Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Chương 3 Các số đặc trưng đo mức độ phân tán cho mẫu số liệu ghép nhóm

Mô tả thêm:

Trong chương trình Toán 12 Cánh Diều, Chương 3 về các số đặc trưng đo mức độ phân tán cho mẫu số liệu ghép nhóm là một phần kiến thức quan trọng của xác suất – thống kê. Đây là chuyên đề giúp học sinh hiểu rõ hơn về phương sai, độ lệch chuẩn và các chỉ số đặc trưng trong phân tích dữ liệu. Để ôn tập và nắm vững kiến thức, việc luyện tập với đề kiểm tra 15 phút chương 3 là rất cần thiết. Bài viết này giới thiệu đến bạn đề kiểm tra 15 phút Toán 12 Cánh Diều kèm đáp án chi tiết, giúp học sinh rèn luyện kỹ năng tính toán, củng cố kiến thức và sẵn sàng cho các bài kiểm tra chính thức.

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Tính độ lệch chuẩn của mẫu số liệu ghép nhóm

    Thống kê tổng số giờ nắng trong tháng 9 tại một trạm quan trắc đặt ở Cà Mau trong các năm từ 2002 đến 2021 được thống kê như sau:

    Số giờ nắng

    \lbrack 80;98) \lbrack 98;116) \lbrack 116;134) \lbrack 134;152) \lbrack 152;170)

    Số năm

    3

    6

    3

    5

    3

    Độ lệch chuẩn của mẫu số liệu là (kết quả làm tròn đến hàng phần nghìn)

    Ta có bảng sau:

    Số giờ nắng

    \lbrack 80;98) \lbrack 98;116) \lbrack 116;134) \lbrack 134;152) \lbrack 152;170)

    Giá trị đại diện

     89 107  125 143  161 

    Số năm

    3

    6

    3

    5

    3

    Số trung bình của mẫu số liệu là

    \overline{x} = \frac{1}{20}.(3.89 +
6.107 + 3.125 + 5.143 + 3.161) = 124,1

    Phương sai của mẫu số liệu ghép nhóm là

    S^{2} = \frac{1}{20}.\left( 3.89^{2} +
6.107^{2} + 3.125^{2} + 5.143^{2} + 3.161^{2} \right) - 124,1^{2} =
566,19

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là S = \sqrt{566,19} \approx 23,795

  • Câu 2: Nhận biết

    Tính khoảng biến thiên

    Thống kê chiều cao (đơn vị: cm) của các bạn học sinh nữ của lớp 12A ở bảng sau:

    Chiều cao

    [150; 155)

    [150; 155)

    [150; 155)

    [150; 155)

    [150; 155)

    Số học sinh

    2

    4

    10

    0

    1

    Xác định khoảng biến thiên của chiều cao của các bạn học sinh nữ lớp 12A?

    Khoảng biến thiên của chiều cao của các bạn học sinh nữ lớp 12A là 175 – 155 = 20 (cm)

  • Câu 3: Vận dụng

    Tính tổng độ lệch chuẩn

    Biểu đồ dưới đây mô tả kết quả điều tra về mức lương khởi điểm (đơn vị: triệu đồng) của một số công nhân ở hai khu vực AB.

    A graph with blue and yellow barsDescription automatically generated

    Tổng độ lệch chuẩn của mẫu số liệu ghép nhóm ở 2 khu vực gần bằng với số nào sau đây nhất.

    Ta có

    A grid of numbers and lettersDescription automatically generated

    » Xét mẫu số liệu của khu vực A

    Cỡ mẫu là n_{A} = 4 + 5 + 5 + 4 + 2 =
20.

    Số trung bình của mẫu số liệu ghép nhóm là

    {\overline{x}}_{A} = \frac{4 \cdot 5,5 +
5 \cdot 6,5 + 5 \cdot 7,5 + 4 \cdot 8,5 + 2 \cdot 9,5}{20} =
7,25.

    Phương sai của mẫu số liệu ghép nhóm là

    S_{A}^{2} = \frac{1}{20}\left( 4 \cdot
5,5^{2} + 5 \cdot 6,5^{2} + 5 \cdot 7,5^{2} + 4 \cdot 8,5^{2} + 2 \cdot
9,5^{2} \right) - 7,25^{2} = 1,5875.

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là S_{A} = \sqrt{1,5875} \approx 1,2300.

    » Xét mẫu số liệu của khu vực B

    Cỡ mẫu là n_{B} = 3 + 6 + 5 + 5 + 1 =
20.

    Số trung bình của mẫu số liệu ghép nhóm là

    {\overline{x}}_{B} = \frac{3 \cdot 5,5 +
6 \cdot 6,5 + 5 \cdot 7,5 + 5 \cdot 8,5 + 1 \cdot 9,5}{20} =
7,25.

    Phương sai của mẫu số liệu ghép nhóm là

    S_{B}^{2} = \frac{1}{20}\left( 3 \cdot
5,5^{2} + 6 \cdot 6,5^{2} + 5 \cdot 7,5^{2} + 5 \cdot 8,5^{2} + 1 \cdot
9,5^{2} \right) - 7,25^{2} = 1,2875.

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là S_{B} = \sqrt{1,2875} \approx 1,1347.

    Tổng: khoảng 2,3647.

  • Câu 4: Vận dụng

    Xét tính đúng sai của các khẳng định

    Bảng dưới đây thống kê điểm thi học kỳ I môn tiếng Anh của học sinh hai lớp 12A và 12B năm học 2023-2024.

    Điểm thi

    [0; 2)

    [2; 4)

    [4; 6)

    [6; 8)

    [8; 10)

    Số học sinh lớp 12A

    1

    5

    20

    8

    6

    Số học sinh lớp 12B

    2

    3

    10

    18

    7

    Xét tính đúng sai của các kết luận sau?

    a) Khoảng biến thiên của mẫu số liệu ghép nhóm của mỗi lớp là bằng nhau. Đúng||Sai

    b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12A bằng 2,6. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12B bằng 2,57. Sai||Đúng

    d) Nếu so sánh theo khoảng tứ phân vị thì điểm thi môn tiếng Anh của lớp 12B đồng đều hơn so với lớp 12A. Sai||Đúng

    Đáp án là:

    Bảng dưới đây thống kê điểm thi học kỳ I môn tiếng Anh của học sinh hai lớp 12A và 12B năm học 2023-2024.

    Điểm thi

    [0; 2)

    [2; 4)

    [4; 6)

    [6; 8)

    [8; 10)

    Số học sinh lớp 12A

    1

    5

    20

    8

    6

    Số học sinh lớp 12B

    2

    3

    10

    18

    7

    Xét tính đúng sai của các kết luận sau?

    a) Khoảng biến thiên của mẫu số liệu ghép nhóm của mỗi lớp là bằng nhau. Đúng||Sai

    b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12A bằng 2,6. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12B bằng 2,57. Sai||Đúng

    d) Nếu so sánh theo khoảng tứ phân vị thì điểm thi môn tiếng Anh của lớp 12B đồng đều hơn so với lớp 12A. Sai||Đúng

    a) Đúng. Khoảng biến thiên:

    R_{12A} = R_{12B} = 10 - 0 =
10.

    b) Lớp 12A:

    Ta có

    Q_{1} = 4 + \frac{\frac{1}{4}.40 - (1 +
5)}{20}.(6 - 4) = 4,4.

    Q_{3} = 6 + \frac{\frac{3}{4}.40 - (1 +
5 + 20)}{8}.(8 - 6) = 7.

    \Rightarrow \Delta Q_{12A} = Q_{3} -
Q_{1} = 2,6.

    c) Lớp 12B:

    Ta có

    Q_{1} = 4 + \frac{\frac{1}{4}.40 - (2 +
3)}{10}.(6 - 4) = 5.

    Q_{3} = 6 + \frac{\frac{3}{4}.40 - (2 +
3 + 10)}{18}.(8 - 6) = \frac{23}{3}.

    \Rightarrow \Delta Q_{12B} = Q_{3} -
Q_{1} = 2,67.

    d) Ta có \Delta Q_{12A} < \Delta
Q_{12B} \Rightarrow Lớp 12A sẽ đồng đều hơn so với lớp 12B.

  • Câu 5: Nhận biết

    Tìm khoảng biến thiên của mẫu số liệu

    Cho bảng thống kê lượng mưa (đơn vị: mm) đo được vào tháng 6 từ năm 2023 đến 2024 tại khu vực A:

    341,4

    187,1

    242,2

    522,9

    251,4

    432,2

    200,7

    388,6

    258,4

    288,5

    298,1

    413,5

    413,5

    332

    421

    475

    400

    305

    520

    147

    Chia mẫu số liệu thành 4 nhóm với nhóm đầu tiên [140; 240). Tìm khoảng biến thiên của mẫu số liệu ghép nhóm?

    Ta có:

    Tổng lượng mưa (mm)

    [140; 240)

    [240; 340)

    [340; 440)

    [440; 540)

    Số năm

    3

    7

    7

    3

    Vậy khoảng biến thiên của mẫu số liệu ghép nhóm là R = 400.

  • Câu 6: Nhận biết

    Tìm số trung bình của mẫu số liệu ghép nhóm

    Thống kê quãng đường một xe taxi công nghệ đi mỗi ngày (đơn vị: km) như sau:

    Quãng đường ((km)

    [50; 100)

    [100; 150)

    [150; 200)

    [200; 250)

    [250; 300)

    Số ngày

    5

    10

    9

    4

    2

    Tìm số trung bình của mẫu số liệu ghép nhóm?

    Ta có:

    Quãng đường ((km)

    [50; 100)

    [100; 150)

    [150; 200)

    [200; 250)

    [250; 300)

    Giá trị đại diện

    75

    125

    175

    225

    275

    Số ngày

    5

    10

    9

    4

    2

    Số trung bình của mẫu số liệu ghép nhóm:

    \overline{x} = \frac{5.75 + 10.125 +
9.175 + 4.225 + 2.275}{30} = 155

  • Câu 7: Thông hiểu

    Chọn đáp án đúng

    Nhiệt độ trong 55 ngày của một địa phương được cho trong bảng ghép lớp sau:

    Phương sai của mẫu số liệu được làm tròn đến chữ số thập phân thứ nhất nằm trong khoảng

    Nhiệt độ trung bình trong một ngày là:

    \overline{x} = \frac{20,5.5 + 23,5.7 +
26,5.8 + 29,5.16 + 32,5.12 + 35,5.7}{55} = 28,9

    Phương sai của mẫu số liệu là:

    S^{2} = \frac{1}{55}[20,5^{2}.5 + 23,5^{2}.7 +26,5^{2}.8+ 29,5^{2}.16 + 32,5^{2}.12 + 35,5^{2}.7] - 28,9^{2} =19,44

    Phương sai của mẫu số liệu được làm tròn đến chữ số thập phân thứ nhất là S^{2} = 19,4

  • Câu 8: Nhận biết

    Tính số trung bình của mẫu số liệu ghép nhóm

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Tần số

    8

    9

    12

    10

    11

    Tính số trung bình của mẫu số liệu?

    Cỡ mẫu N = 50

    Đối tượng

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Giá trị đại diện

    121

    123

    125

    127

    129

    Tần số

    8

    9

    12

    10

    11

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{8.121 + 9.123 +
12.125 + 10.127 + 11.129}{50} = 125,28

  • Câu 9: Nhận biết

    Chọn công thức tính khoảng tứ phân vị

    Công thức tính khoảng tứ phân vị của mẫu số liệu ghép nhóm là

    Công thức tính khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta_{Q} = Q_{3} - Q_{1}

  • Câu 10: Nhận biết

    Xác định chiều cao trung bình

    Cho biểu đồ

    Tính chiều cao trung bình của mẫu số liệu đã cho?

    Ta có:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

    Chiều cao trung bình là:

    \overline{x} = \frac{3.162 + 5.166 +8.170 + 4.174 + 1.178}{21} \approx 169

  • Câu 11: Vận dụng

    Ghi đáp án vào ô trống

    Cho bảng thống kê lượng mưa (đơn vị: mm) đo được vào tháng 6 từ năm 2023 đến 2024 tại khu vực A:

    341,4

    187,1

    242,2

    522,9

    251,4

    432,2

    200,7

    388,6

    258,4

    288,5

    298,1

    413,5

    413,5

    332

    421

    475

    400

    305

    520

    147

    Chia mẫu số liệu thành 4 nhóm với nhóm đầu tiên [140; 240). Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho bảng thống kê lượng mưa (đơn vị: mm) đo được vào tháng 6 từ năm 2023 đến 2024 tại khu vực A:

    341,4

    187,1

    242,2

    522,9

    251,4

    432,2

    200,7

    388,6

    258,4

    288,5

    298,1

    413,5

    413,5

    332

    421

    475

    400

    305

    520

    147

    Chia mẫu số liệu thành 4 nhóm với nhóm đầu tiên [140; 240). Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 12: Thông hiểu

    Chọn đáp án đúng

    Một mẫu số liệu ghép nhóm có khoảng tứ phân vị là 4,43 và tứ phân vị thứ 3 là \frac{68}{3} thì giá trị ngoại lệ của mẫu số liệu ghép nhóm đó phải là bao nhiêu?

    Do tứ phân vị thứ 3 là \frac{68}{3}

    Suy ra giá trị ngoại lệ x > Q_{3} +
1,5\Delta Q = \frac{68}{3} + 1,5.4,43 \approx 29,3.

  • Câu 13: Thông hiểu

    Xét tính đúng sai của các nhận định

    Bảng 1 và Bảng 2 lần lượt biểu diễn mẫu số liệu ghép nhóm thống kê mức lương của hai công ty A,B (đơn vị: triệu đồng).

    Nhóm

    Giá trị đại diện

    Tần số

    Nhóm

    Giá trị đại diện

    Tần số

    \lbrack 10;15)

    12,5

    15

    \lbrack 10;15)

    12,5

    25

    \lbrack 15;20)

    17,5

    18

    \lbrack 15;20)

    17,5

    15

     \lbrack 20;25) 

    22,5

    10

     \lbrack 20;25) 

    22,5

    7

     \lbrack 25;30) 

    27,5

    10

     \lbrack 25;30) 

    27,5

    5

     \lbrack 30;35) 

    32,5

    5

     \lbrack 30;35) 

    32,5

    5

     \lbrack 35;40) 

    37,5

    2

     \lbrack 35;40) 

    37,5

    3

    n = 60 n = 60

    Bảng 1

    Bảng 2

    a) [NB] Số trung bình cộng của mẫu số liệu ghép nhóm ở Bảng 1 là \frac{62}{3} (triệu đồng). Đúng||Sai

    b) [TH] Phương sai của mẫu số liệu ghép nhóm ở Bảng 1 là: s_{1}^{2} \approx 49,1389. Đúng||Sai

    c) [TH] Độ lệch chuẩn của mẫu số liệu ghép nhóm ở Bảng 2 là: s_{2} \approx 7,61(triệu đồng). Đúng||Sai

    d) [VD] Công ty B có mức lương đồng đều hơn công ty A. Sai|||Đúng

    Đáp án là:

    Bảng 1 và Bảng 2 lần lượt biểu diễn mẫu số liệu ghép nhóm thống kê mức lương của hai công ty A,B (đơn vị: triệu đồng).

    Nhóm

    Giá trị đại diện

    Tần số

    Nhóm

    Giá trị đại diện

    Tần số

    \lbrack 10;15)

    12,5

    15

    \lbrack 10;15)

    12,5

    25

    \lbrack 15;20)

    17,5

    18

    \lbrack 15;20)

    17,5

    15

     \lbrack 20;25) 

    22,5

    10

     \lbrack 20;25) 

    22,5

    7

     \lbrack 25;30) 

    27,5

    10

     \lbrack 25;30) 

    27,5

    5

     \lbrack 30;35) 

    32,5

    5

     \lbrack 30;35) 

    32,5

    5

     \lbrack 35;40) 

    37,5

    2

     \lbrack 35;40) 

    37,5

    3

    n = 60 n = 60

    Bảng 1

    Bảng 2

    a) [NB] Số trung bình cộng của mẫu số liệu ghép nhóm ở Bảng 1 là \frac{62}{3} (triệu đồng). Đúng||Sai

    b) [TH] Phương sai của mẫu số liệu ghép nhóm ở Bảng 1 là: s_{1}^{2} \approx 49,1389. Đúng||Sai

    c) [TH] Độ lệch chuẩn của mẫu số liệu ghép nhóm ở Bảng 2 là: s_{2} \approx 7,61(triệu đồng). Đúng||Sai

    d) [VD] Công ty B có mức lương đồng đều hơn công ty A. Sai|||Đúng

    a) Đúng. Ta có: Số trung bình cộng của mẫu số liệu ghép nhóm ở Bảng 1 là:

    {\overline{x}}_{1} = \frac{15 \cdot 12,5
+ 18 \cdot 17,5 + 10 \cdot 22,5 + 10 \cdot 27,5 + 5 \cdot 32,5 + 2 \cdot
37,5}{60}

    = \frac{62}{3} \approx 20,67

    Nên mệnh đề a) Đúng

    b) Đúng. Ta có:

    15 \cdot (12,5 - 20,67)^{2} + 18 \cdot
(17,5 - 20,67)^{2} + 10 \cdot (22,5 - 20,67)^{2} +

    + 10.(27,5 - 20,67)^{2} + 5.(32,5 -
20,67)^{2} + 2.(37,5 - 20,67)^{2} \approx 2948,33494

    Phương sai của mẫu số liệu ghép nhóm ở Bảng 1 là: s_{1}^{2} = \frac{2948,334}{60} \approx
49,1389.

    Nên mệnh đề b) Đúng

    c) Đúng. Số trung bình cộng của mẫu số liệu ghép nhóm ở Bảng 2 là:

    {\overline{x}}_{2} = \frac{25 \cdot 12,5
+ 15 \cdot 17,5 + 7 \cdot 22,5 + 5 \cdot 27,5 + 5 \cdot 32,5 + 3 \cdot
37,5}{60}

    = \frac{1145}{60} \approx 19,08

    Ta có: 25 \cdot (12,5 - 19,08)^{2} + 15
\cdot (17,5 - 19,08)^{2} + 7 \cdot (22,5 - 19,08)^{2} +

    + 5.(27,5 - 19,08)^{2} + 5.(32,5 -
19,08)^{2} + 3.(37,5 - 19,08)^{2} \approx 3474,584.

    Phương sai của mẫu số liệu ghép nhóm ở Bảng 2 là: s_{2}^{2} = \frac{3474,584}{60} \approx
57,9097.

    Độ lệch chuẩn của mẫu số liệu ghép nhóm ở Bảng 2 là: s_{2} \approx \sqrt{57,9097} \approx
7,61(triệu đồng)

    Nên mệnh đề c) Đúng

    d) Sai. Độ lệch chuẩn của mẫu số liệu ghép nhóm ở Bảng 1 là:

    s_{1} \approx \sqrt{49,1389} \approx
7(triệu đồng)

    s_{1} \approx 7 < s_{2} \approx
7,61 nên công ty A có mức lương đồng đều hơn công ty B.

    Nên mệnh đề c) Sai

  • Câu 14: Thông hiểu

    Tính phương sai của mẫu số liệu

    Thống kê kết quả giải rubik của một bạn học sinh được ghi lại như sau:

    Thời gian (giây)

    [8; 10)

    [10; 12)

    [12; 14)

    [14; 16)

    [16; 18)

    Số lần

    4

    6

    8

    4

    3

    Phương sai của mẫu số liệu ghép nhóm có giá trị gần nhất với giá trị nào sau đây?

    Ta có:

    Thời gian (giây)

    [8; 10)

    [10; 12)

    [12; 14)

    [14; 16)

    [16; 18)

    Giá trị đại diện

    9

    11

    13

    15

    17

    Số lần

    4

    6

    8

    4

    3

    Số trung bình của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{4.9 + 6.11 + 8..13
+ 4.15 + 3.17}{25} = 12,68

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{25}\left( 4.9^{2} +
6.11^{2} + 8.13^{2} + 4.15^{2} + 3.17^{2} ight) - (12,68)^{2} =
5,9776

    Phương sai của mẫu số liệu ghép nhóm có giá trị gần nhất với giá trị 6,2.

  • Câu 15: Vận dụng

    Tìm giá trị ngoại lệ của mẫu số liệu

    Dưới đây là thống kê thời gian 100 lần đi làm bằng xe bus từ nhà đến trường của bạn Lan:

    Thời gian (phút)

    [15; 81)

    [18; 21)

    [21; 24)

    [24; 27)

    [27; 30)

    [30; 33)

    Số lượt

    22

    38

    27

    8

    4

    1

    Giá trị nào sau đây là giá trị ngoại lệ của mẫu số liệu?

    Ta có:

    Thời gian (phút)

    [15; 81)

    [18; 21)

    [21; 24)

    [24; 27)

    [27; 30)

    [30; 33)

    Số lượt

    22

    38

    27

    8

    4

    1

    Tần số tích lũy

    22

    60

    87

    95

    99

    100

    Cỡ mẫu N = 100 \Rightarrow \frac{N}{4} =
25

    => Nhóm chứa tứ phân vị thứ nhất là [18; 21)

    Do đó: l = 18;m = 22,f = 38;c = 21 - 18 =
3

    Khi đó tứ phân vị thứ nhất là:

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 18 + \frac{25 - 22}{38}.3 =\frac{693}{38}

    N = 100 \Rightarrow \frac{3N}{4} =
75

    => Nhóm chứa tứ phân vị thứ ba là [21; 24)

    Do đó: l = 21;m = 60,f = 27;c =
3

    Khi đó tứ phân vị thứ ba là:

    \Rightarrow Q_{3} = l +
\frac{\frac{3N}{4} - m}{f}.c = 21 + \frac{75 - 60}{27}.3 =
\frac{68}{3}

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta_{Q} = Q_{3} - Q_{1} \approx
4,43

    Trong một lần duy nhất Lan đi hết 29 phút, thời gian đi của Lan thuộc nhóm [30; 33)

    Q_{3} + 1,5\Delta Q = \frac{6683}{228}
< 30 nên thời gian của lần Lan đi hết 29 phút là giá trị ngoại lệ của mẫu số liệu ghép nhóm.

  • Câu 16: Thông hiểu

    Xác định tính đúng sai của từng phương án

    Người ta theo dõi sự thay đổi cân nặng, được tính bằng hiệu cân nặng trước và sau ba tháng áp dụng chế độ ăn kiêng của một số người cho kết quả sau:

    Thay đổi cân nặng

    [-1; 0)

    [0; 1)

    [1; 2)

    [2; 3)

    [3; 4)

    Số người nam

    6

    4

    2

    3

    1

    Số người nữ

    5

    6

    3

    1

    0

    Xét tính đúng, sai các mệnh đề sau:

    (a) Số người thay đổi cân nặng theo chiều hướng giảm cân là 11. Đúng||Sai

    (b) Khoảng biến thiên của mẫu số liệu ghép nhóm về sự thay đổi cân nặng của nam là R_{1} = 5. Đúng||Sai

    (c) Khoảng biến thiên của mẫu số liệu ghép nhóm về sự thay đổi cân nặng của nữ là R_{2} = 3. Sai|| Đúng

    (d) Nếu biết nữ tăng cân nhiều nhất là 2kg và giảm cân được nhiều nhất 1kg thì khoảng biến thiên của mẫu số liệu gốc là 1. Sai|| Đúng

    Đáp án là:

    Người ta theo dõi sự thay đổi cân nặng, được tính bằng hiệu cân nặng trước và sau ba tháng áp dụng chế độ ăn kiêng của một số người cho kết quả sau:

    Thay đổi cân nặng

    [-1; 0)

    [0; 1)

    [1; 2)

    [2; 3)

    [3; 4)

    Số người nam

    6

    4

    2

    3

    1

    Số người nữ

    5

    6

    3

    1

    0

    Xét tính đúng, sai các mệnh đề sau:

    (a) Số người thay đổi cân nặng theo chiều hướng giảm cân là 11. Đúng||Sai

    (b) Khoảng biến thiên của mẫu số liệu ghép nhóm về sự thay đổi cân nặng của nam là R_{1} = 5. Đúng||Sai

    (c) Khoảng biến thiên của mẫu số liệu ghép nhóm về sự thay đổi cân nặng của nữ là R_{2} = 3. Sai|| Đúng

    (d) Nếu biết nữ tăng cân nhiều nhất là 2kg và giảm cân được nhiều nhất 1kg thì khoảng biến thiên của mẫu số liệu gốc là 1. Sai|| Đúng

    (a) Số người thay đổi cân nặng theo chiều hướng giảm cân là 11. Số người thay đổi theo chiều hướng giảm cân là 5 + 6 = 11

    Chọn ĐÚNG.

    (b) Khoảng biến thiên của mẫu số liệu ghép nhóm về sự thay đổi cân nặng của nam là R_{1} = 5.

    Khoảng biến thiên của mẫu số liệu ghép nhóm về sự thay đổi cân nặng của nam là R_{1} = 4 - ( - 1) =
5

    Chọn ĐÚNG.

    (c) Khoảng biến thiên của mẫu số liệu ghép nhóm về sự thay đổi cân nặng của nữ là R_{2} = 3.

    Khoảng biến thiên của mẫu số liệu ghép nhóm về sự thay đổi cân nặng của nữ là R_{2} = 3 - ( - 1) =
4

    Chọn SAI.

    (d) Nếu biết nữ tăng cân nhiều nhất là 2 kg và giảm cân được nhiều nhất 1 kg thì khoảng biến thiên của mẫu số liệu gốc là 1.

    Nếu biết nữ tăng cân nhiều nhất là 2 kg và giảm cân được nhiều nhất 1 kg thì khoảng biến thiên của mẫu số liệu gốc là R_{2} = 2 - ( - 1) = 3

    Chọn SAI.

  • Câu 17: Thông hiểu

    Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm

    Cho mẫu số liệu ghép nhóm sau về cân nặng của học sinh lớp 2 A:

    Khoảng tứ phân vị của mẫu số liệu trên là:

    Ta có: n = 4 + 5 + 7 + 4 =
20

    Nhóm chứa tứ phân vị thứ nhất: Q_{1} =
\frac{x_{5} + x_{6}}{2} \in \lbrack 32;34)

    Do đó tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:

    Q_{1} = 32 + (34 -
32).\frac{\frac{20}{4} - 4}{5} = \frac{162}{5}

    Nhóm chứa tứ phân vị thứ ba: Q_{3} =
\frac{x_{15} + x_{16}}{2} \in \lbrack 34;36):

    Do đó tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

    Q_{3} = 36 + (36 -
34).\frac{3.\frac{20}{4} - 4 - 5}{7} = \frac{264}{7}

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta Q = Q_{3} - Q_{1} =
\frac{186}{35} 

  • Câu 18: Thông hiểu

    Tính phương sai của mẫu số liệu ghép nhóm

    Thống kê thời gian làm bài test ngắn của học sinh hai lớp 12A và 12B ghi lại trong bảng sau:

    Thời gian (phút)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    [10; 11)

    Học sinh lớp 12A

    8

    10

    13

    10

    9

    Học sinh lớp 12B

    4

    12

    17

    14

    3

    Phương sai của mẫu số liệu ghép nhóm lớp 12A và lớp 12B lần lượt là

    Ta có:

    Thời gian (phút)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    [10; 11)

    Giá trị đại diện

    6,5

    7,5

    8,5

    9,5

    10,5

    Học sinh lớp 12A

    8

    10

    13

    10

    9

    Học sinh lớp 12B

    4

    12

    17

    14

    3

    Số trung bình của mẫu số liệu ghép nhóm lớp 12A:

    \overline{x_{A}} = \frac{6.6,5 + 10.7,5
+ 13.8,5 + 10.9,5 + 9.10,5}{50} = 8,54

    Phương sai của mẫu số liệu ghép nhóm lớp 12A là:

    {S_{A}}^{2} = \frac{1}{50}\left(
6.6,5^{2} + 10.7,5^{2} + 13.8,5^{2} + 10.9,5^{2} + 9.10,5^{2} ight) -
8,54^{2} = 1,7584

    Số trung bình của mẫu số liệu ghép nhóm lớp 12B:

    \overline{x_{B}} = \frac{4.6,5 + 12.7,5
+ 17.8,5 + 14.9,5 + 3.10,5}{50} = 8,5

    Phương sai của mẫu số liệu ghép nhóm lớp 12B là:

    {S_{B}}^{2} = \frac{1}{50}\left( 4.6,5^{2} +
12.7,5^{2} + 17.8,5^{2} + 14.9,5^{2} + 3.10,5^{2} ight) - 8,5^{2} =
1,08

  • Câu 19: Thông hiểu

    Ghi đáp án vào ô trống

    Biểu đồ sau biểu diễn lượng khách hàng đặt bàn online mỗi ngày trong quý I của năm 2024 tại một cửa hàng:

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Biểu đồ sau biểu diễn lượng khách hàng đặt bàn online mỗi ngày trong quý I của năm 2024 tại một cửa hàng:

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 20: Nhận biết

    Tìm khoảng biến thiên

    Thống kê thời gian sử dụng mạng xã hội trong ngày của các bạn học sinh tổ 1 và tổ 2 lớp 12A thu được bảng sau:

    Tìm khoảng biến thiên R_{1},\
R_{2}cho thời gian sử dụng mạng xã hội của tổ 1 và tổ 2.

    Khoảng biến thiên của mẫu số liệu ghép nhóm của tổ 1: R_{1} = 90

    Khoảng biến thiên của mẫu số liệu ghép nhóm của tổ 2: R_{2} = 60

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 3 Các số đặc trưng đo mức độ phân tán cho mẫu số liệu ghép nhóm Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo