Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu trong không gian

Mô tả thêm:

Trong chương trình Toán 12 Cánh Diều, nội dung Phương trình mặt phẳng, đường thẳng và mặt cầu trong không gian là một phần kiến thức quan trọng, thường xuyên xuất hiện trong các bài kiểm tra và đề thi. Để giúp học sinh ôn tập hiệu quả, bài viết này cung cấp đề kiểm tra 45 phút Chương 5 Toán 12 kèm hệ thống bài tập đa dạng, bám sát chương trình học. Với cấu trúc đề hợp lý và độ khó phù hợp, tài liệu sẽ giúp các em rèn luyện kỹ năng giải toán, củng cố kiến thức hình học không gian, đồng thời chuẩn bị tốt cho các kỳ thi quan trọng. Đây là nguồn tham khảo hữu ích dành cho cả học sinh và giáo viên trong quá trình dạy và học.

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Ghi đáp án vào ô trống

    Nghiên cứu tư thế ngồi sử dụng máy tính laptop để đảm bảo sức khỏe và hiệu quả công việc các chuyên gia khuyến cáo tư thế ngồi như hình vẽ 1. Khi đó máy tình laptop để trên giá đỡ có độ mở màn hình như hình vẽ 2. Kích thước các cạnh đo được AB = 30\ cm;\ AC
= 35\ cm;\ BC = 55\ cm. Tính số đo theo đơn vị độ góc nhị diện giữa hai mặt phẳng chứa màn hình và mặt phẳng chứa bàn phím (kết quả làm tròn đến hàng đơn vị).

    Đáp án: 115.

    Đáp án là:

    Nghiên cứu tư thế ngồi sử dụng máy tính laptop để đảm bảo sức khỏe và hiệu quả công việc các chuyên gia khuyến cáo tư thế ngồi như hình vẽ 1. Khi đó máy tình laptop để trên giá đỡ có độ mở màn hình như hình vẽ 2. Kích thước các cạnh đo được AB = 30\ cm;\ AC
= 35\ cm;\ BC = 55\ cm. Tính số đo theo đơn vị độ góc nhị diện giữa hai mặt phẳng chứa màn hình và mặt phẳng chứa bàn phím (kết quả làm tròn đến hàng đơn vị).

    Đáp án: 115.

    Gọi d là đường thẳng chứa bản lề của máy tính.

    Suy ra d ⊥ AB, d ⊥ AC.

    Mặt khác AB ∩ AC = A ∈ d.

    Vậy góc \widehat{BAC} là góc phẳng nhị diện của góc nhị diện cần tính.

    Ta có:

    \cos\widehat{BAC} = \frac{AB^{2} + AC^{2}
- BC^{2}}{2.AB.AC} = \frac{30^{2} + 35^{2} - 55^{2}}{2.30.35} = -
\frac{3}{7} .

    Suy ra: \widehat{BAC} \approx
115^{0} .

  • Câu 2: Vận dụng

    Chọn phương án đúng

    Trong không gian tọa độ Oxyz cho đường tròn (C):\left\{ \begin{matrix}
x^{2} + y^{2} + z^{2} - 12x + 4y - 6z - 24 = 0 \\
2x + 2y + z + 1 = 0 \\
\end{matrix} \right.. Tâm H của (C) là điểm có tọa độ:

    Viết lại phương trình mặt cầu (S) chứa (C):

    (x - 6)^{2} + (y + 2)^{2} + (z - 3)^{2}
= 25

    để biết tâm I(6, - 2,3)R = 5 .

    Phương trình đường thẳng qua I và vuông góc với mặt phẳng chứa

    (C):\left\{ \begin{matrix}
x = 6 + 2t \\
y = - 2 + 2t \\
z = 3 + t \\
\end{matrix} \right.

    Thế vào phương trình mặt phẳng thiết diện:

    2(6 + 2t) + 2( - 2 + 2t) + 3 + t + 1 = 0
\Leftrightarrow t = - \frac{4}{3} .

    \Rightarrow H\left( \frac{10}{3}, -\frac{14}{3},\frac{5}{3} \right) .

  • Câu 3: Nhận biết

    Tính góc giữa hai đường thẳng

    Trong không gian Oxyz, cho hai đường thẳng \Delta_{1}:\frac{x - 1}{- 2} =
\frac{y + 2}{1} = \frac{z - 3}{2}\Delta_{2}:\frac{x + 3}{1} = \frac{y - 1}{1} =
\frac{z + 2}{- 4}. Góc giữa hai đường thẳng \Delta_{1};\Delta_{2} bằng?

    Véc tơ chỉ phương của \Delta_{1}\overrightarrow{u_{1}} = ( -
2;1;2)

    Véc tơ chỉ phương của \Delta_{2}\overrightarrow{u_{2}} = (1;1; -
4)

    \cos\left( \Delta_{1};\Delta_{2} \right)
= \frac{\left| \overrightarrow{u_{1}}.\overrightarrow{u_{2}}
\right|}{\left| \overrightarrow{u_{1}} \right|.\left|
\overrightarrow{u_{2}} \right|} = \frac{\sqrt{2}}{2}.

    Do đó góc giữa hai đường thẳng \Delta_{1}\Delta_{2}45^{0}

  • Câu 4: Nhận biết

    Chọn phương án thích hợp

    Một vectơ pháp tuyến của phương trình mặt phẳng (\alpha):2x - y + z - 3 = 0

    Vec tơ pháp tuyến của phương trình mặt phẳng (\alpha):2x - y + z - 3 = 0\overrightarrow{n} = (2; - 1;1)

  • Câu 5: Vận dụng cao

    Tìm tọa độ điểm M

    Trong không gian với hệ tọa độ Oxyz, phương trình mặt phẳng (P) đi qua điểm M(1;2;3) và cắt các tia Ox,Oy,Oz lần lượt tại các điểm A;B;C sao cho T = \frac{1}{OA^{2}} + \frac{1}{OB^{2}} +
\frac{1}{OC^{2}} đạt giá trị nhỏ nhất là:

    Giả sử A(a; 0; 0), B(0; b; 0), C(0; 0; c) với a, b, c là các số thực dương do OA, OB, OC khác 0.

    Khi đó phương trình mặt phẳng (P) qua A, B, C có phương trình là \frac{x}{a} + \frac{y}{b} + \frac{z}{c} =
1

    Mà M ∈ (P) nên \frac{1}{a} + \frac{2}{b}
+ \frac{3}{c} = 1, do đó theo bất đẳng thức Bunhiacopski ta có:

    T = \frac{1}{a^{2}} + \frac{1}{b^{2}} +
\frac{1}{c^{2}}= \frac{1}{14}\left( 1^{2} + 2^{2} + 3^{2} \right)\left(
\frac{1}{a^{2}} + \frac{1}{b^{2}} + \frac{1}{c^{2}} \right)

    \geq \frac{1}{14}\left( \frac{1}{a} +
\frac{2}{b} + \frac{3}{c} \right)^{2} = \frac{1}{14}

    T đạt giá trị nhỏ nhất nên ta có dấu bằng xảy ra, tức là: \left\{ \begin{matrix}
a = 2b = 3c \\
\dfrac{1}{a} + \dfrac{2}{b} + \dfrac{3}{c} = 1 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
a = 14 \\
b = \dfrac{14}{2} \\
c = \dfrac{14}{3} \\
\end{matrix} \right.

    Vậy phương trình mặt phẳng (P) là x + 2y
+ 3z - 14 = 0.

  • Câu 6: Nhận biết

    Tìm khoảng cách

    Diện tích hình tròn lớn của một hình cầu là p. Một mặt phẳng (\alpha) cắt hình cầu theo một hình tròn có diện tích là \frac{p}{2}. Khoảng cách từ tâm mặt cầu đến mặt phẳng (\alpha)  bằng: 

    Hình tròn lớn của hình cầu S là hình tròn tạo bởi mặt phẳng cắt hình cầu và đi qua tâm của hình cầu.

    Gọi R là bán kính hình cầu thì hình tròn lớn cũng có bán kính là R.

    Theo giả thiết, ta có \pi {R^2} = p \Leftrightarrow R = \sqrt {\frac{p}{\pi }}\pi {r^2} = \frac{p}{2} \Leftrightarrow r = \sqrt {\frac{p}{{2\pi }}}

    Suy ra d = \sqrt {{R^2} - {r^2}}  = \sqrt {\frac{p}{{2\pi }}}.

  • Câu 7: Thông hiểu

    Viết phương trình tham số

    Đường thẳng (d): \frac{{x - 2}}{3} = \frac{{y + 1}}{{ - 2}} = \frac{{z - 4}}{4}có phương trình tham số là:

    Ta có đường thẳng (d) qua A ( 2, -1, 4) và có vectơ chỉ phương là \overrightarrow a  = \left( {3, - 2,4} ight) =  - \left( { - 3,2, - 4} ight) có phương trình tham số là:

    => (d) \left\{ \begin{array}{l}x = 2 - 3m\\y =  - 1 + 2m\\z = 4 - 4m\end{array} ight.\,\,;m \in \mathbb{R}  

  • Câu 8: Thông hiểu

    Chọn đáp án chính xác

    Trong không gian với hệ trục tọa độ Oxyz, mặt cầu (S) đi qua điểm O và cắt các tia Ox;Oy;Oz lần lượt tại các điểm A;B;C khác O thỏa mãn tam giác ABC có trọng tâm là điểm G( - 6; - 12;18). Tọa độ tâm của mặt cầu (S) là:

    Gọi tọa độ các điểm trên ba tia Ox;Oy;Oz lần lượt là A(a;0;0),B(0;b;0),C(0;0;c) với a;b;c > 0

    Vì G là trọng tâm tam giác ABC nên \left\{ \begin{matrix}
\frac{a}{3} = - 6 \\
\frac{b}{3} = - 12 \\
\frac{c}{3} = 18 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 18 \\
b = - 36 \\
c = 54 \\
\end{matrix} ight.

    Gọi phương trình mặt cầu cần tìm là:

    (S):x^{2} + y^{2} + z^{2} - 2mx - 2ny -
2pz + q = 0

    (S) qua các điểm OABC nên ta có hệ phương trình:

    \left\{ \begin{matrix}
q = 0 \\
36m + q = - 18^{2} \\
72n + q = - 36^{2} \\
- 108p + q = - 54^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
q = 0 \\
m = - 9 \\
n = - 18 \\
p = 27 \\
\end{matrix} ight.

    Vậy tọa độ tâm của mặt cầu (S) là: ( - 9; - 18;27).

  • Câu 9: Nhận biết

    Tìm phương trình tham số của đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \Delta có phương trình chính tắc \frac{x - 3}{2} = \frac{y + 1}{- 3} =
\frac{z}{1}. Phương trình tham số của đường thẳng \Delta là?

    Ta có:

    \frac{x}{2} = \frac{y - 6}{4} =
\frac{z}{- 1} đi qua điểm A(3; -
1;0) và có vectơ chỉ phương Oxyz

    Vậy phương trình tham số của \DeltaB(1;1;2)

  • Câu 10: Vận dụng cao

    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho ba mặt cầu (S_1): (x+3)^2+(y−2)^2+(z−4)^2 = 1, (S_2): x ^2 + (y − 2)^2 + (z − 4)^2 = 4, (S_3): x ^2 + y ^2 + z ^2 + 4x − 4y − 1 = 0. Có bao nhiêu mặt phẳng tiếp xúc với cả ba mặt cầu (S_1), (S_2), (S_3)?

    Ta có \left( S_{1} ight),\left( S_{2}ight),\left( S_{3} ight) có tâm lần lượt là I_{1}( - 3;2;4),I_{2}(0;2;4),I_{3}( -2;2;0) và bán kính lần lượt là R_{1} = 1,R_{2} = 2,R_{3} = 3.

    Gọi (P):ax + by + cz + d = 0\left( a^{2} +b^{2} + c^{2} eq 0 ight) là mặt phẳng tiếp xúc với cả ba mặt cầu nói trên. Khi đó:

    \left\{ \begin{matrix}d\left( I_{1};(P) ight) = R_{1} \\d\left( I_{2};(P) ight) = R_{2} \\d\left( I_{3};(P) ight) = R_{3} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}| - 3a + 2b + 4c + d| = \sqrt{a^{2} + b^{2} + c^{2}} \\|2b + 4c + d| = 2\sqrt{a^{2} + b^{2} + c^{2}} \\| - 2a + 2b + d| = 3\sqrt{a^{2} + b^{2} + c^{2}} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}|2b + 4c + d| = 2\sqrt{a^{2} + b^{2} + c^{2}} \\2| - 3a + 2b + 4c + d| = |2b + 4c + d| \\3|2b + 4c + d| = 2| - 2a + 2b + d| \\\end{matrix} ight.

    Xét phương trình

    3|2b + 4c + d| = 2| - 2a + 2b +d|

    \Leftrightarrow \left\lbrack\begin{matrix}3(2b + 4c + d) = 2( - 2a + 2b + d) \\3(2b + 4c + d) = - 2( - 2a + 2b + d) \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}d = - 4a - 2b - 12c \\5d = 4a - 10b - 12c \\\end{matrix} ight.

    (1) Với d = - 4a - 2b - 12c. Thay vào 2| - 3a + 2b + 4c + d| = |2b + 4c +d|, ta được

    2| - 7a - 8c| = | - 4a -8c|

    \Leftrightarrow \left\lbrack\begin{matrix}7a + 8c = 2a + 4c \\7a + 8c = - 2a - 4c \\\end{matrix} \Leftrightarrow \left\lbrack \begin{matrix}a = - \dfrac{6c}{5} \\a = - \dfrac{4c}{3} \\\end{matrix} ight.\  ight.

    Với a = - \frac{6c}{5} \Rightarrow d = -\frac{36c}{5} - 2b.

    Thay vào | - 3a + 2b + 4c + d| =\sqrt{a^{2} + b^{2} + c^{2}}, ta được:

    \left| \frac{18c}{5} + 2b + 4c -\frac{36c}{5} - 2b ight| = \sqrt{\left( - \frac{6c}{5} ight)^{2} +b^{2} + c^{2}}

    \Leftrightarrow \left| \frac{2c}{5}ight| = \frac{1}{5} \cdot \sqrt{25b^{2} + 61c^{2}} \Leftrightarrow4c^{2} = 25b^{2} + 61c^{2} \Leftrightarrow b = c = 0

    Với b = c = 0 \Rightarrow a = 0,d =0 (vô lí).

    Với a = - \frac{4c}{3} \Rightarrow d = -\frac{20c}{3} - 2b.

    Thay vào | - 3a + 2b + 4c + d| =\sqrt{a^{2} + b^{2} + c^{2}}, ta được:

    \left| \frac{12c}{5} + 2b + 4c -\frac{20c}{5} - 2b ight| = \sqrt{\left( - \frac{4c}{3} ight)^{2} +b^{2} + c^{2}}

    \Leftrightarrow \left| \frac{4c}{3}ight| = \frac{1}{3} \cdot \sqrt{9b^{2} + 25c^{2}}

    \Leftrightarrow 16c^{2} = 9b^{2} +25c^{2} \Leftrightarrow b = c = 0

    Với b = c = 0 \Rightarrow a = 0,d =0 (vô lí).

    (2) Với 5d = 4a - 10b - 12c.

    Thay vào 2| - 3a + 2b + 4c + d| = |2b +4c + d|, ta được

    2| - 11a + 8c| = |4a + 8c

    \Leftrightarrow \left\lbrack\begin{matrix}11a - 8c = 2a + 4c \\11a - 8c = - 2a - 4c \\\end{matrix} \Leftrightarrow \left\lbrack \begin{matrix}a = \dfrac{4c}{13} \\a = \dfrac{4c}{3} \\\end{matrix} ight.\  ight.

    Với a = \frac{4c}{13} \Rightarrow 5d = -\frac{140c}{13} - 10b.

    Thay vào | - 3a + 2b + 4c + d| =\sqrt{a^{2} + b^{2} + c^{2}}, ta được

    \left| \frac{60c}{13} ight| =\frac{5}{13} \cdot \sqrt{169b^{2} + 185c^{2}}

    \Leftrightarrow 11c^{2} = 169b^{2}\Leftrightarrow c = \pm \frac{13b}{\sqrt{11}}

    Với c = \frac{13b}{\sqrt{11}} : chọn b = \sqrt{11} \Rightarrow c = 13\Rightarrow Tồn tại một mặt phẳng tiếp xúc với cả ba mặt cầu \left( S_{1} ight),\left( S_{2}ight),\left( S_{3} ight).

    Với a = \frac{4c}{3} \Rightarrow 5d = -\frac{20c}{3} - 10b

    Thay vào | - 3a + 2b + 4c + d| =\sqrt{a^{2} + b^{2} + c^{2}} ta được:

    \left| \frac{20c}{3} ight| =\frac{5}{3}.\sqrt{9b^{2} + 25c^{2}} \Leftrightarrow 9b^{2} + 9c^{2} = 0\Leftrightarrow b = c = 0

    Với b = c = 0 ⇒ a = 0, d = 0 (vô lí).

    Vậy tồn tại 2 mặt phẳng tiếp xúc với cả ba mặt cầu \left( S_{1} ight),\left( S_{2} ight),\left(S_{3} ight).

  • Câu 11: Thông hiểu

    Viết PT mp song song Oz

    Cho hai điểm C\left( { - 1,4, - 2} ight);D\left( {2, - 5,1} ight). Mặt phẳng chứa đường thẳng CD và song song với Oz có phương trình :

    Theo đề bài ta có C\left( { - 1,4, - 2} ight);D\left( {2, - 5,1} ight)

    \Rightarrow \overrightarrow {CD}  = \left( {3, - 9,3} ight) cùng phương với vectơ \overrightarrow a  = \left( {1, - 3,1} ight)

    Mặt khác, trục Oz có vectơ chỉ phương \overrightarrow k  = \left( {0,0,1} ight)

    \Rightarrow \left[ {\overrightarrow a ,\overrightarrow k } ight] = \left( { - 3, - 1,0} ight) cùng phương với vectơ \overrightarrow n  = \left( {3,1,0} ight)

    Chọn \overrightarrow n  = \left( {3,1,0} ight) làm vectơ pháp tuyến cho mặt phẳng chứa CD và song song với trục Oz. Phương trình mặt phẳng này có dạng : 3x + y + D = 0

    Mặt phẳng cần tìm còn qua điểm C nên ta thay tọa độ điểm C vào pt trên, có: 

    - 3 + 4 + D = 0 \Leftrightarrow D =  - 1

    Vậy phương trình mặt phẳng cần tìm : 3x + y - 1 = 0

  • Câu 12: Nhận biết

    Tìm phương trình chính tắc của đườngthẳng

    Trong không gian với hệ tọa độ  Oxyz, cho mặt phẳng \left( P \right):2x - y + z - 3 = 0. Phương trình chính tắc của của đường thẳng \Delta đi qua điểm M\left( { - 2;1;1} \right) và vuông góc với (P) là

    (P) có vectơ pháp tuyến \overrightarrow {{n_{\left( P ight)}}}  = \left( {2; - 1;1} ight)

    Vì  \Delta  vuông góc với (P) nên d có vectơ chỉ phương \overrightarrow{a_{\Delta}} =
\overrightarrow{n_{P}} = (2; - 1;1)

     \Delta  đi qua điểm M( - 2;1;1) và có vectơ chỉ phương \overrightarrow {{a_\Delta }}

    Vậy phương trình chính tắc của \Delta là \frac{x + 2}{2} = \frac{y - 1}{- 1} =
\frac{z - 1}{1}.

  • Câu 13: Nhận biết

    Xác định điều kiện tham số m

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d có phương trình d:\frac{x - 1}{3} = \frac{y + 2}{2} = \frac{z -
3}{- 4}. Điểm nào sau đây không thuộc đường thẳng d?

    Ta thay lần lượt tọa độ các điểm vào phương trình đường thẳng d, điểm N(7;2;1) có tọa độ không thỏa mãn phương trình đường thẳng d.

  • Câu 14: Nhận biết

    Tìm tọa độ hình chiếu vuông góc của điểm A

    Trong không gian Oxyz, hình chiếu vuông góc của điểm A(3;2;1) trên trục Oxcó tọa độ là:

    Trong không gian Oxyz, hình chiếu vuông góc của điểm A(3;2;1) trên trục Oxcó tọa độ là: (3;0;0)

  • Câu 15: Vận dụng cao

    Xác định hoành độ đỉnh A

    Trong không gian Oxyz, cho tam giác ABC vuông tại A, \widehat{ABC} = 30^{0}, BC = 3\sqrt{2}, đường thẳng BC có phương trình \frac{x - 4}{1} = \frac{y - 5}{1} = \frac{z + 7}{-
4}, đường thẳng AB nằm trong mặt phẳng (\alpha):x + z - 3 =
0. Biết rằng đỉnh C có cao độ âm. Tìm hoành độ của đỉnh A.

    Hình vẽ minh họa:

    Tọa độ điểm B là nghiệm của hệ phương trình

    \left\{ \begin{matrix}
\frac{x - 4}{1} = \frac{y - 5}{1} = \frac{z + 7}{- 4} \\
x + z - 3 = 0 \\
\end{matrix} ight.\  \Rightarrow B(2;3;1)

    Do C ∈ BC nên C(4 + c;5 + c; - 7 -
4c)

    Theo giả thiết BC = 3\sqrt{2} nên: 18(2 + c)^{2} = 18 \Leftrightarrow
\left\lbrack \begin{matrix}
c = - 1 \Rightarrow C(3;4; - 3) \\
c = - 3 \Rightarrow C(1;2;5) \\
\end{matrix} ight.

    Mặt khác đỉnh C có cao độ âm nên C(3; 4; −3).

    Gọi A(x;y;3 - x) \in (\alpha). Do \widehat{ABC} = 30^{0} nên:

    \left\{ \begin{matrix}
AB = \frac{3\sqrt{6}}{2} \\
AC = \frac{3\sqrt{2}}{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
(x - 2)^{2} + (y - 3)^{2} + (2 - z)^{2} = \frac{27}{2} \\
(x - 3)^{2} + (y - 4)^{2} + (6 - z)^{2} = \frac{9}{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
2x^{2} - 8x + y^{2} - 6y + \frac{7}{2} = 0 \\
2x^{2} - 18x + y^{2} - 8y + \frac{113}{2} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
10x + 2y - 53 = 0 \\
2x^{2} - 8x + y^{2} - 6y + \frac{7}{2} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
y = \frac{53 - 10x}{2} \\
2x^{2} - 8x + \left( \frac{53 - 10x}{2} ight)^{2} - 6.\left( \frac{53
- 10x}{2} ight) + \frac{7}{2} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
y = \frac{53 - 10x}{2} \\
x = \frac{9}{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
y = 4 \\
x = \frac{9}{2} \\
\end{matrix} ight.\  \Rightarrow A\left( \frac{9}{2};4; - \frac{3}{2}
ight)

    Vậy đáp án cần tìm là \frac{9}{2}.

  • Câu 16: Nhận biết

    Tính cosin góc giữa hai đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng

    d_{1}:\frac{x - 2}{2} = \frac{y}{2} =
\frac{z + 1}{- 1}d_{2}:\frac{x
+ 1}{1} = \frac{y - 2}{- 2} = \frac{z + 3}{1}. Tính cosin của góc giữa hai đường thẳng d_{1}d_{2}.

    Đường thẳng d_{1} có VTCP \overrightarrow{u_{1}} = (2;2; - 1).

    Đường thẳng d_{2} có VTCP \overrightarrow{u_{2}} = (1; - 2;1).

    Ta có

    \cos\left( d_{1};d_{2} \right) =
\left| \cos\left( \overrightarrow{u_{1}};\overrightarrow{u_{2}} \right)
\right| = \frac{\left| \overrightarrow{u_{1}}.\overrightarrow{u_{2}}
\right|}{\left| \overrightarrow{u_{1}} \right|\left|
\overrightarrow{u_{2}} \right|}

    = \frac{|2 - 4 - 1|}{\sqrt{4 + 4 +
1}.\sqrt{1 + 4 + 1}} = \frac{\sqrt{6}}{6}

  • Câu 17: Nhận biết

    Tính khoảng cách từ điểm đến mặt phẳng

    Trong không gian Oxyz, tính khoảng cách từ điểm M(1;2; - 3) đến mặt phẳng (P):x + 2y - 2z - 2 =
0?

    Khoảng cách từ điểm M đến mặt phẳng (P):x + 2y - 2z - 2 = 0 là:

    d\left( M;(P) ight) = \frac{\left| 1 +
2.2 - 2( - 3) - 2 ight|}{\sqrt{1^{2} + 2^{2} + ( - 2)^{2}}} =
3

  • Câu 18: Vận dụng cao

    Tính giá trị nhỏ nhất của biểu thức M

    Xét tứ diện OABCOA,OB,OC đôi một vuông góc. Gọi \alpha,\beta,\gamma lần lượt là góc giữa các đường thẳng OA,OB,OC với mặt phẳng (ABC). Khi đó giá trị nhỏ nhất của biểu thức M = (3 +
cot^{2}\alpha).(3 + cot^{2}\beta).(3 + cot^{2}\gamma)

    Hình vẽ minh họa

    Ta có sin^{2}\alpha =
sin^{2}\widehat{HAO} =
\frac{OH^{2}}{OA^{2}}, tương tự sin^{2}\beta = \frac{OH^{2}}{OB^{2}};sin^{2}\gamma = \frac{OH^2}{OC^{2}}

    Nên sin^{2}\alpha + sin^{2}\beta +
sin^{2}\gamma = OH^{2}.(\frac{1}{OA^{2}} + \frac{1}{OB^{2}} +
\frac{1}{OC^{2}}) = 1.

    M = \frac{(2sin^{2}\alpha +
1).(2sin^{2}\beta + 1).(2sin^{2}\gamma +
1)}{sin^{2}\alpha.sin^{2}\beta.sin^{2}\gamma}

    Áp dụng BĐT Cauchy, ta có

    2sin^{2}\alpha + 1 = sin^{2}\alpha + sin^{2}\alpha + sin^{2}\alpha +
sin^{2}\beta + sin^{2}\gamma \geq
5.\sqrt[5]{sin^{6}\alpha.sin^{2}\beta.sin^{2}\gamma}

    Tương tự, ta được

    (2sin^{2}\alpha +
1).(2sin^{2}\beta + 1).(2sin^{2}\gamma + 1) \geq
125sin^{2}\alpha.sin^{2}\beta.sin^{2}\gamma

    Suy ra M \geq 125.

    Dấu bằng xảy ra khi OA = OB =
OC.

  • Câu 19: Thông hiểu

    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz cho A(3;0;1),B(6; - 2;1). Viết phương trình mặt phẳng (P) đi qua A, B(P) tạo với mặt phẳng (Oyz) góc \alpha thỏa mãn \cos\alpha = \frac{2}{7}?

    Gọi \overrightarrow{n_{P}} =
(a;b;c);\left( a^{2} + b^{2} + c^{2} \neq 0 \right)

    Ta có:

    A,B \in (P) \Rightarrow
\overrightarrow{AB}\bot\overrightarrow{n_{P}} \Rightarrow 3a - 2b =
0

    \Leftrightarrow 3a = 2b \Leftrightarrow
9a^{2} = 4b^{2}(1)

    \cos\left( \widehat{(P),(Oyz)} \right) =
\frac{2}{7}

    \Rightarrow \frac{\left|
\overrightarrow{n_{P}}.\overrightarrow{n_{Oyz}} \right|}{\left|
\overrightarrow{n_{P}} \right|.\left| \overrightarrow{n_{Oyz}} \right|}
= \frac{|a|}{\sqrt{a^{2} + b^{2} + c^{2}}.\sqrt{1}} =
\frac{2}{7}

    \Leftrightarrow \frac{|a|}{\sqrt{a^{2} +
\left( \frac{3a}{2} \right)^{2} + c^{2}}} = \frac{2}{7} \Leftrightarrow
\frac{|a|}{\sqrt{\frac{13}{4}a^{2} + c^{2}}} = \frac{2}{7}

    \Leftrightarrow a^{2} =
\frac{4}{49}\left( \frac{13}{4}a^{2} + c^{2} \right)

    \Leftrightarrow 9a^{2} =
c^{2}(2)(1),(2)

    \Rightarrow c^{2} = 4b^{2}
\Leftrightarrow \left\lbrack \begin{matrix}
c = 2b \\
c = - 2b
\end{matrix} \right.

    Chọn: a = 2 \Rightarrow b = 3 \Rightarrow c =
6 \Rightarrow (P):2x + 3y + 6z - 12 = 0

    a = - 2 \Rightarrow b = - 3 \Rightarrow c
= 6 \Rightarrow (P):2x + 3y - 6z = 0

  • Câu 20: Thông hiểu

    Tìm m

    Với giá trị nào của m thì mặt phẳng \left( P ight):2x - y + z - 5 = 0 tiếp xúc với mặt cầu 

    \left( S ight):{x^2} + {y^2} + {z^2} - 2mx + 2\left( {2 - m} ight)y - 4mz + 5{m^2} + 1 = 0?

    Theo đề bài, ta xác định các hệ số của (S): a = m;b = m - 2;c = 2m;d = 5{m^2} + 1

    Suy ra tâm I của cầu có tọa độ là I\left( {m,m - 2,2m} ight).

    \Rightarrow {R^2} = {m^2} + {\left( {m - 2} ight)^2} + 4{m^2} - 5{m^2} - 1 = {m^2} - 4m + 3 > 0

    \Rightarrow m < 1 \vee m > 3.\left( P ight) tiếp xúc (S) khi: 

    d\left( {I,P} ight) = \frac{{\left| {3m - 3} ight|}}{{\sqrt 6 }} = R = \sqrt {{m^2} - 4m+3}

    \Leftrightarrow {m^2} + 2m - 3 = 0 \Leftrightarrow m =  - 3 \vee m = 1   (loại)

    \Rightarrow m =  - 3

  • Câu 21: Thông hiểu

    Chọn đáp án đúng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SAB là tam giác đều và (SAB) vuông góc với (ABCD). Tính cosϕ với ϕ là góc tạo bởi (SAC)(SCD)

    Hình vẽ minh họa

    Gọi O M, lần lượt là trung điểm của AB; CD.

    Vì SAB là tam giác đều và (SAB) vuông góc với (ABCD) nên SO ⊥ (ABCD).

    Xét hệ trục OxyzO(0;0;0),M(1;0;0),A\left( 0;\frac{1}{2};0
ight),S\left( 0;0;\frac{\sqrt{3}}{2} ight)

    Suy ra C\left( 1; - \frac{1}{2};0
ight),D\left( 1;\frac{1}{2};0 ight)

    Suy ra \left\{ \begin{matrix}\overrightarrow{SA} = \left( 0;\dfrac{1}{2};\dfrac{- \sqrt{3}}{2}ight);\overrightarrow{AC} = (1; - 1;0) \\\overrightarrow{SC} = \left( 1;\dfrac{- 1}{2};\dfrac{- \sqrt{3}}{2}ight);\overrightarrow{CD} = (0;1;0) \\\end{matrix} ight.

    Mặt phẳng (SAC) có vectơ pháp tuyến \overrightarrow{n} = \left\lbrack
\overrightarrow{SA};\overrightarrow{AC} ightbrack = \left( -
\frac{\sqrt{3}}{2}; - \frac{\sqrt{3}}{2}; - \frac{1}{2}
ight)

    Mặt phẳng (SAD) có vectơ pháp tuyến \overrightarrow{n_{1}} = \left\lbrack
\overrightarrow{SC};\overrightarrow{CD} ightbrack = \left(
\frac{\sqrt{3}}{2};0;1 ight)

    \cos\varphi = \frac{\left|
\overrightarrow{n}.\overrightarrow{n_{1}} ight|}{\left|
\overrightarrow{n} ight|\left| \overrightarrow{n_{1}} ight|} =
\frac{5}{7}

  • Câu 22: Thông hiểu

    Xét tính đúng sai của các nhận định

    Trong không gian Oxyz, cho điểm A(1;2;3) và đường thẳng d:\frac{x + 4}{- 2} = \frac{y - 3}{- 3} = \frac{z
- 3}{1}.

    a) Đường thẳng \Delta song song với đường thẳng d có một véctơ chỉ phương là: \overrightarrow{u_{\Delta}} = (4; - 2;4). Sai||Đúng

    b) Đường thẳng \Delta đi qua điểm A và song song với đường thẳng d có phương trình là: \left\{ \begin{matrix}
x = 1 + 2t \\
y = 2 + 3t \\
z = 3 - t
\end{matrix} \right.\ ;\left( t\mathbb{\in R}
\right).Đúng||Sai

    c) Điểm K(3;5;2) thuộc vào đường thẳng \Delta đi qua điểm A và song song với đường thẳng d. Đúng||Sai

    d) Đường thẳng \Delta đi qua điểm A và song song với đường thẳng d có phương trình là: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{-
1}. Đúng||Sai

    Đáp án là:

    Trong không gian Oxyz, cho điểm A(1;2;3) và đường thẳng d:\frac{x + 4}{- 2} = \frac{y - 3}{- 3} = \frac{z
- 3}{1}.

    a) Đường thẳng \Delta song song với đường thẳng d có một véctơ chỉ phương là: \overrightarrow{u_{\Delta}} = (4; - 2;4). Sai||Đúng

    b) Đường thẳng \Delta đi qua điểm A và song song với đường thẳng d có phương trình là: \left\{ \begin{matrix}
x = 1 + 2t \\
y = 2 + 3t \\
z = 3 - t
\end{matrix} \right.\ ;\left( t\mathbb{\in R}
\right).Đúng||Sai

    c) Điểm K(3;5;2) thuộc vào đường thẳng \Delta đi qua điểm A và song song với đường thẳng d. Đúng||Sai

    d) Đường thẳng \Delta đi qua điểm A và song song với đường thẳng d có phương trình là: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{-
1}. Đúng||Sai

    a) Sai

    b) Đúng

    c) Đúng

    d) Đúng

    Đường thẳng d có một véctơ chỉ phương \overrightarrow{u_{d}} = ( - 2; -
3;1).

    Đường thẳng \Delta đi qua A và song song với d nhận \overrightarrow{u_{d}}
= ( - 2; - 3;1) làm một véctơ chỉ phương, nên đường thẳng \Delta có phương trình là:

    \left\{ \begin{matrix}
x = 1 - 2t \\
y = 2 - 3t \\
z = 3 + t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right) hoặc \left\{ \begin{matrix}
x = 1 + 2t \\
y = 2 + 3t \\
z = 3 - t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right) hoặc\frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{-
1}.

    Khi đó ta có

    Phương án a): Sai vì một vectơ chỉ phương của \Delta\begin{matrix}
\\
\overrightarrow{u} = ( - 2; - 3;1)
\end{matrix}.

    Phương án b): Đúng vì đường thẳng \Delta có phương trình: \left\{ \begin{matrix}
x = 1 + 2t \\
y = 2 + 3t \\
z = 3 - t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right).

    Phương án c): Đúng vì thay toạ độ điểm K(3;5;2) vào phương trình đường thẳng \Delta thoả mãn.

    Phương án d): Đúng vì đường thẳng \Delta có phương trình: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{-
1}.

  • Câu 23: Thông hiểu

    Phương trình chính tắc

    Cho tam giác ABC có A\left( {1,2, - 3} ight);\,\,B\left( {2, - 1,4} ight);\,\,\,C\left( {3, - 2,5} ight).

    Viết phương trình chính tắc của cạnh AB.

    (AB) là đường thẳng đi qua A và B nên có 1 vecto chỉ phương:  \overrightarrow {AB}  = \left( {1, - 3,7} ight)

    (AB) đi qua A (1, 2, -3) và nhận vecto \overrightarrow {AB}  = \left( {1, - 3,7} ight) làm 1 VTCP có phương trình chính tắc là:

     \begin{array}{l}AB:x - 1 = \frac{{y - 2}}{{ - 3}} = \frac{{z + 3}}{7}\\ \Leftrightarrow {m{ }}x - 2 = \frac{{y + 1}}{{ - 3}} = \frac{{z - 4}}{7}\\ \Leftrightarrow \,\,x - 1 = \frac{{2 - y}}{3} = \frac{{z + 3}}{7}\end{array}

  • Câu 24: Thông hiểu

    Tính giá trị biểu thức T

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(2;0;1),B(1;0;0),C(1;1;1) và mặt phẳng (P):x + y + z - 2 = 0. Điểm M(a;b;c) nằm trên mặt phẳng (P) thỏa mãn MA = MB = MC. Tính T = a + 2b + 3c?

    Ta có M(a; b; c) ∈ (P) ⇔ a + b + c − 2 = 0 (1)

    MA^2 = (a − 2)^2 + (b − 0)^2 + (c − 1)^2 = a ^2 + b^ 2 + c^ 2 − 4a − 2c + 5

    MB^2 = (a − 1)^2 + b^ 2 + c ^2 = a^ 2 + b^ 2 + c^ 2 − 2a + 1

    MC^2 = (a − 1)^2 + (b − 1)^2 + (c − 1)^2 = a ^2 + b ^2 + c ^2 − 2a − 2b − 2c + 3

    Với MA = MB, ta có a + c − 2 = 0 (2)

    Với MA = MC, ta có a − b − 1 = 0 (3)

    Từ (1); (2); (3) ta có hệ phương trình:

    \left\{ \begin{matrix}
a + b + c = 2 \\
a + c = 2 \\
a - b = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 0 \\
c = 1 \\
\end{matrix} ight.\  \Rightarrow T = 4

  • Câu 25: Nhận biết

    Chọn đáp án thích hợp

    Phương trình mặt cầu có bán kính bằng 3 và tâm là giao điểm của ba trục toạ độ?

    Mặt cầu tâm O(0;0;0) và bán kính R = 3 có phương trình: (S):x^{2} +
y^{2} + z^{2} = 9.

  • Câu 26: Thông hiểu

    Chọn phương án đúng

    Cho ba điểm A(2;0;1),B(1;0;0),C(1;1;1) và mặt phẳng (P):x + y + z - 2 = 0. Phương trình mặt cầu đi qua ba điểm A,B,C và có tâm thuộc mặt phẳng (P) là:

    Phương mặt cầu (S) có dạng: x^{2} + y^{2} + z^{2} - 2Ax - 2By - 2Cz + D
= 0, ta có :

    \left\{ \begin{matrix}
A(2;0;1) \in (S) \\
B(1;0;0) \in (S) \\
C(1;1;1) \in (S) \\
I \in (P) \\
\end{matrix} \right. \Leftrightarrow \left\{ \begin{matrix}
- 4A - 2C + D = - 5\ \ \ \ \ (1) \\
- 2A + D = - 1\ \ \ \ \ \ \ (2) \\
- 2A - 2B - 2C + D = - 3\ \ \ \ \ (3) \\
A + B + C = 2\ \ \ \ \ \ (4) \\
\end{matrix} \right.

    Lấy (1) - (2); (2) - (3); kết hợp (4) ta được hệ:

    \left\{ \begin{matrix}
- 2A - 2C = - 4 \\
2B + 2C = 2 \\
A + B + C = 2 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
A = 1 \\
B = 0 \Rightarrow \\
C = 1 \\
\end{matrix} \right.\ D = 1

    Vậy phương trình mặt cầu là : x^{2} +
y^{2} + z^{2} - 2x - 2z + 1 = 0.

    Lưu ý : Ở câu này nếu nhanh trí chúng ta có thể sử dụng máy tính cầm tay thay ngay tọa độ tâm của các mặt cầu ở 4 đáp án trên vào phương trình mặt phẳng (P) để loại ngay được các đáp án có tọa độ tâm không thuộc mặt phẳng (P)

  • Câu 27: Vận dụng

    Viết PT mp

    Cho hai điểm A\left( { - 2,3, - 1} ight),B\left( {1, - 2, - 3} ight) và mặt phẳng \left( \beta  ight):3x - 2y + z + 9 = 0. Mặt phẳng (\alpha) chứa hai điểm A,B và vuông góc với mặt phẳng (\beta) có phương trình:

    Theo đề bài, ta có: A\left( { - 2,3, - 1} ight),B\left( {1, - 2, - 3} ight) ; \left( \beta  ight):3x - 2y + z + 9 = 0.

    Suy ra \overrightarrow {AB}  = \left( {3, - 5, - 2} ight); (\beta) có vectơ pháp tuyến \overrightarrow n  = \left( {3, - 2,1} ight)

    Ta có \left[ {\overrightarrow {AB} ,\overrightarrow n } ight] = \left( { - 9, - 9,9} ight) cùng phương với vectơ \overrightarrow p  = \left( {1,1, - 1} ight)

    Chọn \vec{p} làm 1 vectơ pháp tuyến cho mặt phẳng (\alpha) .

    Phương trình mặt phẳng (\alpha) có dạng: x + y - z + D = 0

    A \in \left( \alpha  ight) \Leftrightarrow  - 2 + 3 + 1 + D = 0 \Leftrightarrow D =  - 2

    Mặt phẳng :(\alpha): x + y - z - 2 = 0

  • Câu 28: Nhận biết

    Tìm câu sai

    Trong không gian với hệ trục toạ độ Oxyz, cho điểm M(2; - 1;3) và các mặt phẳng: (\alpha):x - 2 = 0, (\beta):y + 1 = 0, (\gamma):z - 3 = 0. Tìm khẳng định sai.

    Câu sai là: “(\alpha)//Ox

  • Câu 29: Vận dụng

    Viết phương trình mặt cầu (S)

    Trong không gian Oxyz, cho A(5; 0; 0), B(1; 2; −4), C(4; 3; 0) và mặt phẳng (α): x + 2y + 2z − 10 = 0. Viết phương trình mặt cầu đi qua A, B, C và tiếp xúc mặt phẳng (α).

    Gọi I(x; y; z) là tâm mặt cầu cần tìm.

    Theo bài ra ta có:

    \left\{ \begin{matrix}
AI = IB \\
AI = CI \\
AI = d\left( I;(\alpha) ight) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}\sqrt{(x - 5)^{2} + y^{2} + z^{2}} = \sqrt{(x - 1)^{2} + (y - 2)^{2} +(z + 4)^{2}} \\\sqrt{(x - 5)^{2} + y^{2} + z^{2}} = \sqrt{(x - 4)^{2} + (y - 3)^{2} +z^{2}} \\\sqrt{(x - 5)^{2} + y^{2} + z^{2}} = \dfrac{|x + 2y + 2z -10|}{\sqrt{1^{2} + 2^{2} + 2^{2}}} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
2x - y + 2z = 1 \\
x - 3y = 0 \\
3\sqrt{(x - 5)^{2} + y^{2} + z^{2}} = |x + 2y + 2z - 10| \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x = 3y \\z = \dfrac{- 5y + 1}{2} \\65y^{2} - 130y + 65 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 3 \\y = 1 \\z = - 2 \\\end{matrix} ight.

    Vậy phương trình mặt cầu tâm I(3; 1; −2) bán kính R = AI = 3(x - 3)^{2} + (y - 1)^{2} + (z + 2)^{2} =
9.

  • Câu 30: Thông hiểu

    Tìm m để hai mặt phẳng song song

    Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng (\alpha):2x + 3y - z - 1 = 0(\beta):4x + 6y - mz - 2 = 0. Tìm m để hai mặt phẳng (\alpha)(\beta) song song với nhau.

    Mặt phẳng (\alpha) có vectơ pháp tuyến \overrightarrow{n_{1}} = (2;3; -
1)

    Mặt phẳng (\beta) có vectơ pháp tuyến \overrightarrow{n_{2}} = (4;6; -
m)

    Để (\alpha)//(\beta) thì \frac{2}{4} = \frac{3}{6} = \frac{- 1}{- m} eq
\frac{- 1}{- 2}

    Vậy không tồn tại giá trị m thỏa mãn yêu cầu bài toán.

  • Câu 31: Thông hiểu

    Viết phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\frac{x - 2}{2} = \frac{y + 2}{- 1} =
\frac{z - 3}{1}d_{2}:\frac{x -
1}{- 1} = \frac{y - 1}{2} = \frac{z + 1}{1}. Phương trình đường thẳng \Delta đi qua điểm A(1;2;3) vuông góc với d_{1} và cắt d_{2} là:

    Gọi B = \Delta \cap d_{2}

    \begin{matrix}
B \in d_{2} \Rightarrow B(1 - t;1 + 2t; - 1 + t) \\
\overrightarrow{AB} = ( - t;2t - 1;t - 4) \\
\end{matrix}

    d_{1} có vectơ chỉ phương \overrightarrow{a_{1}} = (2; - 1;1)

    \begin{matrix}
\Delta\bot d_{1} \Leftrightarrow
\overrightarrow{AB}\bot\overrightarrow{a_{1}} \\
\ \ \ \ \ \ \ \ \  \Leftrightarrow
\overrightarrow{AB}.\overrightarrow{a_{1}} = 0 \\
\ \ \ \ \ \ \ \ \  \Leftrightarrow t = - 1 \\
\end{matrix}

    \Delta đi qua điểm A(1;2;3) và có vectơ chỉ phương \overrightarrow{AB} = (1; - 3; - 5)

    Vậy phương trình của \Delta\frac{x - 1}{1} = \frac{y - 2}{- 3} =
\frac{z - 3}{- 5}.

  • Câu 32: Vận dụng

    Tính cosin góc giữa hai mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;2; - 1),B(0;4;0) và mặt phẳng (P) có phương trình 2x - y - 2z + 2015 = 0. Gọi \alpha là góc nhỏ nhất mà mặt phẳng (Q) đi qua hai điểm A, B tạo với mặt phẳng (P). Giá trị của \cos\alpha

    Ta có:

    (Q) đi qua A nên:

    (Q):a(x - 1) + b(y - 2) + c(z + 1) =
0

    (Q) đi qua B nên:

    a.(0 - 1) + b.(4 - 2) + c.(0 + 1) =
0

    \Rightarrow - a + 2b + c = 0 \Rightarrow
a = 2b + c

    \Rightarrow (Q):(2b + c)(x - 1) + b(y -
2) + c(z + 1) = 0

    \Rightarrow \overrightarrow{n_{(Q)}} =
(2b + c;b;c)

    (P):2x - y - 2z + 2015 = 0 \Rightarrow
\overrightarrow{n_{(P)}} = (2; - 1; - 2)

    \Rightarrow cos\left( \widehat{(P);(Q)}
\right) = \left| \cos\left(
\overrightarrow{n_{(P)}};\overrightarrow{n_{(Q)}} \right)
\right|

    \Rightarrow cos\left( \widehat{(P);(Q)}
\right) = \frac{\left| 2(2b + c) - b - 2c \right|}{\sqrt{(2b + c)^{2} +
b^{2} + c^{2}}.\sqrt{2^{2} + ( - 1)^{2} + 2^{2}}}

    \Rightarrow cos(\alpha) =
\frac{|3b|}{3.\sqrt{5b^{2} + 4bc + 2c^{2}}}

    Ta cần tìm \alpha_{\min} \Leftrightarrow
(cos\alpha)_{\max}

    cos\alpha = \frac{|3b|}{3.\sqrt{5b^{2} +
4bc + 2c^{2}}} = \frac{|b|}{\sqrt{3b^{2} + 2(b + c)^{2}}} \leq
\frac{1}{\sqrt{3}}

    Dấu " = " xảy ra khi: b = - c .

  • Câu 33: Vận dụng

    Xác định phương trình mặt phẳng

    Trong không gian với hệ toạ độ Oxyz, cho hình cầu (S):(x - 1)^{2} + (y - 2)^{2} + (z - 3)^{2} =
16. Phương trình mặt phẳng (\alpha) chứa Oy cắt hình cầu (S) theo thiết diện là đường tròn có chu vi bằng 8\pi

    Phương trình mặt phẳng (\alpha):Ax + Cz =
0\left( A^{2} + C^{2} \neq 0 \right)

    Ta có : 2\pi r = 8\pi \Leftrightarrow r =
4.

    (S) có tâm I(1,2,3),R=4

    Do R = r = 4 \Rightarrow I \in (\alpha)
\Leftrightarrow A + 3C = 0

    Chọn A = 3,C = - 1 \Rightarrow(\alpha):3x - z = 0

  • Câu 34: Vận dụng

    Phương trình tổng quát

    Viết phương trình tổng quát của đường thẳng (d) qua A (2, 3, 1)  cắt đường thẳng \left( {{d_1}} ight):\frac{{x - 2}}{3} = y + 3 = \frac{{z + 1}}{2} và vuông góc đường thẳng \left( {{d_2}} ight):x = t - 2;\,\,y = 4 - 2t;\,\,z = 3 - t,\,\,\,t \in R\,\,

     Lấy điểm B\left( {2, - 3, - 1} ight) nằm trên đường thẳng (d1).

    Theo đề bài, ta có (d1) qua B\left( {2, - 3, - 1} ight) có vecto chỉ phương là \overrightarrow a  = \left( {3,1,2} ight)

    Ta có: \overrightarrow b  = \overrightarrow {AB}  = \left( {0, - 6, - 2} ight) =  - 2\left( {0,3,1} ight)

    Vecto pháp tuyến của mặt phẳng (P) chứa A và \left( {{d_1}} ight):\overrightarrow n  = \left[ {\overrightarrow a ,\overrightarrow b } ight] =  - \left( {5,3, - 9} ight)

    \Rightarrow \left( P ight):5\left( {x - 2} ight) + 3\left( {y - 3} ight) - 9\left( {z - 1} ight) = 0 \Leftrightarrow 5x + 3y - 9z - 10 = 0 (1)

    Xét tiếp đường thẳng có vecto chỉ phương của là vecto pháp tuyến của mặt phẳng qua A và vuông góc với . Ta có phương trình mp (Q) là

    \left( Q ight):\left( {x - 2} ight) - 2\left( {y - 3} ight) - \left( {z - 1} ight) = 0 \Leftrightarrow x - 2y - z + 5 = 0 (2)

    Từ (1) và (2) ta suy ra:

    \Rightarrow \left( d ight):5x + 3y - 9z - 10 = 0;x - 2y - z + 5 = 0

  • Câu 35: Nhận biết

    Xác định tọa độ điểm thuộc mặt cầu

    Mặt cầu (S):\ x^{2} + y^{2} + z^{2} - 2x
+ 10y + 3z + 1 = 0 đi qua điểm có tọa độ nào sau đây?

    Lần lượt thay tọa độ các điểm vào phương trình mặt cầu. Tọa độ điểm nào thỏa mãn phương trình thì điểm đó thuộc mặt cầu.

    Kiểm tra đáp án thu được kết quả là: điểm (4; - 1;0). thuộc mặt cầu đã cho.

  • Câu 36: Nhận biết

    Chọn công thức đúng

    Trong không gian Oxyz, cho hai mặt phẳng (P);(Q) có các vectơ pháp tuyến là \overrightarrow{a}\left(
a_{1};b_{1};c_{1} ight),\overrightarrow{b}\left( a_{2};b_{2};c_{2}
ight). Góc \alpha là góc giữa hai mặt phẳng đó \cos\alpha là biểu thức nào sau đây?

    Theo công thức góc giữa hai mặt phẳng ta có:

    \cos\alpha = \cos\left(
\overrightarrow{a};\overrightarrow{b} ight) = \frac{\left| a_{1}a_{2}
+ b_{1}b_{2} + c_{1}c_{2} ight|}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|}

  • Câu 37: Thông hiểu

    Chọn phương án thích hợp

    Trong không gian với hệ toạ độ Oxyz, viết phương trình mặt phẳng (P) đi qua hai điểm A(1;1;1), B(0;2;2) đồng thời cắt các tia Ox,Oy lần lượt tại hai điểm M,N (không trùng với gốc tọa độO) sao cho OM
= 2ON

    Gọi M(a;0;0),N(0;b;0) lần lượt là giao điểm của (P) với các tia Ox,Oy(a,b > 0)

    Do OM = 2ON \Leftrightarrow a = 2b
\Rightarrow \overrightarrow{MN}( - 2b;b;0) = - b(2; - 1;0) .

    Đặt \overrightarrow{u}(2; -
1;0)

    Gọi \overrightarrow{n} là môt vectơ pháp tuyến của mặt phẳng (P)
\Rightarrow \overrightarrow{n} = \left\lbrack
\overrightarrow{u},\overrightarrow{AB} \right\rbrack = ( -
1;2;1)

    Phương trình măt phẳng (P):x - 2y - z + 2
= 0.

  • Câu 38: Nhận biết

    Viết phương trình mặt cầu (S)

    Trong không gian tọa độ Oxyz, cho tọa độ hai điểm A(1;2;3),B(5;4; -
1). Phương trình mặt cầu đường kính AB là:

    Gọi I là trung điểm của AB suy ra I(3;3;1)

    \overrightarrow{AB} = (4;2; - 4)
\Rightarrow AB = \sqrt{16 + 4 + 16} = 6

    Mặt cầu đường kính AB có tâm I(3;3;1) và bán kính R = \frac{AB}{2} = 3 có phương trình là: (x - 3)^{2} + (y - 3)^{2} + (z - 1)^{2} =
9

  • Câu 39: Nhận biết

    Chọn đáp án đúng

    Trong không gian Oxyz cho A(2;0;0),B(0; - 2;0),C(0;0; - 1). Viết phương trình mặt phẳng (ABC)?

    Phương trình mặt phẳng (ABC)\frac{x}{2} + \frac{y}{- 2} + \frac{z}{-
1} = 1

  • Câu 40: Vận dụng

    Chọn đáp án đúng

    Trong không gian Oxyz, cho tam giác ABCA(1; 1; 1), đường trung tuyến kẻ từ B và đường cao kẻ từ C lần lượt có phương trình \frac{x - 8}{10} =
\frac{y + 7}{- 9} = \frac{z - 5}{5};\frac{x - 7}{2} = \frac{y + 1}{5} =
\frac{z - 3}{- 1}. Biết B (a; b; c), khi đó a + b + c bằng

    Hình vẽ minh họa

    Giả sử đường cao là CH:\frac{x - 7}{2} =
\frac{y + 1}{5} = \frac{z - 3}{- 1} ta có vectơ chỉ phương của CH là \overrightarrow {u} = (2; 5; −1).

    B thuộc đường trung tuyến BM:\frac{x -
8}{10} = \frac{y + 7}{- 9} = \frac{z - 5}{5} nên B(8 + 10t; −7 − 9t; 5 + 5 t).

    Suy ra \overrightarrow{AB} = (7 + 10t; -
8 - 9t;4 + 5t)

    CH ⊥ AB nên \overrightarrow{AB}.\overrightarrow{u} =
0⇔ −30t−30 = 0 ⇔ t = −1 ⇒ B(−2; 2; 0).

    Vậy a + b + c = 0.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu trong không gian Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo