DEF\sim \Delta HDE(g. g)

b. Xét tam giác DFE và tam giác HDF có

\widehat{EDF}=\widehat{DHF}={{90}^{0}}

\Rightarrow \Delta DEF\sim \Delta HDF(g. g)

\Rightarrow \frac{DF}{EF}=\frac{FH}{DF}\Rightarrow D{{F}^{2}}=FH.EF

Bài 6.

Cho tam giác ABC vuông tại A, có AB = 6cm, AC = 8cm và AH là đường cao

a. Chứng minh tam giác HBA đồng dạng với tam giác ABC.

b. Chứng minh: AB2 = HB . BC

c. Kẻ tia phân giác góc A cắt BC tại I. Tính độ dài cạnh BI.

Hướng dẫn giải:

Cho tam giác ABC - Các bài toán hình lớp 7 về tam giác

a, Xét tam giác HBA và tam giác ABC: góc B chung H = A = 90 => tg HBA đồng dạng ABC.

b, Vì tam giác BHA đồng dạng tg ABC: => AB/HB = BC/AB => đpcm.

c, Áp dụng tính chất tia phân giác:

=>AB/AC = BI/IC => BI/AB = IC/AC

Áp dụng tính chất dãy tỉ số bằng nhau:

BI/AB = IC/AC = BI + IC/AB + AC = BC/AB + AC = 10/6 + 8 = 5/7

Suy ra:

BI = 5/7.6 = 4,3

IC = 5/7.8 = 5,7

Bài 7

Cho tam giác ABC vuông tại góc A, đường cao AH (H thuộc BC) và phân giác BE của ABC (E thuộc AC) cắt nhau tại I. Chứng minh:

a. IH.AB = IA.BH

b. Tam giác BHA bằng tam giác BAC, AB^ 2 = BH.BC

c. IH/IA = AE/EC

d. Tam giác AIE cân

Hướng dẫn giải

Cho tam giác ABC - Các bài toán hình lớp 7 về tam giác

a. \Delta AHB có BI là phân giác góc \widehat{ABH}. Áp dụng tính chất đường phân giác của tam giác ta có:

\begin{align}

& \frac{HI}{AI}=\frac{BH}{AB} \\

& \Rightarrow IH.AB=IA.BH \\

\end{align}

b. Xét hai tam giác vuông BHA và tam giác ABC có:

\widehat{B} chung

\widehat{AHB}=\widehat{CAB}

\Rightarrow \Delta BAH\sim \Delta ABC\Rightarrow \frac{BH}{AB}=\frac{BA}{BC}\Rightarrow A{{B}^{2}}=BH.BC

c. Ta có:

\frac{HI}{AI}=\frac{BH}{AB} (1)

\frac{AE}{CE}=\frac{AB}{BC} (BE là đường phân giác góc B) (2)

\frac{BH}{AB}=\frac{AB}{BC}, (\Delta BAH\sim \Delta ABC) (3)

Từ (2) và (3) ta có:

\frac{AE}{CE}=\frac{BH}{AB} (4)

Từ (1) và (4) ta có:

\frac{HI}{AI}=\frac{AE}{CE}

d. Ta có:

\widehat{BEA}+\widehat{ABE}=\widehat{BIH}+\widehat{IBH}

\widehat{ABE}=\widehat{IBH}

\Rightarrow \widehat{BEA}=\widehat{IBH}

Mà  \widehat{BIH}=\widehat{AIE} (đối đỉnh)

\Rightarrow \widehat{AIE}=\widehat{AEI}\Rightarrow \Delta AIE cân tại A

.................

Trên đây, VnDoc đã gửi tới các bạn tài liệu Cho tam giác ABC - Các bài toán hình lớp 7 về tam giác. Các dạng toán đi kèm hướng dẫn giải ở trên, chắc chắn sẽ là tài liệu hữu ích giúp các em biết cách giải các dạng toán khác nhau về tam giác, từ đó có thể vận dụng làm các bài tập liên quan hiệu quả và đạt điểm cao trong các bài thi, bài kiểm tra định kỳ môn Toán lớp 7. Chúc các em học tốt.

Ngoài tài liệu trên, mời các em tham khảo thêm các tài liệu khác như Giải Toán 7, Giải Vở BT Toán 7, Chuyên đề Toán 7 và các đề thi học kì 1 lớp 7, đề thi học kì 2 lớp 7 được cập nhật liên tục trên VnDoc để học tốt môn Toán hơn.

Để tiện trao đổi, chia sẻ kinh nghiệm về giảng dạy và học tập các môn học lớp 7, VnDoc mời các thầy cô giáo, các bậc phụ huynh và các bạn học sinh truy cập nhóm riêng dành cho lớp 7 sau: Nhóm Tài liệu học tập lớp 7 . Rất mong nhận được sự ủng hộ của các thầy cô và các bạn.

Đánh giá bài viết
198 60.126
0 Bình luận
Sắp xếp theo
Toán 7: Giải SGK Toán 7, Giải SBT Toán 7 đại số, hình học Xem thêm