Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu trong không gian

Mô tả thêm:

Trong chương trình Toán 12 Cánh Diều, nội dung Phương trình mặt phẳng, đường thẳng và mặt cầu trong không gian là một phần kiến thức quan trọng, thường xuyên xuất hiện trong các bài kiểm tra và đề thi. Để giúp học sinh ôn tập hiệu quả, bài viết này cung cấp đề kiểm tra 45 phút Chương 5 Toán 12 kèm hệ thống bài tập đa dạng, bám sát chương trình học. Với cấu trúc đề hợp lý và độ khó phù hợp, tài liệu sẽ giúp các em rèn luyện kỹ năng giải toán, củng cố kiến thức hình học không gian, đồng thời chuẩn bị tốt cho các kỳ thi quan trọng. Đây là nguồn tham khảo hữu ích dành cho cả học sinh và giáo viên trong quá trình dạy và học.

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Tìm phương trình mặt phẳng

    Trong không gian Oxyz, tìm phương trình mặt phẳng (\alpha) cắt ba trục Ox,Oy,Oz lần lượt tại ba điểm A( - 3;0;0),B(0;4;0),C(0;0; -
2)?

    Phương trình mặt phẳng (\alpha): \frac{x}{- 3} + \frac{y}{4} + \frac{z}{- 2}
= 1

    \Leftrightarrow 4x - 3y + 6z = -
12

    \Leftrightarrow 4x - 3y + 6z + 12 =
0

  • Câu 2: Thông hiểu

    Tìm đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x - 3y + 5z - 4 = 0. Phương trình đường thẳng \Delta đi qua điểm A song song với (P) và vuông góc với trục tung là

    Oy có vectơ chỉ phương \overrightarrow j  = \left( {0;1;0} ight)

    (P) có vectơ pháp tuyến \overrightarrow {{n_P}}  = \left( {2; - 3;5} ight)

     \Delta  đi qua điểm A(1; -
2;1) và có vectơ chỉ phương là \overrightarrow {{a_\Delta }}  = \left[ {\overrightarrow k ;\overrightarrow {{n_P}} } ight] = \left( {5;0; - 2} ight)

    Vậy phương của d\left\{ \begin{matrix}
x = - 2 + 5t \\
y = 1 \\
y = - 3 - 2t \\
\end{matrix} ight.\ .

  • Câu 3: Thông hiểu

    Hai đường thẳng cắt nhau

    Tìm tọa độ giao điểm của hai đường thẳng:

     Theo đề bài, ta biến đổi được (b) có dạng:

    \begin{array}{l}\left( b ight):\frac{{x - 2}}{2} = \frac{{y + 3}}{1} = \frac{{z - 1}}{2}\\ \Rightarrow \frac{{x - 2}}{2} = \frac{{y + 3}}{1} = \frac{{z - 1}}{2} = t\\ \Rightarrow \left\{ \begin{array}{l}x - 2 = 2t\\y + 3 = t\\z - 1 = 2t\end{array} ight.\\ \Leftrightarrow \left\{ \begin{array}{l}x = 2 + 2t\\y =  - 3 + t\\z = 1 + 2t\end{array} ight.\end{array}

    Thay x, y, z vào phương trình x+2y+z =9 , ta có:

    => Tọa độ giao điểm của (a) và (b): A (0, - 4, - 1)

  • Câu 4: Nhận biết

    Xác định phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, trục Ox có phương trình tham số là

    Trục Ox đi qua O(0; 0; 0) và có véctơ chỉ phương \overrightarrow{i} = (1;0;0) nên có phương trình tham số là \left\{
\begin{matrix}
x = 0 + 1t \\
y = 0 + 0t \\
z = 0 + 0t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) \Leftrightarrow
\left\{ \begin{matrix}
x = t \\
y = 0 \\
z = 0 \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 5: Thông hiểu

    Xác định phương trình mặt cầu (S)

    Viết phương trình mặt cầu (S) tâm I( -
3,2,2) tiếp xúc với mặt cầu (S’):

    (S') có tâm J(1, - 2,4), bán kínhR' = 4 \Rightarrow IJ = 6

    Gọi R là bán kính của (S). (S)(S') tiếp xúc trong khi và chỉ khi:

    \left| R - R^{'} \right| = IJ
\Leftrightarrow |R - 4| = 6

    \Rightarrow R = 10 \vee R = - 2 (loại)

    \Rightarrow (S):(x + 3)^{2} + (y - 2)^{2}
+ (z - 2)^{2} = 100

  • Câu 6: Thông hiểu

    Tính sin góc giữa hai đối tượng

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x - 2y + 2z - 3 = 0 và đường thẳng d:\frac{x}{2} = \frac{y}{- 1} =
\frac{z}{1}. Tính số đo của góc giữa đường thẳng d và mặt phẳng (P).

    Mặt phẳng (P) có VTPT \overrightarrow{n_{(P)}} = (1; - 2;2).

    Đường thẳng d có VTCP \overrightarrow{u_{d}} = (2; - 1;1).

    Gọi \varphi là góc giữa đường thẳng d và mặt phẳng (P).

    Ta có \sin\varphi = \left| \cos\left(
\overrightarrow{n_{\alpha}};\overrightarrow{u_{d}} \right) \right| =
\frac{\sqrt{6}}{3}

  • Câu 7: Nhận biết

    Xác định tâm và bán kính mặt cầu

    Mặt cầu (S):x^{2} + y^{2} + z^{2} - 4x +1 = 0 có tọa độ tâm và bán kính R là:

    Phương trình mặt cầu (S) có dạng x^{2} + y^{2} + z^{2} - 2ax - 2by - 2cz + d
= 0 với a^{2} + b^{2} + c^{2} - d
> 0, có tâm I(a;b;c), bán kính R = \sqrt{a^{2} + b^{2} + c^{2} -
d}.

    Mặt cầu (S):x^{2} + y^{2} + z^{2} - 4x +1 = 0 có tọa độ tâm và bán kính R là: I(2;0;0),\ R =
\sqrt{3}.

  • Câu 8: Thông hiểu

    Chọn các đáp án đúng

    Người ta định nghĩa mặt cầu (S) như sau, hãy chọn câu trả lời đúng. (Có thể chọn nhiều đáp án)

    Tất cả các đáp án đã cho đều đúng.

  • Câu 9: Thông hiểu

    Xác định số điểm M thỏa mãn yêu cầu

    Trong không gian với hệ tọa độ Oxyz cho hai mặt phẳng (P):x + y - z + 1 = 0(Q):x - y + z - 5 = 0. Có bao nhiêu điểm M trên trục Oy thỏa mãn M cách đều hai mặt phẳng (P)(Q)?

    M \in Oy nên M(0;y;0)

    Ta có: \left\{ \begin{matrix}d\left( M;(P) ight) = \dfrac{|y + 1|}{\sqrt{3}} \\d\left( M;(Q) ight) = \dfrac{| - y - 5|}{\sqrt{3}} \\\end{matrix} ight..

    Theo giả thiết:

    d\left( M;(P) ight) = d\left( M;(Q)
ight) \Leftrightarrow \frac{|y + 1|}{\sqrt{3}} = \frac{| - y -
5|}{\sqrt{3}}

    \Leftrightarrow \left\lbrack
\begin{matrix}
y + 1 = - y - 5 \\
y + 1 = y + 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
y = - 3(TM) \\
0y = 4(L) \\
\end{matrix} ight.

    \Rightarrow M(0; - 3;0)

    Vậy có 1 điểm M thỏa mãn bài.

  • Câu 10: Vận dụng cao

    Mối quan hệ giữa đường thẳng và mp

    Cho 2 đường thẳng (d)\left\{ \begin{array}{l}x = 2 + 2t\\y =  - 1 + t\\z = 1\end{array} ight. và  (\triangle )\left\{ \begin{array}{l}x = 1\\y = 1 + t\\z = 3 - t\end{array} ight.

    Mặt phẳng (P) chứa (d) và song song với (\triangle ) có phương trình tổng quát :

    Phương trình (d) cho A(2, - 1,1) \in (d) và vectơ chỉ phương của (d) là: \overrightarrow a  = (2,1,0)

    Phương trình (\triangle ) cho vectơ chỉ phương của (\triangle ) là : \overrightarrow b  = (0,1, - 1)

    Gọi M(x,y,z) là điểm bất kỳ thuộc mặt phẳng (P) thì :

    \begin{array}{l}\overrightarrow {AM}  = (x - 2,y + 1,z - 1);\,\,\,\,\left[ {\overrightarrow a ,\overrightarrow b } ight] = ( - 1,2,2)\\\left[ {\overrightarrow a ,\overrightarrow b } ight].\overrightarrow {AM}  = 0 \Leftrightarrow  - (x - 2) + 2(y + 1) + 2(z - 1) = 0\\ \Leftrightarrow x - 2y - 2z - 2 = 0\end{array}

    Câu hỏi này cho ta thấy mối quan hệ giữa đường thẳng và mặt phẳng, từ 2 đường thảng ta có thể viết PT được của 1 mp.

  • Câu 11: Thông hiểu

    Tìm tất cả các giá trị thực của tham số m

    Trong không gian với hệ trục tọa độ Oxyz, cho tứ diện ABCD với A( -
3;1; - 1),B(1;2;m), C(0;2; -
1),D(4;3;0). Tìm tất cả các giá trị thực của m để thể tích khối tứ diện ABCD bằng 10.

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AC} = (3;1;0) \\
\overrightarrow{AD} = (7;2;1) \\
\end{matrix} ight.\  \Rightarrow \left\lbrack
\overrightarrow{AC};\overrightarrow{AD} ightbrack = (1; - 3; -
1)

    Lại có: \overrightarrow{AB} = (4;1;m + 1)
\Rightarrow \overrightarrow{AB}.\left\lbrack
\overrightarrow{AC};\overrightarrow{AD} ightbrack = - m

    Khi đó ta có:

    V_{ABCD} = \frac{1}{6}\left|
\overrightarrow{AB}.\left\lbrack \overrightarrow{AC};\overrightarrow{AD}
ightbrack ight| = \frac{|m|}{6}

    Theo đề ta có: V_{ABCD} = 10
\Leftrightarrow \frac{|m|}{6} = 10 \Leftrightarrow m = \pm
60

  • Câu 12: Thông hiểu

    Tính cosin góc giữa d và Oy

    Trong không gian với hệ tọa độ Oxyz, gọi d là đường thẳng đi qua O, thuộc mặt phẳng (Oyz) và cách điểm M(1; - 2;1) một khoảng nhỏ nhất. Côsin của góc giữa d và trục tung bằng

    Hình vẽ minh họa

    Gọi H; K lần lượt là hình chiếu của M trên mặt phẳng (Oyz) và trên đường thẳng d.

    Ta có: \left\{ \begin{matrix}
d(M;d) = MK \geq MH = 1 \\
H(0; - 2;1) \\
\end{matrix} ight.

    Suy ra d(M;d) nhỏ nhất khi H \equiv K. Khi đó d có một vecto chỉ phương là \overrightarrow{OH} = (0; -
2;1)

    Khi đó: \cos(d;Oy) = \frac{\left|
\overrightarrow{OH}.\overrightarrow{j} ight|}{\left|
\overrightarrow{OH} ight|.\left| \overrightarrow{j} ight|} =
\frac{2}{\sqrt{5}}

  • Câu 13: Vận dụng

    Tính giá trị biểu thức

    Trong không gian với hệ tọa độ Oxyz cho ba điểm A(1;2;3),B(3;4;4),C(2;6;6)I(a;b;c) là trực tâm tam giác ABC. Tính a +
b + c?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{BC} = ( - 1;2;2);\overrightarrow{AC} = (1;4;3) \\
\overrightarrow{AI} = (a - 1;b - 2;c - 3) \\
\overrightarrow{BI} = (a - 3;b - 4;c - 4) \\
(ABC):2x - 5y + 6z - 10 = 0 \\
\end{matrix} ight.

    Lại có:

    \left\{ \begin{matrix}
\overrightarrow{BI}.\overrightarrow{AC} = 0 \\
\overrightarrow{AI}.\overrightarrow{BC} = 0 \\
I \in (ABC) \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}- 1(a - 1) + 2(b - 2) + 2(c - 3) = 0 \\1(a - 3) + 4(b - 4) + 3(c - 4) = 0 \\2a - 5b + 6c - 10 = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}a = \dfrac{27}{5} \\b = 4 \\c = \dfrac{16}{5} \\\end{matrix} ight.\  \Rightarrow a + b + c = \dfrac{63}{5}

  • Câu 14: Nhận biết

    Chọn đáp án đúng

    Trong không gian Oxyz, trục Oxcó phương trình tham số

    Trục Oxđi qua O(0;0;0) và có véctơ chỉ phương \overrightarrow{i}(1;0;0)nên có phương trình tham số là: \left\{ \begin{matrix}
x = 0 + 1.t \\
y = 0 + 0.t \\
z = 0 + 0.t \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x = t \\
y = 0 \\
z = 0 \\
\end{matrix} \right.\ .

  • Câu 15: Thông hiểu

    Tìm phương trình tổng quát của mặt phẳng

    Viết phương trình tổng quát của mặt phẳng (P) song song và cách đều hai đường thẳng (D):x = 2 + 3t;\ \ \ y = 1 -
2t;\ \ \ z = 2t - 1(d):x = t -
4;\ \ \ y = 3 - t;\ \ \ z = 3t + 1\ \ \ \left( t\mathbb{\in R}
\right)

    (D) qua A(2,1, - 1) và vecto chỉ phương \overrightarrow{a} = (3, - 2,2)

    (d) qua B( - 4,3,1) và vecto chỉ phương \overrightarrow{b} = (1, - 1,3)

    Pháp vecto của (P):\overrightarrow{n} =
\left\lbrack \overrightarrow{a},\overrightarrow{b} \right\rbrack = -
(4,7,1)

    (P) qua trung điểm MN( - 1,2,0) của đoạn AB.

    \Rightarrow (P):4(x + 1) + 7(y - 2) + (z
- 0).1 = 0 \Leftrightarrow 4x + 7y
+ z - 10 = 0

  • Câu 16: Vận dụng

    Chọn đáp án đúng

    Trong không gian Oxyz, cho mặt phẳng (P):ax + by + cz - 1 = 0với c < 0 đi qua 2 điểm A(0;1;0);B(1;0;0) và tạo với (Oyz) một góc 60{^\circ}. Tính tổng a + b + c? (Làm tròn đến hàng phần trăm)?

    Mặt phẳng (P) đi qua 2 điểm A, B nên ta có: \left\{ \begin{matrix}
b - 1 = 0 \\
a - 1 = 0
\end{matrix} \right.\  \Rightarrow a = b = 1

    (P)tạo với (Oyz) một góc 60{^\circ} nên \cos\left( (P);(Oyz) \right) =
\frac{|a|}{\sqrt{a^{2} + b^{2} + c^{2}}.\sqrt{1}} = \frac{1}{2}\ \ \ \
(*)

    Thay a = b = 1 vào phương trình (*) được: \sqrt{2 + c^{2}} = 2 \Rightarrow c = -
\sqrt{2}

    Khi đó: a + b + c = 2 - \sqrt{2} \approx
0,59

  • Câu 17: Vận dụng

    Viết phương trình đường thẳng d

    Trong không gian với hệ tọa độ  Oxyz,  gọi d đi qua A( -
1;0; - 1), cắt \Delta_{1}:\frac{x -
1}{2} = \frac{y - 2}{1} = \frac{z + 2}{- 1}, sao cho góc giữa d\Delta_{2}:\frac{x - 3}{- 1} = \frac{y - 2}{2} =
\frac{z + 3}{2} là nhỏ nhất. Phương trình đường thẳng d

    Gọi M = d \cap \Delta_{1} \Rightarrow M(1
+ 2t;2 + t; - 2 - t)

    d có vectơ chỉ phương \overrightarrow{a_{d}} = \overrightarrow{AM} = (2t
+ 2;t + 2; - 1 - t)

    \Delta_{2} có vectơ chỉ phương \overrightarrow{a_{2}} = ( -
1;2;2)

    \cos\left( d;\Delta_{2} ight) =
\frac{2}{3}\sqrt{\frac{t^{2}}{6t^{2} + 14t + 9}}

    Xét hàm số f(t) = \frac{t^{2}}{6t^{2} +
14t + 9}, ta suy ra được \min f(t)
= f(0) = 0 \Leftrightarrow t = 0

    Do đó \min\left\lbrack \cos(\Delta,d)
ightbrack = 0 \Leftrightarrow t = 0 \Rightarrow \overrightarrow{AM}
= (2;2 - 1)

    Vậy phương trình đường thẳng d\frac{x + 1}{2} = \frac{y}{2} = \frac{z +
1}{- 1}

  • Câu 18: Nhận biết

    Định phương trình mặt phẳng

    Trong không gian với hệ trục tọa độ Oxyz. Phương trình của mặt phẳng chứa trục Ox và qua điểm I(2; - 3;1) là:

    Trục Ox đi qua A(1;0;0) và có \overrightarrow{i} = (1;0;0)

    Mặt phẳng đi qua I(2; - 3;1) và có vectơ pháp tuyến \overrightarrow{n} =
\left\lbrack \overrightarrow{i},\overrightarrow{AI} \right\rbrack =
(0;1;3) có phương trình y + 3z =
0.

    Vậy y + 3z = 0.

  • Câu 19: Nhận biết

    Tính độ dài vecto

    Gọi I là tâm mặt cầu (S):x^{2} +
y^{2} + (z - 2)^{2} = 4. Độ dài \left| \overrightarrow{OI} \right| (O là gốc tọa độ) bằng:

    Mặt cầu (S) có tâm I(0;0;2) \Rightarrow \overrightarrow{OI} = (0;0;2)
\Rightarrow \left| \overrightarrow{OI} \right| = 2.

  • Câu 20: Vận dụng

    Chọn đáp án thích hợp

    Tìm tập hợp các tâm I của mặt cầu

    (S): x^{2} + y^{2} + z^{2} - 6\cos t -
4\sin ty + 6z\cos 2t - 3 = 0, t\mathbb{\in R}.

    Ta có:

    a = 3cost;b = 2sint;c = - 3;d = cos2t -
3 = - 2sin^{2}t - 2

    \Rightarrow 9cos^{2}t + 4sin^{2}t +
2sin^{2}t + 11 > 0,\ \ \forall t\mathbb{\in R}

    Tâm I:x = 3cost;y = 2sint;z = -
3

    \Rightarrow \frac{x^{2}}{9} +
\frac{y^{2}}{4} = 1;\ \ z + 3 = 0

    Vậy tập hợp các tâm I là elip \frac{x^{2}}{9} + \frac{y^{2}}{4} = 1;z + 3 =
0

  • Câu 21: Nhận biết

    Chọn đáp án thích hợp

    Trong không gian với hệ trục tọa độ Oxyz, phương trình nào sau đây không phải là phương trình của một mặt cầu?

    Phương trình (S):x^{2} + y^{2} + z^{2} -
2ax - 2by - 2cz + d = 0 là phương trình của một mặt cầu nếu a^{2} + b^{2} + c^{2} - d >
0.

    Vậy phương trình không phải phương trình mặt cầu là:

    x^{2} + y^{2} + z^{2} - 2x + 4y - 4z +
10 = 0

  • Câu 22: Nhận biết

    Viết phương trình đường thẳng

    Trong không gian Oxyz, hãy viết phương trình của đường thẳng d đi qua điểm M( - 1;0;0) và vuông góc với mặt phẳng (P):x + 2y - z + 1 =
0?

    Đường thẳng d đi qua điểm M( - 1;0;0) và có một véc-tơ chỉ phương là \overrightarrow{u} = (1;2; - 1) nên d có phương trình chính tắc là d:\frac{x + 1}{1} = \frac{y}{2} = \frac{z}{-
1}.

  • Câu 23: Nhận biết

    Xác định phương trình mặt cầu (S)

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; - 2;7),B( - 3;8; - 1). Mặt cầu đường kính AB có phương trình là:

    Gọi I là trung điểm của AB khi đó I(
- 1;3;3) là tâm mặt cầu (S).

    Bán kính R = IA = \sqrt{(1 + 1)^{2} + ( -
2 - 3)^{2} + (7 - 3)^{2}} = \sqrt{45}

    Vậy phương trình mặt cầu cần tìm là: (x +
1)^{2} + (y - 3)^{2} + (z - 3)^{2} = 45.

  • Câu 24: Vận dụng

    Xác định các giá trị của r

    Trong không gian với hệ tọa độ Oxyz, cho các mặt phẳng (P): x−y + 2z + 1 = 0, (Q): 2x+y +z −1 = 0. Gọi (S) là mặt cầu có tâm thuộc trục hoành, đồng thời (S) cắt mặt phẳng (P) theo giao tuyến là một đường tròn có bán kính bằng 2 và (S) cắt mặt phẳng (Q) theo giao tuyến là một đường tròn có bán kính bằng r. Xác định r sao cho chỉ có đúng một mặt cầu (S) thỏa mãn yêu cầu.

    Gọi R, I(m; 0; 0) lần lượt là bán kính, tâm của mặt cầu; d_1, d_2 lần lượt là khoảng cách từ I đến mặt phẳng (P), (Q).

    Từ đó ta có: R^{2} = {d_{1}}^{2} + 4 =
{d_{2}}^{2} + r^{2} suy ra

    \frac{(m + 1)^{2}}{1^{2} + ( - 1)^{2} +
2^{2}} + 4 = \frac{(2m - 1)^{2}}{2^{2} + 1^{2} + 1^{2}} +
r^{2}

    \Leftrightarrow m^{2} + 2m + 1 + 16 =
4m^{2} - 4m + 1 + 6r^{2}

    \Leftrightarrow m^{2} - 2m + \left(
2r^{2} - 8 ight) = 0\ \ (*)

    Để tồn tại đúng một mặt cầu tương đương phương trình (∗) có đúng một nghiệm m hay \Delta' = 1^{2} - \left(
2r^{2} - 8 ight) = 0 \Leftrightarrow r =
\frac{3\sqrt{2}}{2}

    Vậy đáp án cần tìm là: r =
\frac{3\sqrt{2}}{2}.

  • Câu 25: Vận dụng cao

    Chọn đáp án đúng

    Một phần sân trường được định vị bởi các điểm A,B,C,D, như hình vẽ.

    Bước đầu chúng được lấy “ thăng bằng” để có cùng độ cao, biết ABCD là hình thang vuông ở AB với độ dài AB = 25\ m, AD = 15\ m, BC = 18\ m. Do yêu cầu kĩ thuật, khi lát phẳng phần sân trường phải thoát nước về góc sân ở C nên người ta lấy độ cao ở các điểm B, C, D xuống thấp hơn so với độ cao ở A10\ cm, a\ cm, 6\
cmtương ứng. Giá trị của a là số nào sau đây?

    Hình vẽ minh họa

    Chọn hệ trục tọa độ Oxyz sao cho: O \equiv A, tia Ox \equiv AD; tia Oy \equiv AB.

    Khi đó, A(0;\ 0;\ 0); B(0;\ 2500;\ 0); C(1800;\ 2500;\ 0);D(1500;\ 0;\ 0).

    Khi hạ độ cao các điểm ở các điểm B, C, D xuống thấp hơn so với độ cao ở A10\ cm, a\ cm, 6\
cm tương ứng ta có các điểm mới B'(0\ ;\ 2500\ ;\  - 10); C'(1800\ ;\ 2500\ ;\  - a);D'(1500\ ;\ 0\ ;\  - 6).

    Theo bài ra có bốn điểm A; B'; C'; D' đồng phẳng.

    Phương trình mặt phẳng (AB'D'):x
+ y + 250z = 0.

    Do C'(1800\ ;\ \ 2500\ ;\  - a) \in
(AB'D') nên có:

    1800 + 2500
- 250a = 0 \Leftrightarrow a = 17,2.

    Vậy a = 17,2\ cm.

  • Câu 26: Nhận biết

    Phương trình tổng quát

    Cho tứ diện ABCDA(3, -2,1), B\left( { - 4,0,3} ight),C\left( {1,4, - 3} ight),D\left( {2,3,5} ight). Phương trình tổng quát của mặt phẳng chứa AC và song song với BD là:

    Theo đề bài, ta có các vecto là

    \begin{array}{l}\overrightarrow {AC}  = \left( { - 2,6, - 4} ight);\overrightarrow {BD}  = \left( {6,3,2} ight)\\ \Rightarrow \left[ {\overrightarrow {AC} ,\overrightarrow {BD} } ight] = \left( {24, - 20, - 42} ight).\end{array}

    Có thể chọn \overrightarrow n  = \left( {12, - 10, - 21} ight) làm một vectơ pháp tuyến cho mặt phẳng.

    Phương trình mặt phẳng này có dạng 12x - 10y - 21z + D = 0.

    Mặt khác, điểm A thuộc mặt phẳng nên ta thay tọa độ điểm A vào phương trình đường thẳng trên: 12.3 - 10( - 2) - 21.1 + D = 0 \Leftrightarrow D =  - 35

    Vậy phương trình cần tìm 12x - 10y - 21z - 35 = 0.

  • Câu 27: Thông hiểu

    Tìm mặt cầu ngoại tiếp tứ diện

    Cho ba điểm A(6; - 2;3), B(0;1;6), C(2;0; - 1), D(4;1;0). Khi đó mặt cầu ngoại tiếp tứ diện ABCD có phương trình là:

    Phương trình mặt cầu (S) có dạng: x^{2} + y^{2} + z^{2} - 2Ax - 2By -
2Cz + D = 0, ta có:

    \left\{ \begin{matrix}
A(6; - 2;3) \in (S) \\
B(0;1;6) \in (S) \\
C(2;0; - 1) \in (S) \\
D(4;1;0) \in (S) \\
\end{matrix} \right. \Leftrightarrow \left\{ \begin{matrix}
49 - 12A + 4B - 6C + D = 0(1) \\
37 - 2B - 12C + D = 0(2) \\
5 - 4A + 2C + D = 0(3) \\
17 - 8A - 2B + D = 0(4) \\
\end{matrix} \right.

    Lấy (1) - (2); (2) - (3); (3) - (4)ta được hệ:

    \left\{ \begin{matrix}
- 12A + 6B + 6C = - 12 \\
4A - 2B - 14C = - 32 \\
4A + 2B + 2C = 12 \\
\end{matrix} \right. \Leftrightarrow \left\{ \begin{matrix}
A = 2 \\
B = - 1 \Rightarrow \\
C = 3 \\
\end{matrix} \right.\ D = - 3

    Vậy phương trình măt cầu là: x^{2} +
y^{2} + z^{2} - 4x + 2y - 6z - 3 = 0 .

    Lưu ý : Ở bài này máy tính Casio giúp chúng ta giải nhanh chóng hệ phương trình bậc nhất ba ấn được tạo ra để tìm các hệ số của phương trình mặt cầu tổng quát. (Ta cũng có thể dùng máy tính cầm tay thay trực tiếp tọa độ các điểm vào từng đáp án và tìm ra đáp án đúng)

  • Câu 28: Vận dụng cao

    Xác định số mặt phẳng

    Trong không gian Oxyz, cho 3 điểm A(3;7;1),B(8;3;8)C(3;3;0). Gọi \left( S_{1} \right) là mặt cầu tâm A bán kính bằng 3 và \left( S_{2} \right) là mặt cầu tâm B bán kính bằng 6. Hỏi có tất cả bao nhiêu mặt phẳng đi qua C và tiếp xúc đồng thời với cả hai mặt cầu \left( S_{1} \right),\left( S_{2}
\right)?

    Phương trình mặt phẳng qua C có dạng (P):m(x - 3) + n(y - 3) + pz = 0,m^{2} + n^{2} +
p^{2} > 0.

    Mặt phẳng (P) tiếp xúc \left( S_{1} \right) ta có |4n + p| = 3\sqrt{m^{2} + n^{2} + p^{2}} (1)

    Mặt phẳng (P) tiếp xúc \left( S_{2} \right) ta có |5m + 8p| = 6\sqrt{m^{2} + n^{2} + p^{2}} (2)

    Từ đây ta có phương trình |5m + 8p| =
2|4n + p| \Leftrightarrow \left\lbrack \begin{matrix}
5m = 8n - 6p\ \ \ (3) \\
5m = - 8n - 10p\ \ \ (4)
\end{matrix} \right.

    Từ (1), (3) ta có:

    (4n + p)^{2} = 9\left\lbrack \left(
\frac{8n - 6p}{5} \right)^{2} + n^{2} + p^{2} \right\rbrack

    \Leftrightarrow 401n^{2} - 1064np +
524p^{2} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
n = 2p \\
n = \frac{262}{401}p
\end{matrix} \right.

    Trường hợp này ta tìm được hai mặt phẳng:

    \left( P_{1} \right):2x + 2y + z - 12 =
0

    \left( P_{2} \right):62x - 262y - 101z +
600 = 0

    Từ (1); (4) ta có:

    (4n + p)^{2} = 9\left\lbrack \left(
\frac{8n + 10p}{5} \right)^{2} + n^{2} + p^{2}
\right\rbrack

    \Leftrightarrow 401n^{2} + 1240np +
1100p^{2} = 0 \Leftrightarrow n = p = 0

    Trường hợp này không có mặt phẳng nào.

  • Câu 29: Thông hiểu

    Tính góc giữa đường thẳng và mặt phẳng

    Trong không gian Oxyz, cho đường thẳng \Delta:\frac{x}{1} = \frac{y}{2} =
\frac{z}{- 1} và mặt phẳng (\alpha):x - y + 2z = 0. Góc giữa đường thẳng \Delta và mặt phẳng (\alpha) bằng

    Ta có:

    ∆ có vectơ chỉ phương là \overrightarrow{u} = (1;2; - 1)

    (α) có vectơ pháp tuyến là \overrightarrow{n} = (1; - 1;2)

    \sin\widehat{\left( \Delta;(\alpha)
ight)} = \frac{\left| \overrightarrow{u}.\overrightarrow{n}
ight|}{\left| \overrightarrow{u} ight|.\left| \overrightarrow{n}
ight|} = \frac{\left| 1.1 + 2.( - 1) + ( - 1).2 ight|}{\sqrt{1^{2} +
2^{2} + ( - 1)^{2}}.\sqrt{1^{2} + ( - 1)^{2} + 2^{2}}} =
\frac{1}{2}

    \Rightarrow \widehat{\left(
\Delta;(\alpha) ight)} = 30^{0}.

  • Câu 30: Nhận biết

    Tính góc giữa hai đường thẳng

    Tính góc của hai đường thẳng (D):\frac{x
- 1}{2} = \frac{y + 3}{4} = \frac{z + 2}{4}

    (d):x = 3 + 2t;y = 2t - 4; z = 2  \left( t\mathbb{\in R} \right).

    (D)(d) có vectơ chỉ phương \overrightarrow{a} = (2,4,4);\overrightarrow{b} =
(2,2,0)

    \Rightarrow \cos\alpha = \frac{|2.2 +
4.2 + 4.0|}{6.2\sqrt{2}} = \frac{\sqrt{2}}{2} \Rightarrow \alpha =
45^{0}

  • Câu 31: Nhận biết

    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz,  phương trình đường thẳng \Delta đi qua điểm A(2;-1; 3) và vuông góc với mặt phẳng (Oxz) là.

    (Oxz) có vectơ pháp tuyến \overrightarrow j  = \left( {0;1;0} ight)

     \Delta  vuông góc với (Oxz) nên d có vectơ chỉ phương \overrightarrow {{a_\Delta }}  = \overrightarrow j  = \left( {0;1;0} ight)

     \Delta  đi qua điểm A và có vectơ chỉ phương \overrightarrow {{a_\Delta }}

    Vậy phương trình tham số của  \Delta  là \left\{ \begin{matrix}
x = 2 \\
y = - 1 + t \\
z = 3 \\
\end{matrix} ight.\ .

     

  • Câu 32: Nhận biết

    Chọn khẳng định đúng

    Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (\alpha):3x - z = 0. Tìm khẳng định đúng trong các mệnh đề sau:

    Khẳng định đúng là: “(\alpha) \supset
Oy

  • Câu 33: Nhận biết

    Tính góc giữa hai mặt phẳng

    Trong không gian Oxyz cho hai mặt phẳng (P):8x - 4y - 8z - 11 =0,(Q):\sqrt{2}x - \sqrt{2}y + 7 = 0. Góc giữa hai mặt phẳng (P);(Q) bằng:

    Ta có: (P):8x - 4y - 8z - 11 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{1}} = (8; - 4; -
8)

    (Q):\sqrt{2}x - \sqrt{2}y + 7 =
0 có 1 vectơ pháp tuyến là \overrightarrow{n_{2}} = \left( \sqrt{2}; -
\sqrt{2};0 ight)

    Khi đó:

    \cos\left( (P);(Q) ight) = \cos\left(
\overrightarrow{n_{1}};\overrightarrow{n_{2}} ight)

    = \frac{\left| 8.\sqrt{2} + 4.\sqrt{2} -
8.0 ight|}{\sqrt{8^{2} + ( - 4)^{2} + ( - 8)^{2}}.\sqrt{\left(
\sqrt{2} ight)^{2} + \left( - \sqrt{2} ight)^{2} + 0}} =
\frac{1}{\sqrt{2}}

    \Rightarrow \left( (P);(Q) ight) =
45^{0}

  • Câu 34: Thông hiểu

    Viết phương trình mặt phẳng

    Trong không gian với hệ trục tọa độ Oxyz, gọi (P)là mặt phẳng chứa trục Oy và tạo với mặt phẳng y + z + 1 = 0 góc 60^{0}. Phương trình mặt phẳng (P) là:

    +) Mặt phẳng (P)chứa trục Oy nên có dạng: Ax + Cz = 0\ \ \ \ (A^{2} + C^{2} \neq
0).

    +) Mặt phẳng (P) tạo với mặt phẳng y + z + 1 = 0 góc 60^{0} nên cos60^{0} = \frac{\left|
\overrightarrow{n_{(P)}}.\overrightarrow{n_{(Q)}} \right|}{\left|
\overrightarrow{n_{(P)}} \right|.\left| \overrightarrow{n_{(Q)}}
\right|}.

    \Leftrightarrow \frac{1}{2} =
\frac{|C|}{\sqrt{A^{2} + C^{2}}.\sqrt{2}} \Leftrightarrow \sqrt{A^{2} +
C^{2}} = \sqrt{2}|C|

    \Leftrightarrow A^{2} - C^{2} = 0
\Leftrightarrow \left\lbrack \begin{matrix}
A = C \\
A = - C \\
\end{matrix} \right.

    Phương trình mặt phẳng (P) là: \left\lbrack \begin{matrix}
x - z = 0 \\
x + z = 0 \\
\end{matrix} \right.

  • Câu 35: Thông hiểu

    Tìm tọa độ điểm M

    Trong không gian với hệ toạ độ Oxyz,tọa độ điểm M nằm trên trục Oy và cách đều hai mặt phẳng: (P):x + y - z + 1 = 0(Q):x - y + z - 5 = 0 là:

    Ta có M \in Oy \Rightarrow
M(0;m;0)

    Giả thiết có d\left( M,(P) \right) =
d\left( M,(Q) \right)

    \Leftrightarrow \frac{|m + 1|}{\sqrt{3}}
= \frac{| - m - 5|}{\sqrt{3}} \Leftrightarrow m = - 3

    Vậy M(0; - 3;0)

  • Câu 36: Vận dụng cao

    Viết phương trình mặt cầu

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\frac{x - 2}{2} = \frac{y}{- 1} =
\frac{z}{4} và mặt cầu (S) tâm I(1;2;1), bán kính R. Hai mặt phẳng (P)(Q) chứa d và tiếp xúc với (S) tạo với nhau góc 60^{0}. Hãy viết phương trình mặt cầu (S)?

    Hình vẽ minh họa

    Gọi M,N là tiếp điểm của mặt phẳng (P);(Q) và mặt cầu (S).

    Gọi H là hình chiếu của điểm I trên đường thẳng d

    \Rightarrow
IH = d(I;d) = \sqrt{6}.

    TH1: Góc \widehat{MHN} =
60^{0}:

    Theo bài ra ta có:

    R = IM = IH.\sin30^{0}= \sqrt{6}.\frac{1}{2} = \frac{\sqrt{6}}{2}

    (S):(x - 1)^{2} + (y - 2)^{2} + (z -
1)^{2} = \frac{3}{2}.

    TH2: Góc \widehat{MHN} =
120^{0}:

    Theo bài ra ta có:

    R = IM = IH.\sin60^{0}= \sqrt{6}.\frac{\sqrt{3}}{2} = \frac{\sqrt{18}}{2}

    (S);(x - 1)^{2} + (y - 2)^{2} + (z -
1)^{2} = \frac{9}{2}.

  • Câu 37: Vận dụng

    Chọn khẳng định đúng

    Cho A(1; - 1;0)(P):2x - 2y + z - 1 = 0. Điểm M(a;b;c) \in (P) sao cho MA\bot OA và đoạn AM bằng 3 lần khoảng cách từ A đến (P). Khẳng định nào sau đây đúng?

    Ta có:

    \left\{ \begin{matrix}
M \in (P) \\
MA\bot OA \\
AM = 3d\left( A;(P) ight) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2a - 2b + c - 1 = 0 \\
1(a - 1) - 1(b + 1) + 0(c - 0) = 0 \\
\sqrt{(a - 1)^{2} + (b + 1)^{2} + (c - 0)^{2}} = 3 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
2a - 2b + c - 1 = 0 \\
a - b - 2 = 0 \\
(a - 1)^{2} + (b + 1)^{2} + c^{2} = 9 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
b = a - 2 \\
c = - 3 \\
(a - 1)^{2} + (b + 1)^{2} + c^{2} = 9 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
c = - 3 \\
b = - 1 \\
\end{matrix} ight.\  \Rightarrow a + b + c = - 3.

  • Câu 38: Nhận biết

    Tính số đo góc nhị diện

    Cho hình lập phương ABCD.A'B'C'D'. Số đo của góc nhị diên\left\lbrack
(BCC'B'),BB',(BDD'B') \right\rbrack bằng

    Hình vẽ minh họa

    Ta có góc nhị diên \left\lbrack
(BCC'B'),BB',(BDD'B') ightbrack bằng \widehat{DBC} = 45{^\circ}.

  • Câu 39: Vận dụng

    Tính giá trị biểu thức

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; - 1;2),B(3; - 4; - 2) và đường thẳng d:\left\{ \begin{matrix}
x = 2 + 4t \\
y = - 6t \\
z = - 1 - 8t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Điểm I(a;b;c) thuộc d là điểm thỏa mãn IA + IB đạt giá trị nhỏ nhất. Khi đó T = a + b + c bằng?

    Hình vẽ minh họa

    Ta có: d:\left\{ \begin{matrix}
x = 2 + 4t \\
y = - 6t \\
z = - 1 - 8t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) có một vectơ chỉ phương là \overrightarrow{u} = (4;
- 6; - 8)

    A = (1; - 1;2),B = (3; - 4; - 2)
\Rightarrow \overrightarrow{AB} = (2; - 3; - 4)

    Ta có \overrightarrow{AB} = (2; - 3; -
4) cùng phương với \overrightarrow{u} = (4; - 6; - 8)

    A(1; - 1;2) otin d \Rightarrow
\overrightarrow{AB}//d \Rightarrow A,B,d đồng phẳng.

    Xét mặt phẳng chứa ABd. Gọi A^{'} là điểm đối xứng của A qua d_{1}

    (\alpha) là mặt phẳng qua A, vuông góc với d.

    Khi đó, giao điểm H của d với (\alpha) là trung điểm của AA^{'}.

    (\alpha) có 1 vectơ pháp tuyến \overrightarrow{n} = (2; - 3; - 4) đi qua A(1; - 1;2) có phương trình:

    2(x - 1) - 3(y + 1) - 4(z - 2) =
0

    \Leftrightarrow 2x - 3y - 4z + 3 =
0

    H \in d:\left\{ \begin{matrix}
x = 2 + 4t \\
y = - 6t \\
z = - 1 - 8t \\
\end{matrix} \Rightarrow ight. Giả sử H(2 + 4t; - 6t; - 1 - 8t).

    H \in (\alpha) \Rightarrow 2(2 + 4t) -
3( - 6t) - 4( - 1 - 8t) + 3 = 0

    \Leftrightarrow 58t + 11 = 0
\Leftrightarrow t = - \frac{11}{58} \Rightarrow H\left(
\frac{36}{29};\frac{33}{29};\frac{15}{29} ight)

    Ta có IA + IB = IA^{'} + IB^{'}
\geq A^{'}B \Rightarrow min(IA + IB) = A^{'}B khi và chỉ khi I trùng với I_{0} là giao điểm của A^{'}Bd.

    \Rightarrow \overrightarrow{HI_{0}} =\frac{1}{2}\overrightarrow{AB} \Leftrightarrow \left\{ \begin{matrix}x_{I_{0}} - \dfrac{36}{29} = \dfrac{1}{2}.2 \\y_{I_{0}} - \dfrac{33}{29} = \dfrac{1}{2}.( - 3) \\z_{I_{0}} - \dfrac{15}{29} = \dfrac{1}{2}.( - 4) \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x_{I_{0}} = \dfrac{65}{29} \\y_{I_{0}} = - \dfrac{21}{58} \\z_{I_{0}} = - \dfrac{43}{29} \\\end{matrix} ight.\  ight.\\Rightarrow I_{0}\left( \dfrac{65}{29}; - \dfrac{21}{58}; - \frac{43}{29}ight)

    \Rightarrow a + b + c = \frac{65}{29} -
\frac{21}{58} - \frac{43}{29} = - \frac{21}{58}.

  • Câu 40: Thông hiểu

    Ghi đáp án vào ô trống

    Nghiên cứu tư thế ngồi sử dụng máy tính laptop để đảm bảo sức khỏe và hiệu quả công việc các chuyên gia khuyến cáo tư thế ngồi như hình vẽ 1. Khi đó máy tình laptop để trên giá đỡ có độ mở màn hình như hình vẽ 2. Kích thước các cạnh đo được AB = 30\ cm;\ AC
= 35\ cm;\ BC = 55\ cm. Tính số đo theo đơn vị độ góc nhị diện giữa hai mặt phẳng chứa màn hình và mặt phẳng chứa bàn phím (kết quả làm tròn đến hàng đơn vị).

    Đáp án: 115.

    Đáp án là:

    Nghiên cứu tư thế ngồi sử dụng máy tính laptop để đảm bảo sức khỏe và hiệu quả công việc các chuyên gia khuyến cáo tư thế ngồi như hình vẽ 1. Khi đó máy tình laptop để trên giá đỡ có độ mở màn hình như hình vẽ 2. Kích thước các cạnh đo được AB = 30\ cm;\ AC
= 35\ cm;\ BC = 55\ cm. Tính số đo theo đơn vị độ góc nhị diện giữa hai mặt phẳng chứa màn hình và mặt phẳng chứa bàn phím (kết quả làm tròn đến hàng đơn vị).

    Đáp án: 115.

    Gọi d là đường thẳng chứa bản lề của máy tính.

    Suy ra d ⊥ AB, d ⊥ AC.

    Mặt khác AB ∩ AC = A ∈ d.

    Vậy góc \widehat{BAC} là góc phẳng nhị diện của góc nhị diện cần tính.

    Ta có:

    \cos\widehat{BAC} = \frac{AB^{2} + AC^{2}
- BC^{2}}{2.AB.AC} = \frac{30^{2} + 35^{2} - 55^{2}}{2.30.35} = -
\frac{3}{7} .

    Suy ra: \widehat{BAC} \approx
115^{0} .

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu trong không gian Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo