
Giá trị nhỏ nhất của hàm số trên đoạn [0;1] là:

Giá trị nhỏ nhất của hàm số trên đoạn [0;1] là:
Tồn tại đúng một điểm M(a,b) trên đường cong sao cho tiếp tuyến của đường cong tại M tạo với hai trục toạ độ một tam giác có diện tích bằng 2. Tính 4a + b + 10.
Cho hàm số có đạo hàm
với mọi
.
a) Phương trình có duy nhất một nghiệm
. Sai||Đúng
b) Hàm số đồng biến trên khoảng
. Đúng||Sai
c) Hàm số có hai điểm cực trị. Đúng||Sai
d) Hàm số có ba điểm cực đại. Sai||Đúng
Cho hàm số có đạo hàm
với mọi
.
a) Phương trình có duy nhất một nghiệm
. Sai||Đúng
b) Hàm số đồng biến trên khoảng
. Đúng||Sai
c) Hàm số có hai điểm cực trị. Đúng||Sai
d) Hàm số có ba điểm cực đại. Sai||Đúng
a) Sai
Ta có .
.
Vậy phương trình có hai nghiệm.
b) Đúng
Bảng biến thiên
Dựa vào bảng biến thiên của hàm số ta thấy hàm số đồng biến trên các khoảng
.
Ta có nên hàm số
đồng biến trên khoảng
.
c) Đúng
Dựa vào bảng biến thiên của hàm số ta thấy hàm số có hai điểm cực trị.
d) Sai
Ta có:
.
.
Bảng biến thiên
Dựa vào bảng biến thiên của hàm số ta thấy hàm số có hai điểm cực đại.
Một con lắc lò xo dao động điều hòa theo phương ngang trên mặt phẳng không ma sát, có phương trình chuyển động , trong đó
tính bằng giây và
tính bằng centimet. Tìm thời điểm mà vận tốc của con lắc bẳng
.
Ta có:
Vận tốc của con lắc bẳng
=>
Giả sử chi phí (USD) để sản xuất
máy vô tuyến là
.
Ta gọi chi phí biên là chi phí gia tăng để sản xuất thêm 1 sản phẩm từ sản phẩm lên
sản phẩm. Giả sử chi phí biên được xác định bởi hàm số
. Tìm
?
Chi phí biên là chi phí gia tăng để sản xuất thêm 1 sản phẩm từ sản phẩm lên
sản phẩm. Chi phí biên được xác định bởi hàm số
=> Ý nghĩa: Chi phí gia tăng để sản xuất thêm 1 sản phẩm từ 89 sản phẩm lên 90 sản phẩm là 260 (USD)
Cho hàm số có bảng biến thiên như sau:
Hàm số đã cho đạt cực đại tại điểm nào dưới đây?
Từ bảng biến thiên ta thấy hàm số đạt cực đại tại .
Cho hàm số có bảng biến thiên như sau
Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là
Dựa vào bảng biến thiên của hàm số ta có:
là một tiệm cận ngang
là một tiệm cận ngang
là một tiệm cận đứng
Vậy đồ thị hàm số có tổng số đường tiệm cận là 3.
Cho hàm số là hàm đa thức có đạo hàm
. Số điểm cực trị của hàm số là:
Ta có:
Ta có bảng biến thiên như sau:
Vậy hàm số có hai điểm cực trị.
Cho x, y, z là ba số thực thuộc đoạn [1; 9] và . Giá trị nhỏ nhất của biểu thức
bằng:
Ta có:
(đúng do
)
Dấu bằng xảy ra khi và chỉ khi a = b hoặc ab = 1
Áp dụng bất đẳng thức trên ta có:
Đặt . Xét hàm số
trên đoạn [1; 3]
Do
Ta có bảng biến thiên

Suy ra khi và chỉ khi
Cho hàm số với
là tham số thực. Tìm tất cả các giá trị của
để hàm số đạt cực tiểu tại điểm
.
Ta có .
Vì là điểm cực tiểu của hàm số
Thử lại ta thấy chỉ có giá trị thỏa mãn
đổi dấu từ
sang
khi qua
.
Xác định hàm số nghịch biến trên ?
Xét hàm số ta có:
Nên hàm số nghịch biến trên
.
Một vật rơi tự do có phương trình chuyển động là , trong đó
. Tìm vận tốc tức thời của vật tại thời điểm
.
Ta có: .
Vận tốc tức thời của vật tại thời điểm là:
.
Tiệm cận đứng của đồ thị hàm số là đường thẳng
Ta có nên đồ thị hàm số có tiệm cận đứng là
.
Cho hàm số có đạo hàm
với mọi
. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Ta có: .
Bảng xét dấu:
Vậy hàm số đã cho nghịch biến trên khoảng .
Một viên đạn được bắn lên cao theo phương thẳng đứng có phương trình chuyển động , trong đó
,
là thời gian chuyển động,
là độ cao so với mặt đất. Tính vận tốc tức thời của viên đạn khi viên đạn đạt được độ cao
.
Vận tốc tức thời của viên đạn tại thời điểm là:
Viên đạn đạt được độ caovào thời điểm
kể từ lúc bắn, khi đó vận tốc tức thời của viên đạn là:
.
Cho hàm số và có bảng biến thiên trên
như sau:
Mệnh đề nào sau đây là đúng?
Dựa vào bảng biến thiên, ta nhận thấy:
Hàm số có giá trị nhỏ nhất bằng , đạt tại
.
Ta có .
Mà nên không tồn tại
sao cho
.
Do đó hàm số không đạt GTLN trên
Vậy và hàm số không đạt giá trị lớn nhất trên
.
Đồ thị bên dưới là tốc độ của một chiếc xe đua trên đoạn đường đua bằng phẳng dài 3 km.

Tốc độ nhỏ nhất của xe đua trên đoạn đường này bằng
Dựa vào đồ thị ta thấy tốc độ nhỏ nhất bằng .
Cho hàm số có bảng biến thiên như sau:
Hỏi hàm số đồng biến trên khoảng nào?
Hàm số có
Từ bảng biến thiên của hàm số ta có bảng biến thiên của hàm số
Dựa vào bảng biến thiên ta có hàm số đồng biến trong khoảng
.
Tìm các giá trị của tham số để hàm số
có ba điểm cực trị
;
thỏa mãn
?
Tập xác định
Ta có:
Để hàm số có ba cực trị thì
Suy ra ;
Vậy đáp án đúng là
Đường thẳng nào sau đây là tiệm cận ngang của đồ thị hàm số ?
Ta có:
Vậy tiệm cận ngang của đồ thị hàm số là đường thẳng có phương trình
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: