Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 2 Tọa độ của vectơ trong không gian

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 40 câu
  • Điểm số bài kiểm tra: 40 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Chọn đáp án sai

    Tính chất nào sau đây sai?

    Hướng dẫn:

    Tính chất sai là: \overrightarrow{a} -
\overrightarrow{b} = \overrightarrow{b} -
\overrightarrow{a}

  • Câu 2: Vận dụng
    Tính giá trị biểu thức

    Trong không gian với hệ trục Oxyz cho ba điểm A( - 1;2; - 3),\ \ B(1;0;2),\ \ C(x;y; -
2) thẳng hàng. Khi đó x +
y bằng

    Hướng dẫn:

    \overrightarrow{AB} = (2; - 2;5),\ \
\overrightarrow{AC} = (x + 1;y - 2;1).

    A,\ B,\ C thẳng hàng \Leftrightarrow \overrightarrow{AB},\overrightarrow{AC} cùng phương

    \Leftrightarrow \frac{x + 1}{2} = \frac{y
- 2}{- 2} = \frac{1}{5}

    \Leftrightarrow \left\{ \begin{matrix}
x = - \dfrac{3}{5} \\
y = \dfrac{8}{5} \\
\end{matrix} ight.\  \Rightarrow x + y = 1.

  • Câu 3: Thông hiểu
    Tính giá trị biểu thức

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A( - 2;3;1),B(4;2; - 1),C(5; - 2;0). Điểm D(a;b;c) là đỉnh thứ tư của hình bình hành ABCD. Khi đó giá trị biểu thức H = 2a + b + c có giá trị bằng bao nhiêu?

    Hướng dẫn:

    Gọi tọa độ điểm D(a;b;c)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = (6; - 1; - 2) \\
\overrightarrow{DC} = (5 - a; - 2 - b; - c) \\
\end{matrix} ight.

    Ta có: ABCM là hình bình hành \Leftrightarrow \overrightarrow{AB} =
\overrightarrow{DC}

    \Leftrightarrow \left\{ \begin{matrix}
5 - a = 6 \\
- 2 - b = - 1 \\
- c = - 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 1 \\
b = - 1 \\
c = 2 \\
\end{matrix} ight. suy ra điểm D( - 1; - 1;2)

    Khi đó H = 2a + b + c = 2.( - 1) - 1 + 2
= - 1.

  • Câu 4: Thông hiểu
    Tìm giá trị m thỏa mãn yêu cầu

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u} = (1;1; -
2);\overrightarrow{v} = (1;0;m). Tìm tất cả các giá trị của tham số m để \left( \overrightarrow{u};\overrightarrow{v}
ight) = 45^{0}?

    Hướng dẫn:

    Ta có: \left(
\overrightarrow{u};\overrightarrow{v} ight) = 45^{0} \Leftrightarrow
\cos\left( \overrightarrow{u};\overrightarrow{v} ight) =
\frac{\sqrt{2}}{2} \Leftrightarrow
\frac{\overrightarrow{u}.\overrightarrow{v}}{\left| \overrightarrow{u}
ight|.\left| \overrightarrow{v} ight|} =
\frac{\sqrt{2}}{2}

    \Leftrightarrow \frac{1 -
2m}{\sqrt{6}.\sqrt{1 + m^{2}}} = \frac{\sqrt{2}}{2} \Leftrightarrow
\sqrt{3\left( m^{2} + 1 ight)} = 1 - 2m

    \Leftrightarrow \left\{ \begin{matrix}1 - 2m \geq 0 \\3m^{2} + 3 = 1 - 4m + 4m^{2} \\\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}m \leq \dfrac{1}{2} \\m^{2} - 4m - 2 = 0 \\\end{matrix} ight.\  \Leftrightarrow m = 2 - \sqrt{6}

    Vậy đáp án cần tìm là m = 2 -
\sqrt{6}.

  • Câu 5: Thông hiểu
    Ghi đáp án đúng vào ô trống

    ột nguồn âm phát ra sóng âm là sóng cầu. Khi gắn hệ trục toạ độ Oxyz (đơn vị trên mỗi trục là mét). Cường độ âm chuẩn tại điểm I(3;4;5)là tâm của nguồn phát âm với bán kính 10\ m. Để kiểm tra một điểm ở vị trí\ M(7;10;17) có nhận được cường độ âm phát ra tại I hay không người ta sẽ tính khoảng cách giữa hai vị trí IM. Hỏi khoảng cách giữa hai vị trí IMlà bao nhiêu mét?

    Đáp án: 14 (m)

    Đáp án là:

    ột nguồn âm phát ra sóng âm là sóng cầu. Khi gắn hệ trục toạ độ Oxyz (đơn vị trên mỗi trục là mét). Cường độ âm chuẩn tại điểm I(3;4;5)là tâm của nguồn phát âm với bán kính 10\ m. Để kiểm tra một điểm ở vị trí\ M(7;10;17) có nhận được cường độ âm phát ra tại I hay không người ta sẽ tính khoảng cách giữa hai vị trí IM. Hỏi khoảng cách giữa hai vị trí IMlà bao nhiêu mét?

    Đáp án: 14 (m)

    Ta có

    IM = \sqrt{(7 - 3)^{2} + (10 - 4)^{2} +
(17 - 5)^{2}}

    = \sqrt{4^{2} + 6^{2} + 12^{2}} =
\sqrt{196} = 14 (m).

    Đáp số 14(m).

  • Câu 6: Thông hiểu
    Tìm tọa độ điểm P

    Trong không gian Oxyz, cho hai điểm M(2;1;2), N(4; 2; 1), tọa độ điểm P thuộc trục Oz sao cho M;N; Pthẳng hàng là

    Hướng dẫn:

    Vì điểm Pthuộc trục Oz nên P có tọa độ P(0;0;z).

    Ta có \overrightarrow{MN}(2;1; -
1); \overrightarrow{NP}( - 4; - 2;z
- 1)

    M;\ N;\ P thẳng hàng\Leftrightarrow\overrightarrow{MN};\overrightarrow{NP} cùng phương

    \Leftrightarrow \frac{- 4}{2} = \frac{-
2}{1} = \frac{z - 1}{- 1} \Leftrightarrow z - 1 = 2 \Leftrightarrow z =
3

    Vậy điểm P(0;0;3).

  • Câu 7: Nhận biết
    Xác định tọa độ tổng hai vectơ

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u} = (1; -
2;3);\overrightarrow{v} = ( - 1;2;0). Vectơ \overrightarrow{u} + \overrightarrow{v} có tọa độ là:

    Hướng dẫn:

    Ta có: \overrightarrow{u} +
\overrightarrow{v} = \left( 1 + ( - 1); - 2 + 2;3 + 0 ight) =
(0;0;3)

    Vậy đáp án cần tìm là (0;0;3)

  • Câu 8: Vận dụng
    Xác định tọa độ điểm C’

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' có tọa độ các điểm A( -
3;0;0),B(0;2;0),D(0;0;1),A'(1;2;3). Tìm tọa độ điểm C'?

    Hướng dẫn:

    Theo quy tắc hình hộp ta có:

    \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'} =
\overrightarrow{AC'}

    Lại có \left\{ \begin{matrix}
\overrightarrow{AB} = (3;2;0) = 3\overrightarrow{i} +
2\overrightarrow{j} + 0.\overrightarrow{k} \\
\overrightarrow{AD} = (3;0;1) = 3.\overrightarrow{i} +
0.\overrightarrow{j} + 1.\overrightarrow{k} \\
\overrightarrow{AA'} = (4;2;3) = 4.\overrightarrow{i} +
2\overrightarrow{j} + 3\overrightarrow{k} \\
\end{matrix} ight.

    \Rightarrow \overrightarrow{AC'} =
10.\overrightarrow{i} + 4.\overrightarrow{j} +
4.\overrightarrow{k}A( -
3;0;0)

    \Rightarrow C'(7;4;4)

    Suy ra C'(7;4;4)

  • Câu 9: Thông hiểu
    Chọn khẳng định đúng

    Cho hình hộp ABCD.A_{1}B_{1}C_{1}D_{1}. Gọi M là trung điểm của AD. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có:

    \overrightarrow{C_{1}M} =
\overrightarrow{C_{1}C} + \overrightarrow{CM} = \overrightarrow{C_{1}C}
+ \frac{1}{2}\left( \overrightarrow{CA} + \overrightarrow{CD}
ight)

    = \overrightarrow{C_{1}C} +
\frac{1}{2}\left( \overrightarrow{C_{1}A_{1}} +
\overrightarrow{C_{1}D_{1}} ight)

    = \overrightarrow{C_{1}C} +
\frac{1}{2}\left( \overrightarrow{C_{1}B_{1}} +
\overrightarrow{C_{1}D_{1}} + \overrightarrow{C_{1}D_{1}}
ight)

    = \overrightarrow{C_{1}C} +
\overrightarrow{C_{1}D_{1}} +
\frac{1}{2}\overrightarrow{C_{1}B_{1}}

  • Câu 10: Thông hiểu
    Tìm đẳng thức sai

    Cho hình hộp ABCD.A_{1}B_{1}C_{1}D_{1}. Chọn đẳng thức sai?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có : \overrightarrow{BA} +
\overrightarrow{DD_{1}} + \overrightarrow{BD_{1}} = \overrightarrow{BA}
+ \overrightarrow{BB_{1}} + \overrightarrow{BD_{1}} =
\overrightarrow{BA_{1}} + \overrightarrow{BD_{1}} eq
\overrightarrow{BC} nên D sai.

    Do \overrightarrow{BC} =
\overrightarrow{B_{1}C_{1}}\overrightarrow{BA} =
\overrightarrow{B_{1}A_{1}} nên \overrightarrow{BC} + \overrightarrow{BA} =
\overrightarrow{B_{1}C_{1}} + \overrightarrow{B_{1}A_{1}}. A đúng

    Do \overrightarrow{AD} +
\overrightarrow{D_{1}C_{1}} + \overrightarrow{D_{1}A_{1}} =
\overrightarrow{AD} + \overrightarrow{D_{1}B_{1}} =
\overrightarrow{A_{1}D_{1}} + \overrightarrow{D_{1}B_{1}} =
\overrightarrow{A_{1}B_{1}} = \overrightarrow{DC} nên

    \overrightarrow{AD} +
\overrightarrow{D_{1}C_{1}} + \overrightarrow{D_{1}A_{1}} =
\overrightarrow{DC} nên B đúng.

    Do \overrightarrow{BC} +
\overrightarrow{BA} + \overrightarrow{BB_{1}} = \overrightarrow{BD} +
\overrightarrow{DD_{1}} = \overrightarrow{BD_{1}} nên C đúng.

  • Câu 11: Nhận biết
    Tìm tọa độ vectơ

    Trong không gian với hệ trục tọa độ Oxyz, cho hai vectơ \overrightarrow{x} = (2;1; - 3);\overrightarrow{y}
= (1;0; - 1). Tìm tọa độ vectơ \overrightarrow{a} = \overrightarrow{x} +
2\overrightarrow{y}?

    Hướng dẫn:

    Ta có: 2\overrightarrow{y} = (2;0; -
2). Khi đó \overrightarrow{a} =
\overrightarrow{x} + 2\overrightarrow{y} = (2 + 2;1 + 0; - 3 - 2) =
(4;1; - 5).

    Vậy \overrightarrow{a} = (4;1; -
5)

  • Câu 12: Nhận biết
    Xác định mệnh đề không chính xác

    Cho tứ diện đều ABCD. Mệnh đề nào sau đây sai?

    Hướng dẫn:

    Vì tứ diện ABCD là tứ diện đều nên có các cặp cạnh đối vuông góc

    Suy ra \overrightarrow{AC}.\overrightarrow{BD} =
\overrightarrow{AD}.\overrightarrow{BC} =
\overrightarrow{AB}.\overrightarrow{CD} =
\overrightarrow{0}

    Vậy mệnh đề chưa chính xác là: \overrightarrow{AD}.\overrightarrow{CD} =
\overrightarrow{AC}.\overrightarrow{DC} =
\overrightarrow{0}.

  • Câu 13: Thông hiểu
    Chọn đẳng thức đúng

    Cho hình hộp ABCD.A'B'C'D' có tâm O. Gọi I là tâm hình bình hành ABCD. Đặt \overrightarrow{AC'} =
\overrightarrow{u},\overrightarrow{CA'} =
\overrightarrow{v}, \overrightarrow{BD'} =
\overrightarrow{x}, \overrightarrow{DB'} =
\overrightarrow{y}. Trong các đẳng thức sau, đẳng thức nào đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    + Gọi J,\ K lần lượt là trung điểm của AB,\ CD.

    +Ta có: 2\overrightarrow{OI} =\overrightarrow{OJ} + \overrightarrow{OK}= \frac{1}{2}\left(\overrightarrow{OA} + \ \overrightarrow{OB} + \overrightarrow{OC} +\overrightarrow{OD} \right)= - \frac{1}{4}(\overrightarrow{u} +\overrightarrow{v} + \ \overrightarrow{x} +\overrightarrow{y})

  • Câu 14: Thông hiểu
    Tìm tích vô hướng hai vectơ

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Tích vô hướng của hai vectơ \overrightarrow{AB}\overrightarrow{A'C'} có giá trị bằng:

    Hướng dẫn:

    Ta có:

    \left(
\overrightarrow{A'C'};\overrightarrow{AB} ight) = \left(
\overrightarrow{AC};\overrightarrow{AB} ight) = \widehat{BAC} =
45^{0}

    \Rightarrow
\overrightarrow{A'C'}.\overrightarrow{AB} = \left|
\overrightarrow{A'C'} ight|.\left| \overrightarrow{AB}
ight|.cos\left( \overrightarrow{A'C'};\overrightarrow{AB}
ight) = a.a.1 = a^{2}

  • Câu 15: Nhận biết
    Chọn phương án thích hợp

    Cho \overrightarrow{a} = \left(
\overrightarrow{i} + \overrightarrow{j} \right) + \left(
\overrightarrow{k} + 2\overrightarrow{j} \right) tọa độ của vec tơ 3\overrightarrow{a}

    Hướng dẫn:

    Ta có:

    \overrightarrow{a} = \left(
\overrightarrow{i} + \overrightarrow{j} ight) + \left(
\overrightarrow{k} + 2\overrightarrow{j} ight) = \overrightarrow{i} +
3\overrightarrow{j} + \overrightarrow{k} nên tọa độ của \overrightarrow{a} = (1;3;1) \Rightarrow
3\overrightarrow{a} = (3;9;3)

  • Câu 16: Vận dụng
    Ghi đáp án đúng vào ô trống

    Khối rubik như hình vẽ có độ dài cạnh bằng 2. Khi gắn rubik vào hệ trục tọa độ trong không gian Oxyz, cho hình lập phương ABCD.A'B'C'D'A(0;0;0), B(2;0;0), D( 0 ; 2 ; 0 ), A'(0;0;2). Gọi M,\ N lần lượt là trung điểm của CD,AA' (xem hình vẽ bên dưới). Biết rằng \cos\lbrack
B,MN,D'brack = m, tính giá trị 14m.

    Đáp án: -10

    Đáp án là:

    Khối rubik như hình vẽ có độ dài cạnh bằng 2. Khi gắn rubik vào hệ trục tọa độ trong không gian Oxyz, cho hình lập phương ABCD.A'B'C'D'A(0;0;0), B(2;0;0), D( 0 ; 2 ; 0 ), A'(0;0;2). Gọi M,\ N lần lượt là trung điểm của CD,AA' (xem hình vẽ bên dưới). Biết rằng \cos\lbrack
B,MN,D'brack = m, tính giá trị 14m.

    Đáp án: -10

    Ta có M,\ N lần lượt là trung điểm của CD,AA', suy ra M(1;\ 2;\ 0),\ N(0;\ 0;\ 1)

    \Rightarrow \overrightarrow{MN} = ( -
1;\  - 2;\ 1)

    \Rightarrow MN:\left\{ \begin{matrix}
x = t \\
y = 2t \\
z = 1 - t \\
\end{matrix} ight.

    Gọi H(t;2t;1 - t);H'(u;2u;1 -
u) thứ tự là hình chiếu của B ; D ' trên MN

    \overrightarrow{BH}(t - 2;2t;1 -
t);\overrightarrow{D'H'}(u;2u - 2; - 1 - u) vuông góc với \overrightarrow{MN} = ( - 1;\  - 2;\
1)

    \Leftrightarrow \left\{ \begin{matrix}
2 - t - 4t + 1 - t = 0 \\
- u - 4u + 4 - 1 - u = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
t = \frac{1}{2} \\
u = \frac{1}{2} \\
\end{matrix} ight.

    \Rightarrow \overrightarrow{BH}\left( -
\frac{3}{2};1;\frac{1}{2} ight);\overrightarrow{D'H'}\left(
\frac{1}{2}; - 1; - \frac{3}{2} ight)

    \Rightarrow \cos\lbrack
B,MN,D'brack = \cos\left(
\overrightarrow{BH},\overrightarrow{D'H'} ight)= \frac{-
\frac{3}{4} - 1 - \frac{3}{4}}{\sqrt{\frac{9}{4} + 1 +
\frac{1}{4}}.\sqrt{\frac{9}{4} + 1 + \frac{1}{4}}} = -
\frac{5}{7}

    \Rightarrow \cos\lbrack
B,MN,D'brack = - \frac{5}{7} = m \Rightarrow 14m = -
10

  • Câu 17: Nhận biết
    Chọn khẳng định sai

    Trong không gian cho tứ diện ABCD, gọi M;N lần lượt là trung điểm của AD;BC. Khẳng định nào sau đây sai?

    Hướng dẫn:

    Hình vẽ minh họa

    M;N lần lượt là trung điểm của AD;BC suy ra \left\{ \begin{matrix}
\overrightarrow{MN} = \frac{1}{2}\left( \overrightarrow{AB} +
\overrightarrow{DC} ight) \\
\overrightarrow{MN} = \frac{1}{2}\left( \overrightarrow{BD} +
\overrightarrow{AC} ight) \\
\end{matrix} ight.

    Xét các phương án như sau:

    \overrightarrow{AB};\overrightarrow{DC};\overrightarrow{MN} đồng phẳng đúng vì \overrightarrow{MN} =
\frac{1}{2}\left( \overrightarrow{AB} + \overrightarrow{DC}
ight)

    \overrightarrow{AB};\overrightarrow{AC};\overrightarrow{MN} không đồng phẳng đúng vì MN không nằm trong (ABC)

    \overrightarrow{AN};\overrightarrow{CM};\overrightarrow{MN} đồng phẳng sai vì AN không nằm trong (MNC)

    \overrightarrow{BD};\overrightarrow{AC};\overrightarrow{MN} đồng phẳng đúng vì \overrightarrow{MN} =
\frac{1}{2}\left( \overrightarrow{BD} + \overrightarrow{AC}
ight).

  • Câu 18: Thông hiểu
    Chọn đáp án đúng

    Trong không gian Oxyz, cho tọa độ ba điểm A(1;2;3),B(2;1;5),C(2;4;2). Góc giữa hai đường thẳng ABAC

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = (1; - 1;2) \\
\overrightarrow{AC} = (1;2; - 1) \\
\end{matrix} ight..

    \Rightarrow \cos\left(
\overrightarrow{AB};\overrightarrow{AC} ight) =
\frac{\overrightarrow{AB}.\overrightarrow{AC}}{\left|
\overrightarrow{AB} ight|.\left| \overrightarrow{AC} ight|} =
\frac{1}{2}

    \Rightarrow \left(
\overrightarrow{AB};\overrightarrow{AC} ight) = (AB;AC) =
60^{0}

  • Câu 19: Vận dụng
    Xác định giá trị biểuthức

    Trong không gian với hệ tọa Oxyz, cho vectơ \overrightarrow{a} = (1; - 2;4), \overrightarrow{b} = \left( x_{0};y_{0};z_{0}
\right) cùng phương với vectơ \overrightarrow{a}. Biết vectơ \overrightarrow{b} tạo với tia Oy một góc nhọn và \left| \overrightarrow{b} \right| =
\sqrt{21}. Giá trị của tổng x_{0} +
y_{0} + z_{0} bằng

    Hướng dẫn:

    Do \overrightarrow{a},\overrightarrow{b} cùng phương và nên ta có \overrightarrow{b}
= k.\overrightarrow{a}(k eq 0) \Rightarrow \left\{ \begin{matrix}
x_{0} = k \\
y_{0} = - 2k \\
z_{0} = 4k \\
\end{matrix} ight..

    Suy ra \frac{x_{0}}{1} = \frac{y_{0}}{-
2} = \frac{z_{0}}{4} = \frac{x_{0} + y_{0} + z_{0}}{3}

    \Rightarrow \left\{ \begin{matrix}
x_{0} = \dfrac{1}{3}\left( x_{0} + y_{0} + z_{0} ight) \\
y_{0} = - \dfrac{2}{3}\left( x_{0} + y_{0} + z_{0} ight) \\
z_{0} = \dfrac{4}{3}\left( x_{0} + y_{0} + z_{0} ight) \\
\end{matrix} ight..

    Theo giả thiết vectơ \overrightarrow{b} tạo với tia Oy một góc nhọn nên \overrightarrow{b}.\overrightarrow{j} >
0 với \overrightarrow{j} =
(0;1;0), do đóy_{0} >
0.

    \frac{y_{0}}{- 2} = \frac{x_{0} +
y_{0} + z_{0}}{3} nên x_{0} + y_{0}
+ z_{0} < 0.

    Lại có \left| \overrightarrow{b} ight|
= \sqrt{21}, suy ra

    \sqrt{x_{0}^{2}
+ y_{0}^{2} + z_{0}^{2}} = \sqrt{\frac{21}{9}\left( x_{0} + y_{0} +
z_{0} ight)^{2}}= \sqrt{21} \Rightarrow \left( x_{0} + y_{0} + z_{0}
ight)^{2} = 9.

    Vậy x_{0} + y_{0} + z_{0} = -
3.

  • Câu 20: Vận dụng
    Tìm giá trị của k

    Gọi M,\ N lần lượt là trung điểm của các cạnh ACBD của tứ diện ABCD. Gọi I là trung điểm đoạn MNP là 1 điểm bất kỳ trong không gian. Tìm giá trị của k thích hợp điền vào đẳng thức vectơ: \overrightarrow{PI} =
k\left( \overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC}
+ \overrightarrow{PD} \right).

    Hướng dẫn:

    Ta có \overrightarrow{PA} +
\overrightarrow{PC} = 2\overrightarrow{PM}, \overrightarrow{PB} + \overrightarrow{PD} =
2\overrightarrow{PN}

    nên \overrightarrow{PA} +
\overrightarrow{PB}\overrightarrow{+ PC} + \overrightarrow{PD} =
2\overrightarrow{PM} + 2\overrightarrow{PN}

    = 2(\overrightarrow{PM} +
\overrightarrow{PN}) = 2.2.\overrightarrow{PI} =
4\overrightarrow{PI}

    Vậy k = \frac{1}{4}

  • Câu 21: Thông hiểu
    Tìm tọa độ điểm N

    Trong không gian với hệ tọa độ Oxyz, cho vectơ \overrightarrow{a} = \left( 2;\frac{1}{3}; - 5
\right) và điểm M(2;3;4). Tọa độ điểm N thỏa mãn \overrightarrow{MN} = \overrightarrow{a} là:

    Hướng dẫn:

    Gọi tọa độ điểm N\left( x_{N};y_{N};z_{N} \right), ta có: \overrightarrow{MN} = \left( x_{N} - 2;y_{N}
- 3;z_{N} - 4 \right).

    Ta có: \overrightarrow{MN} =
\overrightarrow{a} \Leftrightarrow \left\{ \begin{matrix}
x_{N} - 2 = 2 \\
y_{N} - 3 = \frac{1}{3} \\
z_{N} - 4 = - 5 \\
\end{matrix} \right. \Leftrightarrow \left\{ \begin{matrix}
x_{N} = 2 + 2 \\
y_{N} = \frac{1}{3} + 3 \\
z_{N} = - 5 + 4 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x_{N} = 4 \\
y_{N} = \frac{10}{3} \\
z_{N} = - 1 \\
\end{matrix} \right..

    Vậy N\left( 4;\frac{10}{3}; - 1
\right).

  • Câu 22: Nhận biết
    Xác định tọa độ vectơ

    Trong không gian Oxyz, cho \overrightarrow{a} = 2\overrightarrow{i} +
\overrightarrow{k} - 3\overrightarrow{j}. Tọa độ vectơ \overrightarrow{a} là:

    Hướng dẫn:

    Ta có: \overrightarrow{i} =
(1;0;0);\overrightarrow{j} = (0;1;0);\overrightarrow{k} =
(0;0;1)

    Theo bài ra ta có: \overrightarrow{a} =
2\overrightarrow{i} + \overrightarrow{k} - 3\overrightarrow{j} suy ra tọa độ vectơ \overrightarrow{a} = (2;
- 3;1).

  • Câu 23: Vận dụng
    Xác định vị trí điểm M

    Trong không gian cho tam giác ABC. Tìm M sao cho giá trị của biểu thức P = MA^{2} + MB^{2} + MC^{2} đạt giá trị nhỏ nhất?

    Hướng dẫn:

    Gọi G là trọng tâm tam giác ABC

    Suy ra G cố định và \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} =
\overrightarrow{0}

    P = MA^{2} + MB^{2} +
MC^{2}

    P = \left( \overrightarrow{MG} +
\overrightarrow{GA} ight)^{2} + \left( \overrightarrow{MG} +
\overrightarrow{GB} ight)^{2} + \left( \overrightarrow{MG} +
\overrightarrow{GC} ight)^{2}

    P = 3{\overrightarrow{MG}}^{2} +
2\overrightarrow{MG}.\left( \overrightarrow{GA} + \overrightarrow{GB} +
\overrightarrow{GC} ight)^{2} + GA^{2} + GB^{2} + GC^{2}

    P = 3MG^{2} + GA^{2} + GB^{2} + GC^{2}
\geq GA^{2} + GB^{2} + GC^{2}

    Dấu “=” xảy ra khi M \equiv
G

    Vậy P_{\min} = GA^{2} + GB^{2} +
GC^{2} với M \equiv G là trọng tâm tam giác ABC.

  • Câu 24: Vận dụng
    Tính giá trị của biểu thức

    Trong không gian Oxyz, cho A(1;0;0),\ \ B(0;2;0);M(x - 1;2y - 2;7). Gọi M' là hình chiếu của M trên mặt phẳng (Oxy). Khi tứ giác OBM'A là hình bình hành thì giá trị x + y bằng?

    Hướng dẫn:

    M' là hình chiếu của M trên mặt phẳng (Oxy) \Rightarrow M'(x - 1;2y -
2;0).

    OBM'A là hình bình hành

    \Leftrightarrow \overrightarrow{OB} =
\overrightarrow{AM'} \Leftrightarrow \left\{ \begin{matrix}
0 = x - 2 \\
2 = 2y - 2 \\
0 = 0 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 2 \\
\end{matrix} \right..

    Vậy x + y = 4.

  • Câu 25: Thông hiểu
    Chọn phương án đúng

    Không gian với trục hệ tọa độ Oxyz, cho \overrightarrow{a} = 2\overrightarrow{j} -
\overrightarrow{i} + 3\overrightarrow{k}. Tọa độ của vectơ \overrightarrow{a} là:

    Hướng dẫn:

    Theo bài ra ta có: \overrightarrow{a} = -
\overrightarrow{i} + 2\overrightarrow{j} + 3\overrightarrow{k}
\Rightarrow \overrightarrow{a} = ( - 1;2;3)

    Vậy \overrightarrow{a} = ( -
1;2;3)

  • Câu 26: Thông hiểu
    Chọn khẳng định đúng

    Biết \overrightarrow{c} =
(x;y;z) khác \overrightarrow{0} và vuông góc với cả hai vectơ \overrightarrow{a} =
(1;3;4);\overrightarrow{b} = ( - 1;2;3). Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Theo đề bài ta có: \overrightarrow{c} =
(x;y;z) khác \overrightarrow{0} và vuông góc với cả hai vectơ \overrightarrow{a} =
(1;3;4);\overrightarrow{b} = ( - 1;2;3) nên

    \left\{ \begin{matrix}
\overrightarrow{a}.\overrightarrow{c} = 0 \\
\overrightarrow{b}.\overrightarrow{c} = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x + 3y + 4z = 0 \\
- x + 2y + 3z = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x + 3y + 4z = 0 \\5y + 7z = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x + 3y + 4.\dfrac{- 5}{7}y = 0 \\z = - \dfrac{5}{7}y \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
7x + y = 0 \\
5y + 7z = 0 \\
\end{matrix} ight.

    Vậy khẳng định đúng là 7x + y =
0

  • Câu 27: Nhận biết
    Tìm tọa độ tổng hai vectơ

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u} = (1; -
4;0);\overrightarrow{v} = ( - 1; - 2;1). Tìm tọa độ vectơ \overrightarrow{u} +
3\overrightarrow{v}?

    Hướng dẫn:

    Ta có: 3\overrightarrow{v} = ( - 3; -
6;3) do đó \overrightarrow{u} +
3\overrightarrow{v} = ( - 2; - 10;3)

    Vậy đáp án cần tìm là ( - 2; -
10;3).

  • Câu 28: Vận dụng
    Tìm tọa độ điểm D

    Trong không gian vói hệ trục tọa độ Oxyz, cho hình thang cân ABCD có hai đáy AB, CD thỏa mãn CD = 2AB và diện tích bằng 27, đỉnh A( -
1; - 1;0), phương trình đường thẳng chứa cạnh CD\frac{x
- 2}{2} = \frac{y + 1}{2} = \frac{z - 3}{1} . Tìm tọa độ điểm D biết hoành độ điểm B lớn hơn hoành độ điểm A .

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi điểm H là hình chiếu vuông góc của A lên đường thẳng CD.

    Khi đó H(2 + 2t; - 1 + 2t;3 + t)
\Rightarrow \overrightarrow{AH}(3 + 2t;2t;3 + t) .

    Đường thẳng CDcó vtcp là: \overrightarrow{u}(2;2;1). Ta có:

    \overrightarrow{AH}\bot\overrightarrow{u}
\Rightarrow \overrightarrow{AH}.\overrightarrow{u} = 0 \Rightarrow 2(3 +
2t) + 2.2t + 3 + t = 0 \Leftrightarrow t = - 1 \Rightarrow H(0; - 3;2)
\Rightarrow AH = 3.

    Đường thẳng AB đi qua A và song song với CD \Rightarrow phương trình ABlà: \frac{x
+ 1}{2} = \frac{y + 1}{2} = \frac{z}{1}

    B \in AB \Rightarrow B( - 1 + 2a; - 1 +
2a;a) \Rightarrow AB = 3|a| \Rightarrow CD = 6|a|

    Theo bài ra ta có: S_{ABCD} = \frac{AB +
CD}{2}.AH\Leftrightarrow \frac{3|a| + 6|a|}{2}.3 = 27\Leftrightarrow
|a| = 2 \Leftrightarrow \left\lbrack \begin{matrix}
a = 2 \\
a = - 2 \\
\end{matrix} ight.

    Với a = - 2 \Rightarrow B( - 5; - 5; -
2) . Với a = 2 \Rightarrow B(3;3; -
2)

    Ta có: \overrightarrow{DH} =
2\overrightarrow{AB} \Rightarrow D( - 2; - 5;1)

  • Câu 29: Thông hiểu
    Tìm tọa độ điểm D

    Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(3; - 4;0),B( - 1;1;3),C(3;1;0). Xác định tọa độ điểm D \in Ox sao cho AD = BC?

    Hướng dẫn:

    Ta có: D(x;0;0) \in Ox

    AD = BC \Leftrightarrow \sqrt{(x -
3)^{2} + 16} = 5

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \Rightarrow D(0;0;0) \\
x = 6 \Rightarrow D(6;0;0) \\
\end{matrix} ight.

    Vậy đáp án cần tìm là: D(0;0;0) hoặc D(6;0;0)

  • Câu 30: Vận dụng cao
    Ghi đáp án vào ô trống

    Cho tứ diện ABCDAB;AC;AD đôi một vuông góc với nhau. Cho điểm M thay đổi trong không gian. Giá trị nhỏ nhất của biểu thức P =\sqrt{3}MA + MB + MC + MD?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho tứ diện ABCDAB;AC;AD đôi một vuông góc với nhau. Cho điểm M thay đổi trong không gian. Giá trị nhỏ nhất của biểu thức P =\sqrt{3}MA + MB + MC + MD?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 31: Nhận biết
    Chọn đáp án đúng

    Trong không gian Oxyz, mặt phẳng (\alpha):x - y + 2z - 3 = 0 đi qua điểm nào sau đây?

    Hướng dẫn:

    Xét điểm \left( 1;1;\frac{3}{2}
ight) ta có: 1 - 1 +
2.\frac{3}{2} - 3 = 0 đúng nên \left( 1;1;\frac{3}{2} ight) \in
(\alpha).

  • Câu 32: Nhận biết
    Tính góc giữa hai vectơ

    Cho hình lập phương ABCD.EFGH. Hãy xác định góc giữa cặp vectơ \overrightarrow{AB}\overrightarrow{DH}?

    Hướng dẫn:

    Hình vẽ minh họa

    \overrightarrow{DH} =
\overrightarrow{AE} (ADHE là hình vuông) nên \left(
\overrightarrow{AB};\overrightarrow{DH} ight) = \left(
\overrightarrow{AB};\overrightarrow{AE} ight) = \widehat{BAE} =
90^{0}

  • Câu 33: Nhận biết
    Xác định số vectơ thỏa mãn yêu cầu

    Cho bốn điểm A;B;C;D trong không gian. Hỏi có bao nhiêu vectơ khác \overrightarrow{0} có điểm đầu và điểm cuối là 4 điểm?

    Hướng dẫn:

    Lấy A làm gốc ta được 3 vectơ \overrightarrow{AB};\overrightarrow{AC};\overrightarrow{AD}. Tương tự đối với B;C;D ta được 4.3 = 12 vectơ.

  • Câu 34: Nhận biết
    Tính tích vô hướng

    Cho hai véc tơ \overrightarrow{a} = (1; -
2;3), \overrightarrow{b} = ( -
2;1;2). Khi đó, tích vô hướng \left( \overrightarrow{a} + \overrightarrow{b}
\right).\overrightarrow{b} bằng

    Hướng dẫn:

    Ta có:

    \overrightarrow{a} + \overrightarrow{b} =
( - 1; - 1;5)

    \Rightarrow \left(
\overrightarrow{a} + \overrightarrow{b} ight).\overrightarrow{b} = -
1.( - 2) + ( - 1).1 + 5.2 = 11.

  • Câu 35: Thông hiểu
    Tìm tất cả các giá trị m thỏa mãn yêu cầu

    Trong không gian Oxyz, cho các vectơ \overrightarrow{u} =2\overrightarrow{i} - 2\overrightarrow{j} + \overrightarrow{k}\overrightarrow{v} = (m;2;m + 1) (với m là tham số thực). Có bao nhiêu giá trị của m để \left| \overrightarrow{u} ight| = \left|\overrightarrow{v} ight|?

    Hướng dẫn:

    Ta có: \overrightarrow{u} = (2; -2;1)

    Khi đó \left\{ \begin{matrix}\left| \overrightarrow{u} ight| = \sqrt{2^{2} + ( - 2)^{2} + 1^{2}} =3 \\\left| \overrightarrow{v} ight| = \sqrt{m^{2} + 2^{2} + (m + 1)^{2}} =\sqrt{2m^{2} + 2m + 5} \\\end{matrix} ight.

    Do đó \left| \overrightarrow{u} ight| =\left| \overrightarrow{v} ight| \Leftrightarrow 9 = 2m^{2} + 2m +5

    \Leftrightarrow m^{2} + m - 2 = 0\Leftrightarrow \left\lbrack \begin{matrix}m = 1 \\m = - 2 \\\end{matrix} ight.

    Vậy có 2 giá trị tham số m thỏa mãn yêu cầu bài toán.

  • Câu 36: Thông hiểu
    Tìm tọa độ vectơ

    Trong không gian với hệ trục tọa độ Oxyz cho vectơ \overrightarrow{a} = 6.\overrightarrow{i} +
8.\overrightarrow{k} + 7.\overrightarrow{j}. Khi đó tọa độ của \overrightarrow{a} là.

    Hướng dẫn:

    Do \overrightarrow{a} =
6\overrightarrow{i} + 8\overrightarrow{k} + 7\overrightarrow{j} =
6\overrightarrow{i} + 7\overrightarrow{j} + 8\overrightarrow{k}
\Rightarrow \overrightarrow{a} = (6;\ 7;\ 8).

  • Câu 37: Vận dụng cao
    Tìm tọa độ điểm M thỏa mãn điều kiện

    Trong không gian Oxyz, cho \overrightarrow{OA} = \overrightarrow{i} +
\overrightarrow{j} - 3\overrightarrow{k}, B(2;2;1). Tìm tọa độ điểm M thuộc trục tung sao cho MA^{2} + MB^{2} nhỏ nhất.

    Hướng dẫn:

    Khi đó:

    MA^{2} + MB^{2} =
{\overrightarrow{MA}}^{2} + {\overrightarrow{MB}}^{2}

    = \left( \overrightarrow{MI} +
\overrightarrow{IA} ight)^{2} + \left( \overrightarrow{MI} +
\overrightarrow{IB} ight)^{2}

    = 2{\overrightarrow{MI}}^{2} +
{\overrightarrow{IA}}^{2} + {\overrightarrow{IB}}^{2} +
2\overrightarrow{MI}.\left( \overrightarrow{IA} + \overrightarrow{IB}
ight)

    = 2MI^{2} + IA^{2} + IB^{2} = 2MI^{2} +
9.

    Do đó MA^{2} + MB^{2} đạt giá trị nhỏ nhất khi và chỉ khi MI có độ dài ngắn nhất, điều này xảy ra khi và chỉ khi M là hình chiếu vuông góc của I trên trục tung.

    Phương trình mặt phẳng (P) đi qua I và vuông góc với trục tung là

    0.\left( x - \frac{3}{2} ight) +
1.\left( y - \frac{3}{2} ight) + 0.(z + 1) = 0 hay (P):y - \frac{3}{2} = 0.

    Phương trình tham số của trục tung là \left\{ \begin{matrix}
x = 0 \\
y = t \\
z = 0 \\
\end{matrix} ight..

    Tọa độ điểm M cần tìm là nghiệm (x\ ;y\ ;z) của hệ phương trình:

    \left\{ \begin{matrix}
x = 0 \\
y = t \\
z = 0 \\
y - \frac{3}{2} = 0 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
x = 0 \\
y = \frac{3}{2} \\
z = 0 \\
\end{matrix} ight..

    Vậy M\left( 0\ ;\frac{3}{2}\ ;0
ight).

  • Câu 38: Thông hiểu
    Tìm khẳng định sai

    Cho hình hộp ABCD.A'B'C'D'. Khẳng định nào dưới đây là sai?

    Hướng dẫn:

    Theo quy tắc hình hộp ta có:

    \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'} =
\overrightarrow{AC}

    Vậy đáp án sai là: \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{A'A} =
\overrightarrow{AC}.

  • Câu 39: Thông hiểu
    Tìm khẳng định sai

    Cho tứ diện ABCD. Trên các cạnh AD;BC lần lượt lấy các điểm M;N sao cho AM = 3MD;BN = 3NC. Gọi P;Q lần lượt là trung điểm của AD;BC. Khẳng định nào sau đây sai?

    Hướng dẫn:

    Hình vẽ minh họa

    M;N lần lượt là trung điểm của PD;QC

    \overrightarrow{BD};\overrightarrow{AC};\overrightarrow{MN} đồng phẳng sai vì \left\{ \begin{matrix}
\overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{AC} +
\overrightarrow{CN} \\
\overrightarrow{MN} = \overrightarrow{MD} + \overrightarrow{DB} +
\overrightarrow{BN} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{AC} +
\overrightarrow{CN} \\
3\overrightarrow{MN} = 3\overrightarrow{MD} + 3\overrightarrow{DB} +
3\overrightarrow{BN} \\
\end{matrix} ight.

    \Rightarrow 4\overrightarrow{MN} =
\overrightarrow{AC} - 3\overrightarrow{DB} +
\frac{1}{2}\overrightarrow{BC} suy ra \overrightarrow{BD};\overrightarrow{AC};\overrightarrow{MN} không đồng phẳng.

  • Câu 40: Nhận biết
    Chọn đáp án đúng

    Trong không gian Oxyz, hình chiếu vuông góc của điểm A(8;1;2) trên trục Ox có tọa độ là

    Hướng dẫn:

    Hình chiếu vuông góc của điểm A(8;1;2) trên trục Ox (8;0;0).

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (32%):
    2/3
  • Thông hiểu (42%):
    2/3
  • Vận dụng (20%):
    2/3
  • Vận dụng cao (5%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo