Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 2 Tọa độ của vectơ trong không gian

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 40 câu
  • Điểm số bài kiểm tra: 40 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Tính giá trị của biểu thức

    Trong không gian Oxyz, cho ba điểm A(3;5; - 1),\ \ B(7;x;1)C(9;2;y). Để A,\ \ B,\ \ C thẳng hàng thì giá trị x + y bằng

    Hướng dẫn:

    Ta có \overrightarrow{AB} = (4;x - 5;2),\
\ \overrightarrow{AC} = (6; - 3;y + 1)

    A,\ \ B,\ \ C thẳng hàng khi \overrightarrow{AB},\ \
\overrightarrow{AC} cùng phương

    \Leftrightarrow \frac{4}{6} = \frac{x -
5}{- 3} = \frac{2}{y + 1} \Leftrightarrow \left\{ \begin{matrix}
6(x - 5) = - 12 \\
4(y + 1) = 12 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x = 3 \\
y = 2 \\
\end{matrix} \right.

    Vậy x+y=5

  • Câu 2: Thông hiểu
    Tìm tọa độ vecto

    Trong không gian với hệ tọa độ Oxyz, cho hai vectơ \overrightarrow{u} = (2;0; - 3)\overrightarrow{v} = (0;2; - 1). Tìm tọa độ của vectơ \overrightarrow{a} =
\overrightarrow{u} + 2\overrightarrow{v}.

    Hướng dẫn:

    Ta có:

    \overrightarrow{a} = \overrightarrow{u}
+ 2\overrightarrow{v} = (2;0; - 3) + 2.(0;2; - 1)

    = (2 + 0;0 + 2.2; - 3 + 2.( - 1)) =
(2;4; - 5)

  • Câu 3: Thông hiểu
    Xác định tọa độ vectơ

    Trong không gian Oxyz, véctơ \overrightarrow{u} vuông góc với hai véctơ \overrightarrow{a} = (1 ; 1 ;1) và \overrightarrow{b} = (1\ ; -
1\ ;3); đồng thời \overrightarrow{u} tạo với tia Oz một góc tù và độ dài véctơ \overrightarrow{u} bằng 3. Tìm véctơ \overrightarrow{u}.

    Hướng dẫn:

    Ta có \overrightarrow{a}\overrightarrow{b} không cùng phương đồng thời

    \left\{ \begin{matrix}
\overrightarrow{\mathbf{u}}\mathbf{\bot}\overrightarrow{\mathbf{a}} \\
\overrightarrow{\mathbf{u}}\mathbf{\bot}\overrightarrow{\mathbf{b}} \\
\end{matrix} ight.\mathbf{\Rightarrow}\overrightarrow{\mathbf{u}}\mathbf{\
}\mathbf{//}\mathbf{\ }\left\lbrack \overrightarrow{\mathbf{a}}\mathbf{\
}\mathbf{,}\mathbf{\ }\overrightarrow{\mathbf{b}}
ightbrack\mathbf{=}\left( \mathbf{4}\mathbf{\
}\mathbf{;}\mathbf{\  -}\mathbf{2}\mathbf{\
}\mathbf{;}\mathbf{\  -}\mathbf{2}
ight)\mathbf{\Rightarrow}\overrightarrow{\mathbf{u}}\mathbf{=}\left(
\mathbf{2}\mathbf{k\ }\mathbf{;}\mathbf{\  - k\ }\mathbf{;}\mathbf{\  -
k} ight).

    Do \left| \overrightarrow{u} ight| = 3\Leftrightarrow \sqrt{4k^{2} + k^{2} + k^{2}} = 3\Leftrightarrow k =\pm \frac{\sqrt{6}}{2}.

    Mặt khác \overrightarrow{u} tạo với tia Oz một góc tù nên

    \cos\left(
\overrightarrow{u},\overrightarrow{k} ight) < 0 \Leftrightarrow
\overrightarrow{u}.\overrightarrow{k} < 0\Leftrightarrow 2k.0 + ( -
k).1 < 0 \Leftrightarrow ( - k).1 < 0 \Leftrightarrow k >
0.

    Suy ra k =
\frac{\sqrt{6}}{2}.

    Vậy \overrightarrow{u} = \left( \sqrt{6}\
;\  - \frac{\sqrt{6}}{2}\ ;\ \frac{\sqrt{6}}{2} ight).

  • Câu 4: Nhận biết
    Chọn đáp án sai

    Tính chất nào sau đây sai?

    Hướng dẫn:

    Tính chất sai là: \overrightarrow{a} -
\overrightarrow{b} = \overrightarrow{b} -
\overrightarrow{a}

  • Câu 5: Nhận biết
    Chọn mệnh đề đúng

    Trong không gian Oxyz, cho \overrightarrow{u} = (1;2;0). Tọa độ vectơ \overrightarrow{u} là:

    Hướng dẫn:

    Ta có: \overrightarrow{i} =(1;0;0);\overrightarrow{j} = (0;1;0);\overrightarrow{k} =(0;0;1)

    \overrightarrow{u} = x\overrightarrow{i}+ y\overrightarrow{j} + z\overrightarrow{k} \Leftrightarrow\overrightarrow{u} = (x;y;z)

    Suy ra \overrightarrow{u} = (1;2;0)\Leftrightarrow \overrightarrow{u} = \overrightarrow{i} +2\overrightarrow{j}

  • Câu 6: Thông hiểu
    Tìm tọa độ trọng tâm tam giác

    Cho tam giác ABCA(2;4;5),B( - 1;2;3),C(5;1;2). Tọa độ của trọng tâm G của tam giác ABC là:

    Hướng dẫn:

    Với G là trọng tâm tam giác ABC:

    \left\{ \begin{matrix}
x_{G} = \dfrac{x_{A} + x_{B} + x_{c}}{3} = 2 \\
y_{G} = \dfrac{y_{A} + y_{B} + y_{c}}{3} = \dfrac{7}{3} \\
z_{G} = \dfrac{z_{A} + z_{B} + z_{c}}{3} = \dfrac{10}{3} \\
\end{matrix} ight.\  \Rightarrow G\left( 2;\dfrac{7}{3};\dfrac{10}{3}
ight)

    Vậy tọa độ trọng tâm tam giác có tọa độ là \left( 2;\frac{7}{3};\frac{10}{3}
ight).

  • Câu 7: Nhận biết
    Xác định tọa độ vectơ

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u} = ( - 1;\ 2;\
0)\overrightarrow{v} = (1;\  -
2;\ 3). Toạ độ của vectơ \overrightarrow{u} + \overrightarrow{v} là:

    Hướng dẫn:

    Ta có \overrightarrow{u} +
\overrightarrow{v} = ( - 1 + 1;\ 2 - 2;\ 0 + 3) = (0;\ 0;\
3).

  • Câu 8: Nhận biết
    Chọn đáp án chính xác

    Trong không gian, cho hai vectơ \overrightarrow{AB}\overrightarrow{BC}. Vectơ \overrightarrow{AC} bằng

    Hướng dẫn:

    Theo quy tắc ba điểm: \overrightarrow{AC}\  = \ \overrightarrow{\
AB}\  + \ \overrightarrow{BC}.

  • Câu 9: Vận dụng cao
    Tìm giá trị nhỏ nhất của biểu thức

    Cho hình chóp S.ABCSA = a,SB = b,SC = c. Một mặt phẳng (\alpha) luôn đi qua trọng tâm của tam giác ABC, cắt các cạnh SA,SB,SC lần lượt tại A',B',C'. Tìm giá trị nhỏ nhất của \frac{1}{SA'^{2}} +
\frac{1}{SB'^{2}} + \frac{1}{SC'^{2}}.

    Hướng dẫn:

    Gọi G là trọng tâm của tam giác ABC. Ta có 3\overrightarrow{SG} = \overrightarrow{SA} +
\overrightarrow{SB} + \overrightarrow{SC}

    =
\frac{SA}{SA'}\overrightarrow{SA'} +
\frac{SB}{SB'}\overrightarrow{SB'} +
\frac{SC}{SC'}\overrightarrow{SC'}.

    G,A',B',C' đồng phẳng nên \frac{SA}{SA'} +\frac{SB}{SB'} + \frac{SC}{SC'} = 3\Leftrightarrow\frac{a}{SA'} + \frac{b}{SB'} + \frac{c}{SC'} =3

    Theo BĐT Cauchy schwarz:

    Ta có \left( \frac{1}{SA'^{2}} +
\frac{1}{SB'^{2}} + \frac{1}{SC'^{2}} \right)\left( a^{2} +
b^{2} + c^{2} \right) \geq \left( \frac{a}{SA'} + \frac{b}{SB'}
+ \frac{c}{SC'} \right)^{2}

    \Leftrightarrow \frac{1}{SA'^{2}} +
\frac{1}{SB'^{2}} + \frac{1}{SC'^{2}} \geq \frac{9}{a^{2} +
b^{2} + c^{2}}.

    Đẳng thức xảy ra khi

    \frac{1}{aSA'} = \frac{1}{bSB'} =
\frac{1}{cSC'} kết hợp với \frac{a}{SA'} + \frac{b}{SB'} +
\frac{c}{SC'} = 3 ta được;

    SA' = \frac{a^{2} + b^{2} + c^{2}}{3a},SB'
= \frac{a^{2} + b^{2} + c^{2}}{3b},SC' = \frac{a^{2} + b^{2} +
c^{2}}{3c}.

    Vậy GTNN của \frac{1}{SA'^{2}} +
\frac{1}{SB'^{2}} + \frac{1}{SC'^{2}}\frac{9}{a^{2} + b^{2} + c^{2}}.

  • Câu 10: Thông hiểu
    Chọn đáp án đúng

    Cho tứ diện ABCD. Gọi M;N lần lượt là trung điểm của các cạnh AB;CD. Tìm giá trị thực của k thỏa mãn đẳng thức vectơ \overrightarrow{MN} = k.\left( \overrightarrow{AC}
+ \overrightarrow{BD} ight)?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có N là trung điểm của CD nên \overrightarrow{MC} + \overrightarrow{MD} =
2\overrightarrow{MN}

    M là trung điểm của AB nên \overrightarrow{MA} + \overrightarrow{MB} =
\overrightarrow{0}

    Suy ra \overrightarrow{MN} =
\frac{1}{2}.\left( \overrightarrow{MC} + \overrightarrow{MD}
ight)

    = \frac{1}{2}.\left( \overrightarrow{MA}
+ \overrightarrow{AC} + \overrightarrow{MB} + \overrightarrow{BD}
ight)

    = \frac{1}{2}.\left( \overrightarrow{AC}
+ \overrightarrow{BD} ight)

    \Rightarrow \overrightarrow{MN} =
\frac{1}{2}.\left( \overrightarrow{AC} + \overrightarrow{BD} ight)
\Rightarrow k = \frac{1}{2}

  • Câu 11: Vận dụng
    Ghi đáp án vào chỗ trống

    Khi chuyển động trong không gian, máy bay luôn chịu tác động của 4 lực chính: lực đẩy của động cơ, lực cản của không khí, trọng lực và lực nâng khí động học.

    Lực cản của không khí ngược hướng với lực đẩy của động cơ và có độ lớn tỉ lệ thuận với bình phương vận tốc máy bay. Một chiếc máy bay tăng vận tốc từ 900(km/h) lên 920(km/h), trong quá trình tăng tốc máy bay giữ nguyên hướng bay. Lực cản của không khí khi máy bay đạt vận tốc 900(km/h)920(km/h) lần lượt biểu diễn bởi hai vectơ \overrightarrow{F_{1}}\overrightarrow{F_{2}} với \overrightarrow{F_{1}} =k.\overrightarrow{F_{2}};\left( k\mathbb{\in R};k > 0ight). Tính giá trị của k (Làm tròn kết quả đến chữ số thập phân thứ hai).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Khi chuyển động trong không gian, máy bay luôn chịu tác động của 4 lực chính: lực đẩy của động cơ, lực cản của không khí, trọng lực và lực nâng khí động học.

    Lực cản của không khí ngược hướng với lực đẩy của động cơ và có độ lớn tỉ lệ thuận với bình phương vận tốc máy bay. Một chiếc máy bay tăng vận tốc từ 900(km/h) lên 920(km/h), trong quá trình tăng tốc máy bay giữ nguyên hướng bay. Lực cản của không khí khi máy bay đạt vận tốc 900(km/h)920(km/h) lần lượt biểu diễn bởi hai vectơ \overrightarrow{F_{1}}\overrightarrow{F_{2}} với \overrightarrow{F_{1}} =k.\overrightarrow{F_{2}};\left( k\mathbb{\in R};k > 0ight). Tính giá trị của k (Làm tròn kết quả đến chữ số thập phân thứ hai).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 12: Nhận biết
    Tìm tọa độ điểm M

    Trong không gian Oxyz, cho điểm M thỏa mãn \overrightarrow{MO} = 3\overrightarrow{k} -
2\overrightarrow{i} + 4\overrightarrow{j}. Tọa độ điểm M bằng

    Hướng dẫn:

    Ta có: \overrightarrow{MO} =3 \overrightarrow{k} - 2\overrightarrow{i} + 4\overrightarrow{j}\Rightarrow M(2; - 4; - 3)

     

  • Câu 13: Nhận biết
    Chọn khẳng định chưa chính xác

    Cho ba vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c}. Điều kiện nào sau đây không kết luận được ba vectơ đó đồng phẳng?

    Hướng dẫn:

    Hai vectơ còn lại có thể không cùng phương nên ba vectơ có thể không đồng phẳng.

  • Câu 14: Nhận biết
    Tính cosin góc giữa hai vectơ

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{a} = ( -
3;4;0)\overrightarrow{b} =
(5;0;12). Tính \cos\left(
\overrightarrow{a};\overrightarrow{b} ight)?

    Hướng dẫn:

    Ta có: \cos\left(
\overrightarrow{a};\overrightarrow{b} ight) =
\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|} = \frac{- 15}{\sqrt{( -
3)^{2} + 4^{2} + 0^{2}}.\sqrt{5^{2} + 0^{2} + 12^{2}}} = -
\frac{3}{13}

  • Câu 15: Nhận biết
    Chọn đáp án đúng

    Cho tứ diện ABCD với AB\bot AC,\ \ AB\bot BD. Gọi P,\ \ Q lần lượt là trung điểm của ABCD. Góc giữa PQAB là?

    Hướng dẫn:

    Ta có: \overrightarrow{AB}.\overrightarrow{PQ}
\Rightarrow AB\bot PQ

    Vậy góc giữa PQAB90^{0}.

  • Câu 16: Vận dụng
    Ghi đáp án vào ô trống

    Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A( - 2;3;1),B(2;1;0),C( - 3; - 1;1). Tìm tất cả các điểm D sao cho ABCD là hình thang có đáy AD và tam giác ABC bằng \frac{1}{3} diện tích tứ giác ABCD?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A( - 2;3;1),B(2;1;0),C( - 3; - 1;1). Tìm tất cả các điểm D sao cho ABCD là hình thang có đáy AD và tam giác ABC bằng \frac{1}{3} diện tích tứ giác ABCD?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 17: Vận dụng
    Tìm tọa độ điểm D

    Trong không gian vói hệ trục tọa độ Oxyz, cho hình thang cân ABCD có hai đáy AB, CD thỏa mãn CD = 2AB và diện tích bằng 27, đỉnh A( -
1; - 1;0), phương trình đường thẳng chứa cạnh CD\frac{x
- 2}{2} = \frac{y + 1}{2} = \frac{z - 3}{1} . Tìm tọa độ điểm D biết x_{B} > x_{A}.

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi điểm H là hình chiếu vuông góc của A lên đường thẳng CD.

    Khi đó H(2 + 2t; - 1 + 2t;3 + t)\Rightarrow \overrightarrow{AH} = (3 + 2t;2t;3 + t) .

    Đường thẳng CD có vtcp là: \overrightarrow{u}(2;2;1).

    Ta có:

    \overrightarrow{AH}\bot\overrightarrow{u}
\Rightarrow \overrightarrow{AH}.\overrightarrow{u} = 0

    \Rightarrow 2(3 + 2t) + 2.2t + 3 + t = 0

    \Leftrightarrow t = - 1 \Rightarrow H(0; -
3;2) \Rightarrow AH = 3.

    Đường thẳng AB đi qua A và song song với CD \Rightarrow phương trình ABlà: \frac{x
+ 1}{2} = \frac{y + 1}{2} = \frac{z}{1}

    B \in AB \Rightarrow B( - 1 + 2a; - 1 +
2a;a) \Rightarrow AB = 3|a|
\Rightarrow CD = 6|a|

    Theo bài ra ta có:

    S_{ABCD} = \frac{AB +
CD}{2}.AH\Leftrightarrow \frac{3|a| + 6|a|}{2}.3 =
27 \Leftrightarrow |a| = 2
\Leftrightarrow \left\lbrack \begin{matrix}
a = 2 \\
a = - 2 \\
\end{matrix} ight.

    Với a = - 2 \Rightarrow B( - 5; - 5; -
2) .

    Với a = 2 \Rightarrow B(3;3; -
2)

    Ta có: \overrightarrow{DH} =
\frac{1}{2}\overrightarrow{AB} \Rightarrow D( - 2; - 5;1)

  • Câu 18: Thông hiểu
    Xác định góc giữa hai vectơ

    Cho tứ diện ABCDAB = AC = AD\widehat{BAC} = \widehat{BAD} = 60^{0}. Hãy xác định góc giữa cặp vectơ \overrightarrow{AB}\overrightarrow{CD}?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: \overrightarrow{AB}.\overrightarrow{CD} =
\overrightarrow{AB}.\left( \overrightarrow{AD} - \overrightarrow{AC}
ight) = \overrightarrow{AB}.\overrightarrow{AD} -
\overrightarrow{AB}.\overrightarrow{AC}

    = \left| \overrightarrow{AB}ight|.\left| \overrightarrow{AD} ight|.\cos\left(\overrightarrow{AB};\overrightarrow{AD} ight) - \left|\overrightarrow{AB} ight|.\left| \overrightarrow{AC} ight|.\cos\left(\overrightarrow{AB};\overrightarrow{AC} ight)

    = \left| \overrightarrow{AB}ight|.\left| \overrightarrow{AD} ight|.\cos60^{0} - \left|\overrightarrow{AB} ight|.\left| \overrightarrow{AC}ight|.\cos60^{0}

    AC = AD \Rightarrow
\overrightarrow{AB}.\overrightarrow{CD} = 0 \Rightarrow \left(
\overrightarrow{AB};\overrightarrow{CD} ight) = 90^{0}

  • Câu 19: Thông hiểu
    Tìm tọa độ vecto

    Trong không gian tọa độ Oxyz, cho ba vectơ \overrightarrow{a} = (2; - 1;3),\overrightarrow{b}
= (1; - 3;2),\overrightarrow{c} = (3;2; - 4). Gọi \overrightarrow{x} là vectơ thoả mãn: \left\{ \begin{matrix}
\overrightarrow{x}.\overrightarrow{a} = - 5 \\
\overrightarrow{x}.\overrightarrow{b} = - 11 \\
\overrightarrow{x}.\overrightarrow{c} = 20 \\
\end{matrix} ight.. Tọa độ của vectơ \overrightarrow{x} là:

    Gợi ý:

    Áp dụng công thức tính tích vô hướng của hai vectơ để lập hệ phương trình.

    Hướng dẫn:

    Đặt \overrightarrow{x} =
(a;b;c).

    Ta có: \left\{ \begin{matrix}\overrightarrow{x}.\overrightarrow{a} = - 5 \\\overrightarrow{x}.\overrightarrow{b} = - 11 \\\overrightarrow{x}.\overrightarrow{c} = 20 \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}2a - b + 3c = - 5 \\a - 3b + 2c = - 11 \\3a + 2b - 4c = 20 \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}a = 2 \\b = 3 \\c = - 2 \\\end{matrix} ight.\  ight.\  ight.

    Vậy \overrightarrow{x} = (2;3; -
2).

  • Câu 20: Nhận biết
    Tính tích vô hướng của hai vecto

    Trong không gian với hệ tọa độ Oxyz, cho vectơ \overrightarrow{u} = (3\ ;\ 0\ ;\ 1)\overrightarrow{v} = (2\ ;\ 1\ ;\
0). Tính tích vô hướng \overrightarrow{u}.\overrightarrow{v}.

    Hướng dẫn:

    Ta có \overrightarrow{u}.\overrightarrow{v} = 3.2 + 0.1
+ 1.0 = 6.

  • Câu 21: Nhận biết
    Chọn đáp án thích hợp

    Trong không gian tọa độ Oxyz, cho vectơ \overrightarrow{a} = (1;0; -
2). Trong các vectơ dưới đây, vectơ nào không cùng phương với \overrightarrow{a}?

    Hướng dẫn:

    Ta có: \overrightarrow{0} =
(0;0;0) cùng phương với mọi vectơ

    Lại có \left\{ \begin{matrix}\overrightarrow{c} = (2;0; - 4) = 2\overrightarrow{a} \\\overrightarrow{d} = \left( - \dfrac{1}{2};0;1 ight) = -\dfrac{1}{2}\overrightarrow{a} \\\end{matrix} ight.

    Vậy vectơ không cùng phương với \overrightarrow{a}\overrightarrow{b} = (1;0;2).

  • Câu 22: Nhận biết
    Xác định tọa độ vectơ

    Trong không gian Oxyz, cho \overrightarrow{a} = 2\overrightarrow{i} +
\overrightarrow{k} - 3\overrightarrow{j}. Tọa độ vectơ \overrightarrow{a} là:

    Hướng dẫn:

    Ta có: \overrightarrow{i} =
(1;0;0);\overrightarrow{j} = (0;1;0);\overrightarrow{k} =
(0;0;1)

    Theo bài ra ta có: \overrightarrow{a} =
2\overrightarrow{i} + \overrightarrow{k} - 3\overrightarrow{j} suy ra tọa độ vectơ \overrightarrow{a} = (2;
- 3;1).

  • Câu 23: Thông hiểu
    Tìm đẳng thức sai

    Cho hình hộp ABCD.A_{1}B_{1}C_{1}D_{1}. Chọn đẳng thức sai?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có : \overrightarrow{BA} +
\overrightarrow{DD_{1}} + \overrightarrow{BD_{1}} = \overrightarrow{BA}
+ \overrightarrow{BB_{1}} + \overrightarrow{BD_{1}} =
\overrightarrow{BA_{1}} + \overrightarrow{BD_{1}} eq
\overrightarrow{BC} nên D sai.

    Do \overrightarrow{BC} =
\overrightarrow{B_{1}C_{1}}\overrightarrow{BA} =
\overrightarrow{B_{1}A_{1}} nên \overrightarrow{BC} + \overrightarrow{BA} =
\overrightarrow{B_{1}C_{1}} + \overrightarrow{B_{1}A_{1}}. A đúng

    Do \overrightarrow{AD} +
\overrightarrow{D_{1}C_{1}} + \overrightarrow{D_{1}A_{1}} =
\overrightarrow{AD} + \overrightarrow{D_{1}B_{1}} =
\overrightarrow{A_{1}D_{1}} + \overrightarrow{D_{1}B_{1}} =
\overrightarrow{A_{1}B_{1}} = \overrightarrow{DC} nên

    \overrightarrow{AD} +
\overrightarrow{D_{1}C_{1}} + \overrightarrow{D_{1}A_{1}} =
\overrightarrow{DC} nên B đúng.

    Do \overrightarrow{BC} +
\overrightarrow{BA} + \overrightarrow{BB_{1}} = \overrightarrow{BD} +
\overrightarrow{DD_{1}} = \overrightarrow{BD_{1}} nên C đúng.

  • Câu 24: Vận dụng cao
    Tính giá trị biểu thức

    Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(1;2; - 2),B\left(
\frac{8}{3};\frac{4}{3};\frac{8}{3} ight). Biết I(a;b;c) là tâm đường tròn nội tiếp tam giác OAB. Tính giá trị biểu thức U = a - b + c?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}\overrightarrow{OA} = (1;2; - 2) \Rightarrow OA = 3 \\\overrightarrow{OB} = \left( \dfrac{8}{3};\dfrac{4}{3};\dfrac{8}{3} ight)\Rightarrow OB = 4 \\\end{matrix} ight.

    Gọi D là chân đường phân giác kẻ từ O ta có:

    \overrightarrow{DA} = -
\frac{DA}{DB}.\overrightarrow{DB} = -
\frac{OA}{OB}.\overrightarrow{DB}

    \Rightarrow \overrightarrow{DA} = -
\frac{3}{4}.\overrightarrow{DB} \Rightarrow \overrightarrow{OD} =
\frac{4\overrightarrow{OA} + 3\overrightarrow{OB}}{7}. Do đó D\left( \frac{12}{7};\frac{12}{7};0
ight)

    Ta có: \overrightarrow{AD} = \left(
\frac{5}{7}; - \frac{2}{7};2 ight) \Rightarrow AD =
\frac{15}{7}

    \overrightarrow{ID} = -
\frac{AD}{AO}.\overrightarrow{IO} = - \frac{5}{7}\overrightarrow{IO}
\Rightarrow \overrightarrow{OI} = \frac{7}{12}\overrightarrow{OD}
\Rightarrow D(1;1;0)

    \Rightarrow \left\{ \begin{matrix}
a = 1 \\
b = 1 \\
c = 0 \\
\end{matrix} ight.\  \Rightarrow U = 0

  • Câu 25: Nhận biết
    Chọn phương án thích hợp

    Cho hình hộp ABCD.A'B'C'D'. Trong các vectơ sau, vectơ nào bằng vectơ \overrightarrow{BC}?

    Hướng dẫn:

    Hình vẽ minh họa:

    Đáp án cần tìm:  \overrightarrow{A'D'} 

  • Câu 26: Thông hiểu
    Tìm tọa độ điểm M thỏa mãn yêu cầu

    Trong không gian hệ trục tọa độ Oxyz, cho ba điểm A(3;1; - 4),B(2;1; - 2),C(1;1; - 3). Tìm điểm M \in Ox sao cho \left| \overrightarrow{MA} + \overrightarrow{MB} +
\overrightarrow{MC} ight| đạt giá trị nhỏ nhất?

    Hướng dẫn:

    M \in Ox suy ra M(m;0;0). Ta có: \left\{ \begin{matrix}
\overrightarrow{MA} = (3 - m;1; - 4) \\
\overrightarrow{MB} = (2 - m;1; - 2) \\
\overrightarrow{MC} = (1 - m;1; - 3) \\
\end{matrix} ight.

    Theo bài ra:

    \left| \overrightarrow{MA} +
\overrightarrow{MB} + \overrightarrow{MC} ight| = \sqrt{(6 - 3m)^{2} +
3^{2} + ( - 9)^{2}}

    = \sqrt{9m^{2} - 36m + 126} = \sqrt{9(m
- 2)^{2} + 90} \geq 3\sqrt{10};\forall m\mathbb{\in R}

    Vậy \left| \overrightarrow{MA} +
\overrightarrow{MB} + \overrightarrow{MC} ight| nhỏ nhất bằng 3\sqrt{10} khi m - 2 = 0 \Leftrightarrow m = 2. Hay M(2;0;0)

  • Câu 27: Vận dụng
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;2;3)B(5;0;1). Điểm M thỏa mãn MA.\overrightarrow{MA} = -
4MB.\overrightarrow{MB} có tọa độ là:

    Hướng dẫn:

    Từ giả thiết MA.\overrightarrow{MA} = -
4MB.\overrightarrow{MB} \Rightarrow \overrightarrow{MA} = -
4\frac{MB}{MA}.\overrightarrow{MB} nên ba điểm M;B;A thẳng hàng và A;B nằm khác phía so với điểm M do - 4\frac{MB}{MA} âm.

    Lại có MA.\overrightarrow{MA} = -
4MB.\overrightarrow{MB}

    \Rightarrow \left(
MA.\overrightarrow{MA} \right)^{2} = \left( 4MB.\overrightarrow{MB}
\right)^{2}

    \Rightarrow MA^{4} = 16MB^{4} \Rightarrow
MA = 2MB.

    \Rightarrow \overrightarrow{MA} = -
2\overrightarrow{MB}.

    Gọi tọa độ M(x;y;z), khi đó

    \left\{ \begin{matrix}
1 - x = - 2(5 - x) \\
2 - y = - 2(0 - y) \\
3 - z = - 2(1 - z) \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x = \frac{11}{3} \\
y = \frac{2}{3} \\
z = \frac{5}{3} \\
\end{matrix} \right.

  • Câu 28: Thông hiểu
    Tìm tọa độ điểm D thỏa mãn yêu cầu

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm A(1;2;3),B(2; - 1;5),C(3;2; - 1). Biết rằng tứ giác ABCD là hình bình hành, khi đó tọa độ điểm D là:

    Hướng dẫn:

    Giả sử điểm D(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{AD} =
\overrightarrow{BC}

    \Leftrightarrow \left\{ \begin{matrix}
x - 1 = 3 - 2 \\
y - 3 = 2 + 1 \\
z - 2 = - 1 - 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 6 \\
z = - 4 \\
\end{matrix} ight.. Vậy tọa độ điểm D(2;6; - 4).

  • Câu 29: Thông hiểu
    Tìm tọa độ điểm B

    Trong không gian với hệ trục tọa độ Oxyz, cho  A(1;2; - 1);\overrightarrow{AB} =(1;3;1), khi đó tọa độ điểm B là:

    Hướng dẫn:

    Gọi B(x;y;z) ta có:

    A(1;2; - 1);\overrightarrow{AB} =(1;3;1) khi đó \left\{\begin{matrix}x - 1 = 1 \\y - 2 = 3 \\z + 1 = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 2 \\y = 5 \\z = 0 \\\end{matrix} ight. nên tọa độ điểm cần tìm là B(2;5;0).

  • Câu 30: Thông hiểu
    Xác định tọa độ vector

    Để theo dõi hành trình của một chiếc một chiếc máy bay, ta có thể lập hệ toạ độ Oxyz có gốc O trùng với vị trí của trung tâm kiểm soát không lưu, mặt phẳng (Oxy) trùng với mặt đất với trục Ox hướng về phía tây, trục Oy hướng về phía nam và trục Oz hướng thẳng đứng lên trời. Sau khi cất cánh và đạt độ cao nhất định, chiếc máy bay duy trì hướng bay về phía nam với tốc độ không đổi là 890 km/h trong nửa giờ. Xác định toạ độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó đối với hệ toạ độ đã chọn, biết rằng đơn vị đo trong không gian Oxyz được lấy theo km.

    Gợi ý:

    Tính quãng đường máy bay bay được.

    Từ đó suy ra toạ độ.

    Hướng dẫn:

    Quãng đường máy bay bay được với vận tốc 890km/h trong nửa giờ là:

    S = v.t = 890.\frac{1}{2} = 445\ \
(km).

    Vì máy bay duy trì hướng bay về phía nam nên toạ độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó với hệ toạ độ đã chọn là (0;445;0).

  • Câu 31: Thông hiểu
    Chọn phương án đúng

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u}\overrightarrow{v} tạo với nhau một góc 120{^\circ}\left| \overrightarrow{u} \right| = 2, \left| \overrightarrow{v} \right| =
5. Tính \left| \overrightarrow{u} +
\overrightarrow{v} \right|

    Hướng dẫn:

    Ta có:

    \left( \left| \overrightarrow{u} +
\overrightarrow{v} ight| ight)^{2} = \left( \overrightarrow{u} +
\overrightarrow{v} ight)^{2}

    = {\overrightarrow{u}}^{2} +
2\overrightarrow{u}\overrightarrow{v} +
{\overrightarrow{v}}^{2}

    = \left| \overrightarrow{u} ight|^{2}
+ 2\left| \overrightarrow{u} ight|.\left| \overrightarrow{v}
ight|\cos\left( \overrightarrow{u};\ \overrightarrow{v} ight) +
\left| \overrightarrow{v} ight|^{2}

    = 2^{2} + 2.2.5.\left( - \frac{1}{2}
ight) + 5^{2} = 19.

    Suy ra \left| \overrightarrow{u} +
\overrightarrow{v} ight| = \sqrt{19}.

  • Câu 32: Thông hiểu
    Chọn khẳng định đúng

    Trong không gian Oxyz, cho vectơ \overrightarrow{OA} = \overrightarrow{i} -
2\overrightarrow{k}. Tọa độ điểm A là:

    Hướng dẫn:

    Ta có: \overrightarrow{OA} =
\overrightarrow{i} - 2\overrightarrow{k} \Leftrightarrow A(0;1; -
2)

  • Câu 33: Nhận biết
    Chọn điểm thuộc mặt phẳng đã cho

    Trong không gian Oxyz, điểm nào sau đây thuộc mặt phẳng (Oyz)?

    Hướng dẫn:

    Ta có: A(x;y;z) \in (Oyz) \Rightarrow x =
0 nên điểm cần tìm là Q(0;4; -
1).

  • Câu 34: Thông hiểu
    Tìm tổng x và y

    Trong không gian Oxyz cho ba điểm A( - 1\ ;\ 1\ ;\ 2), B(0\ ;\ 1\ ;\  - 1), C(x + 2;y; - 2) thẳng hàng. Tổng x + y bằng

    Hướng dẫn:

    Ta có \overrightarrow{AB} = (1;0; -
3), \overrightarrow{BC} = (x + 2;y
- 1; - 1).

    Ba điểm A,B,C thẳng hàng \Leftrightarrow \overrightarrow{AB}\overrightarrow{BC} cùng phương \Leftrightarrow \exists k:\overrightarrow{BC} =
k\overrightarrow{AB}

    \Leftrightarrow \left\{ \begin{matrix}
x + 2 = k \\
y - 1 = 0 \\
- 1 = - 3k \\
\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}
x = \dfrac{- 5}{3} \\
y = 1 \\
k = \dfrac{1}{3} \\
\end{matrix} ight.\  \Rightarrow x + y = - \dfrac{2}{3}.

  • Câu 35: Vận dụng
    Tính độ dài đoạn thẳng

    Trong không gian Oxyz, cho đường thẳng d:\frac{x - 3}{2} = \frac{y + 1}{1} =
\frac{z - 1}{2} và điểm M(1\ ;2\
;\  - 3). Gọi M_{1} là hình chiếu vuông góc của M lên đường thẳng d. Độ dài đoạn thẳng OM_{1} bằng

    Hướng dẫn:

    Cách 1: Phương trình tham số của đường thẳng d là: \left\{
\begin{matrix}
x = 3 + 2t \\
y = - 1 + t \\
z = 1 + 2t \\
\end{matrix} ight..

    Một vtcp của d\overrightarrow{u} = (2\ ;\ 1\ ;\ 2).

    Gọi (\alpha) là mặt phẳng đi qua điểm M(1\ ;2\ ;\  - 3) và vuông góc với đường thẳng d. Khi đó (\alpha) có vtpt là \overrightarrow{n} = \overrightarrow{u} = (2\ ;\
1\ ;\ 2).

    Phương trình mặt phẳng (\alpha): 2(x - 1) + 1(y - 2) + 2(z + 3) = 0 \Leftrightarrow 2x + y + 2z + 2 =
0.

    M_{1} là hình chiếu vuông góc của M lên đường thẳng d nên M_{1} là giao điểm của d(\alpha).

    Xét hệ phương trình: \left\{
\begin{matrix}
x = 3 + 2t\ \ \ \ \ (1) \\
y = - 1 + t\ \ \ \ \ (2) \\
z = 1 + 2t\ \ \ \ \ \ (3) \\
2x + y + 2z + 2 = 0\ (4) \\
\end{matrix} ight.

    Thay (1),(2),(3) vào (4) ta được: 2(3 + 2t) - 1 + t + 2(1 + 2t) + 2 = 0

    \Leftrightarrow 9t + 9 = 0 \Leftrightarrow t = - 1.

    Suy ra \left\{ \begin{matrix}
x = 1 \\
y = - 2 \\
z = - 1 \\
\end{matrix} ight.\  \Rightarrow M_{1}(1\ ;\  - 2\ ;\  -1).

    Độ dài đoạn thẳng OM_{1} là: OM_{1} = \sqrt{1^{2} + ( - 2)^{2} + ( -1)^{2}} = \sqrt{6}.

    Cách 2: Phương trình tham số của đường thẳng d là: \left\{
\begin{matrix}
x = 3 + 2t \\
y = - 1 + t \\
z = 1 + 2t \\
\end{matrix} ight..

    Một vtcp của d\overrightarrow{u} = (2\ ;\ 1\ ;\ 2).

    M_{1} \in d \Rightarrow M_{1}(3 + 2t\
;\  - 1 + t\ ;\ 1 + 2t)

    \Rightarrow \overrightarrow{MM_{1}} = (2
+ 2t\ ;\  - 3 + t\ ;\ 4 + 2t).

    Ta có \overrightarrow{MM_{1}}\bot\overrightarrow{u}
\Leftrightarrow \overrightarrow{MM_{1}}.\overrightarrow{u} = 0\Leftrightarrow 4 + 4t - 3 + t + 8 + 4t = 0 \Leftrightarrow t = -
1.

    Suy ra M_{1}(1\ ;\  - 2\ ;\  -
1)

    Độ dài đoạn thẳng OM_{1} là: OM_{1} = \sqrt{1^{2} + ( - 2)^{2} + ( -1)^{2}} = \sqrt{6}.

  • Câu 36: Thông hiểu
    Chọn đáp án đúng

    Cho hình lập phương ABCD.A_{1}B_{1}C_{1}D_{1}. Tính \overrightarrow{AC_{1}}.\overrightarrow{BD}.

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: \overrightarrow{AC_{1}}.\overrightarrow{BD} =
\left( \overrightarrow{AA_{1}} + \overrightarrow{AC} ight)\left(
\overrightarrow{AD} - \overrightarrow{AB} ight)

    =
\overrightarrow{AC}.\overrightarrow{AD} -
\overrightarrow{AC}.\overrightarrow{AB} =
\overrightarrow{AC}.\overrightarrow{BD} = 0

    \Rightarrow
\overrightarrow{AC_{1}}.\overrightarrow{BD} = 0

  • Câu 37: Vận dụng
    Ghi đáp án vào ô trống

    Cho hình lập phương ABCD.A'B'C'D'; đáy là hình vuông cạnh a. Trên cạnh DC;BB' lần lượt lấy các điểm M;N sao cho DM = BN = x;(0 \leq x \leq a). Tính số đo góc giữa hai đường thẳng A'CMN.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình lập phương ABCD.A'B'C'D'; đáy là hình vuông cạnh a. Trên cạnh DC;BB' lần lượt lấy các điểm M;N sao cho DM = BN = x;(0 \leq x \leq a). Tính số đo góc giữa hai đường thẳng A'CMN.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 38: Thông hiểu
    Chọn đẳng thức đúng

    Trong không gian hệ trục tọa độ Oxyz, cho các vectơ \overrightarrow{a} = (2;3;1),\overrightarrow{b} =
( - 1;5;2),\overrightarrow{c} = (4; - 1;3),\overrightarrow{x} = ( -
3;22;5). Đẳng thức nào dưới đây đúng?

    Hướng dẫn:

    Đặt \overrightarrow{x} =
m\overrightarrow{a} + n\overrightarrow{b} + p\overrightarrow{c};\left(
m;n;p\mathbb{\in R} ight)

    \Rightarrow ( - 3;22;5) = m(2;3;1) + n(
- 1;5;2) + p(4; - 1;3)

    \Rightarrow \left\{ \begin{matrix}
2m - m + 4p = - 3 \\
3m + 5m - p = 22 \\
m + 2m + 3p = 5 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
m = 2 \\
n = 3 \\
p = - 1 \\
\end{matrix} ight.

    Vậy \overrightarrow{x} =
2\overrightarrow{a} + 3\overrightarrow{b} - \overrightarrow{c} là đẳng thức đúng.

  • Câu 39: Thông hiểu
    Chọn khẳng định đúng

    Cho hình chóp S.ABCDcó đáy ABCD là hình bình hành. Gọi M,N lần lượt là các điểm thuộc đoạn thẳng SA,SB sao cho SM = \frac{1}{2}AM;\ SN = \frac{1}{2}BN. Khẳng định nào sau đây là đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}SM = \dfrac{1}{2}AM \\SN = \dfrac{1}{2}BN \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}SM = \dfrac{1}{3}SA \\SN = \dfrac{1}{3}SB \\\end{matrix} ight.

    \Rightarrow MN = \frac{1}{3}AB =\frac{1}{3}CD.

    Nên \overrightarrow{MN} = -\frac{1}{3}\overrightarrow{CD}.

  • Câu 40: Vận dụng
    Xét tính đúng sai của mỗi khẳng định

    Xét tính đúng sai của mỗi khẳng định.

    Hai chiếc khinh khí cầu cùng bay lên từ cùng một địa điểm. Chiếc thứ nhất nằm tại vị trí A cách điểm xuất phát 2,5km về phía bắc và 1km về phía tây, đồng thời cách mặt đất 0,7km. Chiếc thứ hai nằm tại vị trí B cách điểm xuất phát 1,5km về phía nam và 1km về phía đông, đồng thời cách mặt đất 0,5km.

    Chọn hệ trục toạ độ Oxyz với gốc O đặt tại điểm xuất phát của hai kinh khí cầu, mặt phẳng Oxy trùng với mặt đất, trục Ox hướng về phía bắc, trục Oy hướng về phía tây và trục Oz hướng thẳng đứng lên trời. Đơn vị đo lấy theo kilomet (các kết quả làm tròn đến hàng phần mười).

    a) Vị trí của khinh khí cầu thứ hai có tọa độ là (1,5\ ;\ 1\ ;\ 0,5). Sai||Đúng

    b) Hai khinh khí cầu cách nhau không quá 5km. Đúng||Sai

    c) Khinh khí cầu thứ nhất ở gần điểm xuất phát hơn khinh khí cầu thứ hai. Sai||Đúng

    d) Giả sử một chiếc Flycam được điều khiển xuất phát cùng địa điểm với hai khinh khí cầu và bay thẳng đến vị trí nằm chính giữa hai khinh khí cầu, đồng thời hai khinh khí cầu và chiếc flycam này thẳng hàng với nhau. Khoảng cách bay này của flycam cũng là khoảng cách bay tối đa của flycam. Trong trường hợp này, nếu chiếc flycam này xuất phát từ cùng địa điểm với hai khinh khí cầu sẽ không bay được đến vị trí có tọa độ (3\ ;\ 1\ ;\  - 1). Đúng||Sai

    Đáp án là:

    Xét tính đúng sai của mỗi khẳng định.

    Hai chiếc khinh khí cầu cùng bay lên từ cùng một địa điểm. Chiếc thứ nhất nằm tại vị trí A cách điểm xuất phát 2,5km về phía bắc và 1km về phía tây, đồng thời cách mặt đất 0,7km. Chiếc thứ hai nằm tại vị trí B cách điểm xuất phát 1,5km về phía nam và 1km về phía đông, đồng thời cách mặt đất 0,5km.

    Chọn hệ trục toạ độ Oxyz với gốc O đặt tại điểm xuất phát của hai kinh khí cầu, mặt phẳng Oxy trùng với mặt đất, trục Ox hướng về phía bắc, trục Oy hướng về phía tây và trục Oz hướng thẳng đứng lên trời. Đơn vị đo lấy theo kilomet (các kết quả làm tròn đến hàng phần mười).

    a) Vị trí của khinh khí cầu thứ hai có tọa độ là (1,5\ ;\ 1\ ;\ 0,5). Sai||Đúng

    b) Hai khinh khí cầu cách nhau không quá 5km. Đúng||Sai

    c) Khinh khí cầu thứ nhất ở gần điểm xuất phát hơn khinh khí cầu thứ hai. Sai||Đúng

    d) Giả sử một chiếc Flycam được điều khiển xuất phát cùng địa điểm với hai khinh khí cầu và bay thẳng đến vị trí nằm chính giữa hai khinh khí cầu, đồng thời hai khinh khí cầu và chiếc flycam này thẳng hàng với nhau. Khoảng cách bay này của flycam cũng là khoảng cách bay tối đa của flycam. Trong trường hợp này, nếu chiếc flycam này xuất phát từ cùng địa điểm với hai khinh khí cầu sẽ không bay được đến vị trí có tọa độ (3\ ;\ 1\ ;\  - 1). Đúng||Sai

    a) Sai

    Vì hướng nam ngược với hướng bắc, hướng đông ngược với hướng tây nên chiếc khinh khí cầu thứ hai có tọa độ là ( -
1,5\ ;\  - 1\ ;\ 0,5).

    b) Đúng

    Chiếc khinh khí cầu thứ nhất có tọa độ là (2,5\ ;\ 1\ ;\ 0,7).

    Khoảng cách giữa hai chiếc khinh khí cầu là

    \sqrt{(2,5 + 1,5)^{2} + (1 + 1)^{2} +
(0,7 + 0,5)^{2}}

    = \frac{2\sqrt{134}}{5} \approx
4,6(km)

    c) Sai

    Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ nhất là:

    \sqrt{2,5^{2} + 1^{2} + 0,7^{2}} =
\frac{3\sqrt{86}}{10} \approx 2,8(km)

    Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ hai là:

    \sqrt{( - 1,5)^{2} + ( - 1)^{2} +
0,5^{2}} = \frac{\sqrt{14}}{2} \approx 1,9(km)

    Vậy khinh khí cầu thứ hai ở gần điểm xuất phát hơn.

    d) Đúng

    Vị trí của chiếc flycam là

    \left( \frac{2,5 - 1,5}{2}\ ;\ \frac{1 -
1}{2}\ ;\ \frac{0,7 + 0,5}{2} ight) = (0,5\ ;\ 0\ ;\
0,6).

    Khoảng cách bay của flycam là:

    \sqrt{0,5^{2} + 0^{2} + 0,6^{2}} =
\frac{\sqrt{61}}{10} \approx 0,8(km)

    Khoảng cách từ vị trí flycam xuất phát đến điểm có tọa độ (3\ ;\ 1\ ;\  - 1)

    \sqrt{3^{2} + 1^{2} + ( - 1)^{2}} =
\sqrt{11} \approx 3,3(km) > 0,8(km)

    Vậy flycam không đến được vị trí có tọa độ (3\ ;\ 1\ ;\  - 1).

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (32%):
    2/3
  • Thông hiểu (42%):
    2/3
  • Vận dụng (20%):
    2/3
  • Vận dụng cao (5%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo