Xác định đường kính của mặt cầu
Trong không gian với hệ toạ độ
, cho ba điểm
. Tính đường kính
của mặt cầu
đi qua ba điểm trên và có tâm nằm trên mặt phẳng
?
Gọi tâm mặt cầu là
Ta có:
.
Trong chương trình Toán 12 Cánh Diều, Chương 5 với nội dung phương trình mặt phẳng, đường thẳng và mặt cầu trong không gian là phần kiến thức quan trọng của hình học giải tích. Đây là chuyên đề giúp học sinh nắm vững cách viết phương trình, xác định vị trí tương đối và vận dụng vào giải quyết các bài toán không gian. Việc luyện tập qua đề kiểm tra 15 phút Chương 5 Toán 12 sẽ giúp học sinh củng cố kiến thức, rèn kỹ năng giải bài tập và làm quen với các dạng đề thi thường gặp. Bài viết này giới thiệu đến bạn đề kiểm tra 15 phút Toán 12 Cánh Diều kèm đáp án chi tiết, giúp quá trình ôn tập trở nên dễ dàng và hiệu quả hơn.
Xác định đường kính của mặt cầu
Trong không gian với hệ toạ độ
, cho ba điểm
. Tính đường kính
của mặt cầu
đi qua ba điểm trên và có tâm nằm trên mặt phẳng
?
Gọi tâm mặt cầu là
Ta có:
.
Tính khoảng cách từ điểm đến mặt phẳng
Cho hình chóp
đáy là hình thang vuông tại
và
,
. Góc giữa
và mặt phẳng đáy bằng
,
là trung điểm của
,
,
. Tính khoảng cách từ điểm
đến mặt phẳng
.
Hình vẽ minh họa

Hình chiếu của trên mặt phẳng
là
Góc giữa
và mặt đáy là góc giữa
và
và bằng góc
.
Tam giác vuông cân tại
.
Chọn hệ trục tọa độ như hình vẽ ta có: ,
,
,
,
,
.
,
mặt phẳng
có véctơ pháp tuyến
.
Vậy .
Chọn đáp án thích hợp
Trong không gian
, phương trình nào sau đây là phương trình của mặt phẳng?
Phương trình tổng quát của mặt phẳng là: .
Xác định phương trình mặt phẳng
Trong không gian
, cho hai điểm
. Phương trình mặt phẳng
đi qua
và tạo với mặt phẳng
một góc
thỏa mãn
là
Giả sử có vectơ pháp tuyến
có vectơ chỉ phương
có phương trình x = 0 nên có vectơ pháp tuyến
Mà
Thay (1) vào (2) ta được
Chọn ta có
Hay , Vậy
.
Ghi đáp án vào ô trống
Trong không gian với hệ tọa độ
cho ba điểm
và mặt phẳng
. Tìm điểm
sao cho
đạt giá trị nhỏ nhất.
Trong không gian với hệ tọa độ
cho ba điểm
và mặt phẳng
. Tìm điểm
sao cho
đạt giá trị nhỏ nhất.
Tính góc giữa đường thẳng và mặt phẳng
Trong không gian
, cho đường thẳng
và mặt phẳng
. Góc giữa đường thẳng
và mặt phẳng
bằng
Ta có:
∆ có vectơ chỉ phương là
(α) có vectơ pháp tuyến là
.
Viết phương trình mặt phẳng
Trong không gian với hệ tọa độ
, phương trình đường thẳng tiếp xúc với mặt cầu
tại điểm
là:
Mặt cầu có tâm
.
Gọi (α) là mặt phẳng cần tìm.
Do (α) tiếp xúc với (S) tại P nên mặt phẳng (α) đi qua P và có vectơ pháp tuyến
Phương trình mặt phẳng (α) là
Tìm phương trình tham số của đường thẳng
Trong không gian
, đường thẳng đi qua hai điểm
và
có phương trình tham số là:
Ta có:
Đường thẳng đi qua hai điểm A(1; 2; −3) và B(2; −3; 1) có phương trình tham số là
Với t = −2, ta được M(3; −8; 5) thuộc đường thẳng AB. Khi đó, đường thẳng AB có phương trình tham số .
Chọn đáp án đúng
Trong không gian
, cho tam giác
có
, đường trung tuyến kẻ từ B và đường cao kẻ từ C lần lượt có phương trình
. Biết
, khi đó
bằng
Hình vẽ minh họa
Giả sử đường cao là ta có vectơ chỉ phương của CH là
.
B thuộc đường trung tuyến nên
.
Suy ra
Vì nên
.
Vậy .
Tìm phương trình mặt cầu (S)
Cho đường thẳng d:
và mặt phẳng
. Phương trình mặt cầu
có tâm nằm trên đường thẳng d có bán kính nhỏ nhất tiếp xúc với
và đi qua điểm
là:
Gọi là tâm của (S).
. Bán kính
.
Mặt phẳng tiếp xúc với
nên
.
⇔ ⇔
.
Vì có bán kính nhỏ nhất nên chọn
.
Suy ra .
Vậy phương trình mặt cầu (S): .
Xác định phương trình mặt phẳng
Trong không gian với hệ toạ độ
. Phương trình mặt phẳng (P) đi qua điểm
và nhận
là VTPT có phương trình là:
Mặt phẳng (P) đi qua điểm và nhận
là VTPT có phương trình là:
.
Vậy .
Phương pháp trắc nghiệm (nên có)
Từ tọa độ VTPT suy ra hệ số B=0, vậy loại ngay đáp án và
Chọn 1 trong 2 PT còn lại bằng cách thay tọa độ điểm A vào.
Xác định điểm thuộc đường thẳng
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng
:
. Điểm nào sau đây thuộc đường thẳng
?
Thay tọa độ điểm vào phương trình tham số của đường thẳng
.
Vậy điểm thuộc đường thẳng
.
Tính giá trị của biểu thức
Trong không gian hệ tọa độ
, cho điểm
,
,
và mặt phẳng
. Gọi
thuộc
sao cho
đạt giá trị nhỏ nhất. Tính tổng
.
Giả sử là điểm thỏa mãn
.
Khi đó
;
;
(vì
)
Vì I cố định nên đạt giá trị nhỏ nhất khi MI nhỏ nhất, khi đó M là hình chiếu vuông góc của I lên (P).
Gọi là đường thẳng qua I và vuông góc với (P)
Phương trình đường thẳng .
Tọa độ của M là nghiệm hệ phương trình:
Viết phương trình mặt phẳng
Trong không gian với hệ tọa độ
, mặt phẳng
đi qua
và chứa trục
có phương trình là:
Ta có: (P) có cặp véc-tơ chỉ phương
Khi đó véc-tơ pháp tuyến của (P) là , ta chọn
.
Mặt phẳng (P) đi qua và có véc-tơ pháp tuyến
nên có phương trình
hay
.
Tính khoảng cách từ M đến (P)
Trong không gian với hệ tọa độ
cho mặt phẳng
và đường thẳng
. Gọi
là giao điểm của
và
và
là điểm thuộc đường thẳng
sao cho
. Tính khoảng cách từ
đến mặt phẳng
.
Gọi
Khi đó ta có:
Gọi là hình chiếu của
lên mặt phẳng
, khi đó:
Chọn phương án đúng
Tìm tập hợp các tâm I của mặt cầu
![]()
; ![]()
Ta có:
Tâm
đường thẳng:
là mặt cầu
Vậy tập hợp các tâm O là phần đường thẳng tương ứng với
Tính tổng b và c
Trong không gian
cho tứ diện với điểm
và
. Biết mặt phẳng qua B, C và tâm mặt cầu nội tiếp tứ diện
có một vectơ pháp tuyến là
. Tổng
là
Ta có phương trình các mặt phẳng như sau:
Gọi là tâm mặt cầu nội tiếp tứ diện
Do đó:
I nằm cùng phái với A đối với suy ra:
.
I nằm cùng phía với B đối với suy ra:
.
I nằm cùng phía với C đối với suy ra:
.
I nằm cùng phía với D đối với suy ra:
.
Suy ra:
Suy ra:
cùng phương với
.
Suy ra có một VTPT là
.
Vậy .
Chọn công thức đúng
Góc của đường thẳng
:
và mặt phẳng
tính bởi công thức nào sau đây?
Công thức đúng là:
Vị trí tương đối của hai đường thẳng
Hai đường thẳng
.
và
có vecto chỉ phương
và
có vecto chỉ phương
và
chéo nhau.
Chọn đáp án đúng
Trong không gian với hệ tọa độ Oxyz cho đường thẳng
và mặt phẳng
. Tính số đo góc giữa đường thẳng
và mặt phẳng
.
Đường thẳng d có vectơ chỉ phương là
Mặt phẳng (P) có vectơ pháp tuyến là
Gọi α là góc giữa đường thẳng d và mặt phẳng (P) .
Khi đó ta có:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: