Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Chương 4 Nguyên hàm Tích phân Cánh Diều

Mô tả thêm:

Trong chương trình Toán 12 Cánh Diều, Chương 4 về Nguyên hàm – Tích phân là phần kiến thức quan trọng, gắn liền với nhiều ứng dụng trong giải tích và bài toán thực tế. Đây cũng là nội dung thường xuyên xuất hiện trong các bài kiểm tra và đề thi. Việc luyện tập với đề kiểm tra 15 phút Chương 4 Nguyên hàm – Tích phân sẽ giúp học sinh hệ thống hóa công thức, rèn luyện kỹ năng tính toán và làm quen với các dạng bài tiêu biểu. Bài viết này giới thiệu đến bạn đề kiểm tra 15 phút Toán 12 Cánh Diều kèm lời giải chi tiế

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Vận dụng cao

    Ghi đáp án đúng vào ô trống

    Một chiếc cổng có hình dạng là một parabol có khoảng cách giữa hai chân cổng là 8 m. Người ta treo một tấm phông hình chữ nhật có hai đỉnh M,N nằm trên Parabol và hai đỉnh P, Q nằm trên mặt đất như hình vẽ bên. Ở phần phía ngoài phông người ta mua hoa để trang trí với chi phí 200.000 đồng /m^{2}, biết MN = 4\ m,MQ = 6\ m. Tính số tiền để mua hoa trang trí. Kết quả làm tròn đến hàng triệu và lấy một chữ số sau dấu phẩy.

    Đáp án: 3,7||3.7

    Đáp án là:

    Một chiếc cổng có hình dạng là một parabol có khoảng cách giữa hai chân cổng là 8 m. Người ta treo một tấm phông hình chữ nhật có hai đỉnh M,N nằm trên Parabol và hai đỉnh P, Q nằm trên mặt đất như hình vẽ bên. Ở phần phía ngoài phông người ta mua hoa để trang trí với chi phí 200.000 đồng /m^{2}, biết MN = 4\ m,MQ = 6\ m. Tính số tiền để mua hoa trang trí. Kết quả làm tròn đến hàng triệu và lấy một chữ số sau dấu phẩy.

    Đáp án: 3,7||3.7

    Gắn hệ trục tọa độ Oxy như hình vẽ.

    Phương trình parabol có dạng (P):y =
ax^{2} + bx + c.

    Ta có:

    \left\{ \begin{matrix}
A( - 4;0) \in (P) \\
B(4;0) \in (P) \\
N(2;6) \in (P) \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
16a - 4b + c = 0 \\
16a + 4b + c = 0 \\
4a + 2b + c = 6 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
a = - \dfrac{1}{2} \\
b = 0 \\
c = 8 \\
\end{matrix} ight.\  ight.\  ight.

    \Rightarrow (P):y = - \frac{1}{2}x^{2} +
8

    Diện tích để trang trí hoa là:

    S = \int_{- 4}^{4}{\left( -
\frac{1}{2}x^{2} + 8 ight)dx} - S_{MNPQ} = \frac{128}{3} - 4.6 =
\frac{56}{3}.

    Vậy số tiền để mua hoa trang trí: \frac{56}{3} \cdot 200000 \approx 3733300 \approx
3,7 triệu.

  • Câu 2: Nhận biết

    Chọn đáp án đúng

    Cho hàm số y = f(x);y = g(x) liên tục trên \lbrack a;bbrack. Gọi (H) là hình phẳng giới hạn bởi hai đồ thị y = f(x);y = g(x) và các đường thẳng x = a;x = b. Diện tích hình (H) được tính theo công thức?

    Ta có diện tích hình (H) được tính bằng công thức S = \int_{a}^{b}{\left| f(x) - g(x)
ight|dx}.

  • Câu 3: Thông hiểu

    Tính giá trị biểu thức

    Cho a;b là các số hữu tỉ thỏa mãn \int_{}^{}\frac{dx}{\sqrt{x + 2} +
\sqrt{x + 1}} = a(x + 2)\sqrt{x + 2} + b(x + 1)\sqrt{x + 1} +
C. Tính giá trị biểu thức H = 3a +
b?

    Ta có:

    I = \int_{}^{}{\frac{dx}{\sqrt{x + 2} +
\sqrt{x + 1}} =}\int_{}^{}{\frac{\sqrt{x + 2} - \sqrt{x + 1}}{x + 2 - x
+ 1}dx}

    = \int_{}^{}{\left( \sqrt{x + 2} -
\sqrt{x + 1} ight)dx}

    \Rightarrow I = \frac{2}{3}(x +
2)\sqrt{x + 2} - \frac{2}{3}(x + 1)\sqrt{x + 1} + C

    \Rightarrow a = \frac{2}{3};b = -
\frac{2}{3} \Rightarrow H = \frac{4}{3}

  • Câu 4: Thông hiểu

    Tính tích phân I

    Tích phân I = \int_{1}^{a}{x\ln
x}dx có giá trị là:

    Xét tích phân I = \int_{1}^{a}{x\ln
x}dx.

    Đặt \left\{ \begin{matrix}
u = \ln x \\
dv = xdx \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
du = \frac{1}{x}dx \\
v = \frac{x^{2}}{2} \\
\end{matrix} ight..

    \Rightarrow I = \left. \ \left(
\frac{x^{2}}{2}.lnx ight) ight|_{1}^{a} -
\int_{1}^{a}{\frac{x}{2}dx}= \left. \ \left( \frac{x^{2}}{2}.lnx
ight) ight|_{1}^{a} - \left. \ \left( \frac{x^{2}}{4} ight)
ight|_{1}^{a}

    = \frac{a^{2}\ln|a|}{2} + \frac{1 -
a^{2}}{4}

    Đáp án đúng là I = \frac{a^{2}\ln|a|}{2}
+ \frac{1 - a^{2}}{4}.

  • Câu 5: Nhận biết

    Chọn đáp án đúng

    Tìm nguyên hàm của hàm số f(x) =
\frac{1}{(2x - 1)^{2}}?

    Ta có: \int_{}^{}{\frac{1}{(2x -1)^{2}}dx} = \int_{}^{}{(2x - 1)^{- 1}dx}

    = - \frac{1}{2}.\frac{1}{2x -2} + C = \frac{1}{2 - 4x} + C

  • Câu 6: Thông hiểu

    Tính thể tích chiếc ly

    Một ly rượu thủy tinh có hình dạng tròn xoay và kích thước như hình vẽ, thiết diện dọc của ly (bổ dọc cốc thành 2 phần bằng nhau) là một đường Parabol. Tính thể tích tối đa mà ly có thể chứa được (làm tròn 2 chữ số thập phân)

    Parabol có phương trình y =
\frac{5}{8}x^{2} \Leftrightarrow x^{2} = \frac{8}{5}y

    Thể tích tối đa cốc: V =
\pi\int_{0}^{10}\left( \frac{8}{5}y \right)dy \approx
251,33.

  • Câu 7: Nhận biết

    Tính tích phân I

    Giá trị tích phân I =
\int_{1}^{2}{\frac{1}{x^{6}}dx} bằng:

    Ta có:

    I = \int_{1}^{2}{\frac{1}{x^{6}}dx} =
\int_{1}^{2}{x^{- 6}dx} = \left. \ \frac{x^{- 5}}{- 5} ight|_{1}^{2} =
\frac{31}{125}

  • Câu 8: Thông hiểu

    Chọn đáp án đúng

    Tính thể tích V của vật thể nằm giữa hai mặt phẳng x = 0x = \pi, biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x (0 \leq x
\leq \pi) là một tam giác đều cạnh 2\sqrt{\sin x}.

    Ta có diện tích thiết diện: S(x) = \left(
2\sqrt{\sin x} \right)^{2}.\frac{\sqrt{3}}{4} = \sqrt{3}\sin
x.

    V = \int_{0}^{\pi}{S(x)}\ dx =\int_{0}^{\pi}{\sqrt{3}\sin x}\ dx= - \sqrt{3}\cos x\left|\begin{matrix}\pi \\0 \\\end{matrix} \right.\  = 2\sqrt{3}.

  • Câu 9: Vận dụng

    Tìm giá trị tham số k

    Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = ax^{3} (a
> 0), trục hoành và hai đường thẳng x = - 1, x =
k (k > 0) bằng \frac{15a}{4}. Tìm k.

    Kí hiệu đồ thị hàm số như sau:

    Ta thấy hàm số y = ax^{3};(a >
0) luôn đồng biến trên \mathbb{R} và có tâm đối xứng là O(0;0). Hình vẽ minh họa ở bên ta thấy với x \in ( - 1;0) thì ax^{3} < 0, với x \in (0;k) thì ax^{3} > 0.

    Vậy S = \int_{- 1}^{k}{\left| ax^{3}
ight|dx = \frac{15a}{4}}

    \Leftrightarrow \int_{- 1}^{0}{\left(
ax^{3} ight)dx} + \int_{0}^{k}{\left( ax^{3} ight)dx} =
\frac{15a}{4}

    \Leftrightarrow \frac{- ax^{4}}{4}|_{-
1}^{0} + \frac{ax^{4}}{4}|_{0}^{k} = \frac{15a}{4};(k >
0)

    \Leftrightarrow \frac{a}{4} +
\frac{ak^{4}}{4} = \frac{15a}{414} \Leftrightarrow k^{4} = 14
\Leftrightarrow k = \sqrt[4]{14}

  • Câu 10: Vận dụng

    Tính giá trị biểu thức

    Cho hàm số f'(x) thỏa mãn f(2) = - \frac{1}{25}f'(x) = 4x^{3}.\left\lbrack f(x)
\right\rbrack^{2} với mọi x\mathbb{\in R}. Giá trị của f(1) bằng?

    Ta có:

    f'(x) = 4x^{3}.\left\lbrack f(x)
\right\rbrack^{2} \Rightarrow \frac{f'(x)}{\left\lbrack f(x)
\right\rbrack^{2}} = 4x^{3}

    \Rightarrow
\int_{}^{}{\frac{f'(x)}{\left\lbrack f(x) \right\rbrack^{2}}dx} =
\int_{}^{}{4x^{3}dx}

    \Leftrightarrow \frac{- 1}{f(x)} = x^{4}
+ C;\left( C = C_{2} - C_{1} \right)

    Vậy f(x) = - \frac{1}{x^{4} +
C}

    Theo bài ra ta có: f(2) = - \frac{1}{25}
\Leftrightarrow - \frac{1}{2^{4} + C} = - \frac{1}{25} \Leftrightarrow C
= 9

    Vậy f(x) = - \frac{1}{x^{4} + 9}
\Leftrightarrow f(1) = - \frac{1}{1^{4} + 9} = -
\frac{1}{10}

  • Câu 11: Thông hiểu

    Xác định nguyên hàm của hàm số f(x)

    Tìm nguyên hàm của hàm số f(x)thỏa mãn điều kiện: f(x) = 2x - 3cosx,\ F\left( \frac{\pi}{2} \right)
= 3

    Ta có: F(x) = \int_{}^{}{(2x - 3cosx)dx =
x^{2} - 3sinx + C}

    F\left( \frac{\pi}{2} \right) = 3
\Leftrightarrow \left( \frac{\pi}{2} \right)^{2} - 3sin\frac{\pi}{2} + C
= 3

    \Leftrightarrow C = 6 -\dfrac{\pi^{2}}{4}

    Vậy F(x) = x^{2} - 3sinx + 6 -
\frac{\pi^{2}}{4}

  • Câu 12: Thông hiểu

    Xác định công thức tính diện tích hình phẳng

    Diện tích hình phẳng H được giới hạn bởi hai đồ thị y = x^{3} - 2x - 1y = 2x - 1 được tính theo công thức

    Phương trình hoành độ giao điểm của y =
x^{3} - 2x - 1y = 2x -
1 là:

    x^{3} - 2x - 1 = 2x - 1 \Leftrightarrow
x^{3} - 4x = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \\
x = 0 \\
x = - 2 \\
\end{matrix} ight.

    Vậy diện tích hình phẳng H được giới hạn bởi hai đồ thị y = x^{3} - 2x -
1y = 2x - 1 được tính theo công thức S = \int_{- 2}^{2}{\left|
x^{3} - 4x ight|dx}.

  • Câu 13: Thông hiểu

    Tìm giá trị tích phân I

    Tích phân I = \int_{-
1}^{0}{\frac{2x}{x^{2} + 1}dx} có giá trị là:

    Tích phân I = \int_{-
1}^{0}{\frac{2x}{x^{2} + 1}dx} ta nhận thấy: \left( x^{2} + 1 ight)' = 2x.

    Ta đặt: t = x^{2} + 1 \Rightarrow dt =
2xdx.

    Đổi cận: \left\{ \begin{matrix}
x = - 1 \Rightarrow t = 2 \\
x = 0 \Rightarrow t = 1 \\
\end{matrix} ight..

    \Rightarrow I =
{\int_{2}^{1}{\frac{1}{t}dt = \left. \ \left( \ln|t| ight)
ight|}}_{2}^{1} = - ln2.

    Đáp án đúng là I = - ln2.

  • Câu 14: Nhận biết

    Tìm họ nguyên hàm của hàm số

    Họ nguyên hàm của hàm số f(x) = 2x +\sin2x là:

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{(2x +\sin2x)dx}

    = 2.\frac{x^{2}}{2} - \frac{1}{2}\cos2x +c = x^{2} - \frac{1}{2}\cos2x + c

  • Câu 15: Vận dụng cao

    Xác định giá trị tích phân

    Tích phân I = \int_{-
1}^{\frac{1}{2}}{\frac{4x - 3}{\sqrt{5 + 4x - x^{2}}}dx} có giá trị là:

    Thực hiện tính tích phân I theo hai cách như sau:

    Cách 1:

    Ta có:\left( 5 + 4x - x^{2} ight)'
= 4 - 2x4x - 3 = 5 - 2(4 -
2x).

    I =
\int_{\frac{1}{2}}^{\frac{7}{2}}{\frac{4x - 3}{\sqrt{5 + 4x - x^{2}}}dx}

    = \int_{\frac{1}{2}}^{\frac{7}{2}}{\frac{5}{\sqrt{5 + 4x - x^{2}}}dx} -
\int_{\frac{1}{2}}^{\frac{7}{2}}{\frac{2(4 - 2x)}{\sqrt{5 + 4x -
x^{2}}}dx}.

    Xét I_{1} =
\int_{\frac{1}{2}}^{\frac{7}{2}}{\frac{5}{\sqrt{5 + 4x - x^{2}}}dx} =
\int_{\frac{1}{2}}^{\frac{7}{2}}{\frac{5}{\sqrt{9 - (x -
2)^{2}}}dx}.

    Đặt x - 2 = 3sint,t \in \left\lbrack -
\frac{\pi}{2};\frac{\pi}{2} ightbrack \Rightarrow dx =
3costdt.

    Đổi cận \left\{ \begin{matrix}
x = \frac{7}{2} \Rightarrow t = \frac{\pi}{6} \\
x = \frac{1}{2} \Rightarrow t = - \frac{\pi}{6} \\
\end{matrix} ight..

    \Rightarrow I_{1} = \int_{-
\frac{\pi}{6}}^{\frac{\pi}{6}}{\frac{5.3cost}{\sqrt{9 - 9sin^{2}t}}dt} =
\frac{5\pi}{3}.

    Xét I_{2} =
\int_{\frac{1}{2}}^{\frac{7}{2}}{\frac{2(4 - 2x)}{\sqrt{5 + 4x -
x^{2}}}dx}.

    Đặt t = 5 + 4x - x^{2} \Rightarrow dt = 4
- 2x.

    Đổi cận \left\{ \begin{matrix}
x = \dfrac{1}{2} \Rightarrow t = \dfrac{27}{4} \\
x = \dfrac{7}{2} \Rightarrow t = \dfrac{27}{4} \\
\end{matrix} ight.\  \Rightarrow I_{2} = 0.

    \Rightarrow I =
\frac{5\pi}{3}.

    Cách 2: Dùng máy tính cầm tay.

  • Câu 16: Nhận biết

    Tính gia tốc của chuyển động

    Cho chuyển động thẳng xác định bởi phương trình S = 2t^{3} - t + 1, trong đó t được tính bằng giây và S được tính bằng mét. Gia tốc của chuyển động khi t = 2s là:

    v = s' = 6{t^2} - 1

    a = v'' = 12t

    Khi t = 2 \Rightarrow a = 24\left( {m/{s^2}} ight)

  • Câu 17: Nhận biết

    Xác định nguyên hàm của hàm số

    Nguyên hàm của hàm số f(x) =e^{x} là:

    Ta có: \int_{}^{}{f(x)dx} =\int_{}^{}{e^{x}dx} = e^{x} + C

  • Câu 18: Thông hiểu

    Chọn đáp án đúng

    Tìm a + b biết rằng \int_{0}^{1}{x\sqrt[3]{1 - x}dx} =
\frac{a}{b} là phân số tối giản?

    Ta có: t = \sqrt[3]{1 - x} \Rightarrow
t^{3} = 1 - x \Rightarrow 3t^{2}dt = - dx

    Đổi cận \left\{ \begin{matrix}
x = 0 \Rightarrow t = 1 \\
x = 1 \Rightarrow t = 0 \\
\end{matrix} ight. khi đó suy ra

    \Rightarrow \int_{0}^{1}{x\sqrt[3]{1 -
x}dx} = 3\int_{0}^{1}{\left( 1 - t^{3} ight)t^{3}dt}

    = \left. \ 3\left( \frac{t^{4}}{4} -
\frac{t^{7}}{7} ight) ight|_{0}^{1} = \frac{9}{28}

  • Câu 19: Nhận biết

    Chọn khẳng định đúng

    Công thức tính diện tích S của hình phẳng giới hạn bởi hai đồ thị hàm số y = f(x);y = g(x) liên tục trên đoạn \lbrack a;bbrack và hai đường thẳng x = a;x = b;a < b

    Ta có hình phẳng giới hạn bởi \left\{
\begin{matrix}
\left( C_{1} ight):y = f(x) \\
\left( C_{2} ight):y = g(x) \\
x = a \\
x = b \\
\end{matrix} ight.S =
\int_{a}^{b}{\left| f(x) - g(x) ight|dx}.

  • Câu 20: Thông hiểu

    Xét tính đúng sai của các khẳng định

    Một ô tô đang chạy đều với vận tốc x m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số v(t) = - 5t + 20 m/s, trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh.

    a) Khi xe dừng hẳn thì vận tốc bằng 0 m/s. Đúng||Sai

    b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là 5s. Sai||Đúng

    c) \int_{}^{}{( - 5t + 20)dt} = \frac{-
5t^{2}}{2} + 20t + C. Đúng||Sai

    d) Quãng đường từ lúc đạp phanh cho đến khi xe đừng hẳn là 400m. Sai||Đúng

    Đáp án là:

    Một ô tô đang chạy đều với vận tốc x m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số v(t) = - 5t + 20 m/s, trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh.

    a) Khi xe dừng hẳn thì vận tốc bằng 0 m/s. Đúng||Sai

    b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là 5s. Sai||Đúng

    c) \int_{}^{}{( - 5t + 20)dt} = \frac{-
5t^{2}}{2} + 20t + C. Đúng||Sai

    d) Quãng đường từ lúc đạp phanh cho đến khi xe đừng hẳn là 400m. Sai||Đúng

    Khi xe dừng hẳn thì vận tốc bằng 0m/s.

    Khi xe dừng hẳn thì v(t) = 0m/s nên 0 = - 5t + 20 \Leftrightarrow t =
4s.

    Nguyên hàm của hàm số vận tốc \int_{}^{}{( - 5t + 20)dt = \frac{- 5t^{2}}{2} +
20t + C}, C\mathbb{\in
R}.

    Quãng đường từ lúc đạ phanh cho đến khi xe dừng hẳn là

    \int_{0}^{4}{( - 5t + 20)dt} = \left. \
\left( \frac{- 5t^{2}}{2} + 20t ight) ight|_{0}^{4} =
40m.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 4 Nguyên hàm Tích phân Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo