Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 3 Các số đặc trưng đo mức độ phân tán cho mẫu số liệu ghép nhóm

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 40 câu
  • Điểm số bài kiểm tra: 40 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Chọn kết luận đúng

    Cho bảng thống kê thời gian (đơn vị: phút) và số ngày tập thể dục của hai người A và B trong 30 ngày như sau:

    Thời gian

    [15; 20)

    [25; 30)

    [30; 35)

    Số ngày tập của A

    10

    15

    5

    Số ngày tập của B

    9

    21

    0

    Chọn kết luận đúng dưới đây?

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập của A là: 35 – 15 = 20 (phút).

    Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập của B là: 30 – 15 = 15 (phút).

    Do đó căn cứ theo khoảng biến thiên thì thời gian tập của A có độ phân tán lớn hơn.

  • Câu 2: Thông hiểu
    Chọn đáp án đúng

    Số điểm thi đấu của các đội được biểu diễn trong bảng dưới đây:

    Nhóm dữ liệu

    Tần số

    (0; 2]

    5

    (2; 4]

    16

    (4; 6]

    13

    (6; 8]

    7

    (8; 10]

    5

    (10; 12]

    4

    Tìm khoảng tứ phân vị của mẫu số liệu đã cho?

    Hướng dẫn:

    Ta có:

    Nhóm dữ liệu

    Tần số

    Tần số tích lũy

    (0; 2]

    5

    5

    (2; 4]

    16

    21

    (4; 6]

    13

    34

    (6; 8]

    7

    41

    (8; 10]

    5

    46

    (10; 12]

    4

    50

    Tổng

    N = 50

     

    Ta có: N = 50 \Rightarrow \frac{N}{4} =
\frac{50}{4} = 12,5

    => Nhóm chứa tứ phân vị thứ nhất là: (2; 4]

    Khi đó: \left\{ \begin{matrix}
l = 2;\frac{N}{4} = 12,5;m = 5 \\
f = 16;d = 4 - 2 = 2 \\
\end{matrix} ight.

    Vậy tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 2 + \frac{12,5 -
5}{16}.2 = \frac{47}{16}

    Ta có: N = 50 \Rightarrow \frac{3N}{4} =
\frac{150}{4} = 37,5

    => Nhóm chứa tứ phân vị thứ ba là: (6; 8]

    Khi đó: \left\{ \begin{matrix}l = 6;\dfrac{3N}{4} = 37,5;m = 34 \\f = 7;d = 8 - 6 = 2 \\\end{matrix} ight.

    Vậy tứ phân vị thứ nhất là:\left\{ \begin{matrix}l = 2;\dfrac{N}{4} = 12,5;m = 5 \\f = 16;d = 4 - 2 = 2 \\\end{matrix} ight.

    Q_{3} = l + \dfrac{\dfrac{3N}{4} -m}{f}.d

    \Rightarrow Q_{3} = 6 + \frac{37,5 -
34}{7}.2 = 7

    \Rightarrow \Delta_{Q} = Q_{3} - Q_{1} =
7 - \frac{47}{16} \approx 4,06

  • Câu 3: Nhận biết
    Tính số trung bình của mẫu số liệu ghép nhóm

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Tần số

    8

    9

    12

    10

    11

    Tính số trung bình của mẫu số liệu?

    Hướng dẫn:

    Cỡ mẫu N = 50

    Đối tượng

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Giá trị đại diện

    121

    123

    125

    127

    129

    Tần số

    8

    9

    12

    10

    11

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{8.121 + 9.123 +
12.125 + 10.127 + 11.129}{50} = 125,28

  • Câu 4: Thông hiểu
    Xác định tứ phân vị thứ ba của mẫu số liệu

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Tính giá trị Q_{3} của mẫu dữ liệu ghép nhóm trên?

    Hướng dẫn:

    Ta có:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

     

    Số ngày

    2

    7

    7

    3

    1

    N = 20

    Tần số tích lũy

    2

    9

    16

    19

    20

     

    Cỡ mẫu N = 20 \Rightarrow \frac{3N}{4} =
15

    => Nhóm chứa tứ phân vị thứ ba là [9; 11)

    (Vì 15 nằm giữa hai tần số tích lũy 9 và 16)

    Do đó: l = 9;m = 9,f = 7;c = 11 - 9 =
2

    Khi đó tứ phân vị thứ ba là:

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 9 + \dfrac{15 - 9}{7}.2 = \dfrac{75}{7}\approx 10,7

  • Câu 5: Thông hiểu
    Tìm độ lệch chuẩn của mẫu số liệu ghép nhóm

    Doanh thu bán hàng trong 20 ngày được lựa chọn ngẫu nhiên của một của hàng được ghi lại ở bảng sau (đơn vị: triệu đồng):

    Độ lệch chuẩn của mẫu số liệu trên gần nhất với giá trị nào dưới đây?

    Hướng dẫn:

    Bảng tần số ghép nhóm theo giá trị đại diện là

    Số trung bình: \overline{x} = \frac{2.6 +
7.8 + 7.10 + 3.12 + 1.14}{20} = 9,4.

    Phương sai của mẫu số liệu ghép nhóm là:

    s^{2} = \frac{1}{20}.\lbrack 2(6 -
9,4)^{2} + 7(8 - 9,4)^{2} + 7(10 - 9,4)^{2}+ 3(12 - 9,4)^{2} + 1.(14 -
9,4)^{2}\rbrack \approx 4,04

    s = \sqrt{s^{2}} = \sqrt{4,04} \approx
2,01

  • Câu 6: Nhận biết
    Tìm khoảng biến thiên mẫu số liệu ghép nhóm

    Mỗi ngày bác T đều đi bộ để rèn luyện sức khoẻ. Quãng đường đi bộ mỗi ngày (đơn vị: km) của bác T trong 20 ngày được thống kê lại ở bảng sau:

    Quãng đường

    [2,7; 3,0)

    [3,0; 3,3)

    [3,3; 3,6)

    [3,6; 3,9)

    [3,9; 4,2)

    Số ngày

    3

    6

    5

    4

    2

    Khoảng biến thiên của mẫu số liệu ghép nhóm là:

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm là: 4,2 - 2,7 = 1,5(km)

  • Câu 7: Thông hiểu
    Xác định phương sai của mẫu số liệu ghép nhóm

    Cân nặng của các học sinh lớp 10A trường Trung học phổ thông Mnhư sau.

    Cân nặng(kg)

    \lbrack 30;36) \lbrack 36;42) \lbrack 42;48) \lbrack 48;54) \lbrack 54;60) \lbrack 60;66)

    Số học sinh lớp

    1

    2

    5

    15

    9

    6

    Phương sai của mẫu số liệu ghép nhóm trên gần nhất với kết quả nào sau đây.

    Hướng dẫn:

    Cân nặng trung bình của học sinh lớp 10A là.

    \overline{x_{A}} = \frac{1}{38}(1.33 +
2.39 + 5.45 + 15.51 + 9.57 + 6.63) = 52,4\ \ kg

    Độ lệch chuẩn về nhóm cân nặng của học sinh lớp 10A

    {s^{2}}_{A} = \frac{1}{38}\lbrack 1.(33 -
52,4)^{2} + 2.(39 - 52,4)^{2} + 5.(45 - 52,4)^{2} + 15.(51 - 52,4)^{2} + 9.(57 - 52,4)^{2} + 6.(63 -
52,4)^{2}\rbrack \approx 50,4

  • Câu 8: Nhận biết
    Xác định tính đúng sai của từng phương án

    Cho mẫu số liệu ghép nhóm về thời gian (đơn vị: phút) đi từ nhà đến trường của các học sinh trong một lớp 12 của một trường như sau:

    Thời gian

    [0; 5)

    [5; 10)

    [10; 15)

    [15; 20)

    [20; 25)

    [25; 30)

    Số học sinh

    7

    12

    7

    5

    3

    2

    Xét tính đúng sai của các khẳng định sau:

    a) Tần số tích lũy của nhóm [10;15) là 26. Đúng||Sai

    b) Tần số nhóm [10;15) lớn nhất. Đúng||Sai

    c) Khoảng biến thiên là 15. Sai||Đúng

    d) Giá trị trung bình của mẫu số liệu bằng 11,25. Đúng||Sai

    Đáp án là:

    Cho mẫu số liệu ghép nhóm về thời gian (đơn vị: phút) đi từ nhà đến trường của các học sinh trong một lớp 12 của một trường như sau:

    Thời gian

    [0; 5)

    [5; 10)

    [10; 15)

    [15; 20)

    [20; 25)

    [25; 30)

    Số học sinh

    7

    12

    7

    5

    3

    2

    Xét tính đúng sai của các khẳng định sau:

    a) Tần số tích lũy của nhóm [10;15) là 26. Đúng||Sai

    b) Tần số nhóm [10;15) lớn nhất. Đúng||Sai

    c) Khoảng biến thiên là 15. Sai||Đúng

    d) Giá trị trung bình của mẫu số liệu bằng 11,25. Đúng||Sai

    a) Đúng: Tần số tích lũy của nhóm [10;15) là 7 + 12 + 7 = 26

    b) Đúng: Tần số nhóm [10;15) lớn nhất.

    c) Sai: Khoảng biến thiên là R = 30 – 0 = 30

    d) Đúng: Giá trị trung bình của mẫu số liệu bằng:

    \overline{x} = \frac{2,5.7 + 7,5.12 +
12,5.7 + 17,5.5 + 22,5.3 + 27,5.2}{36} = 11,26

  • Câu 9: Nhận biết
    Tính giá trị trung bình của mẫu số liệu

    Cho bảng thống kê kết quả cự li ném bóng của một người như sau:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Số lần

    13

    45

    24

    12

    6

    Cự li ném bóng trung bình của người đó là:

    Hướng dẫn:

    Ta có:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Giá trị đại diện

    19,25

    19,75

    20,25

    20,75

    21,25

    Số lần

    13

    45

    24

    12

    6

    Cự li trung bình là:

    \overline{x} = \frac{13.9,25 + 45.19,75
+ 24.20,25 + 12.20,75 + 6.21,25}{100} \approx 20,02

  • Câu 10: Thông hiểu
    Chọn đáp án đúng

    Một mẫu số liệu ghép nhóm có tứ phân vị thứ nhất và tứ phân vị thứ ba lần lượt là 254,9 và 417,25 thì điều kiện giá trị ngoại lệ của mẫu số liệu ghép nhóm đó là:

    Hướng dẫn:

    Gọi giá trị ngoại lệ của mẫu số liệu ghép nhóm là x

    Ta có khoảng tứ phân vị \Delta Q = 417,25
- 254,9 = 162,35

    Nên giá trị ngoại lệ 

    \left[ \begin{gathered}
  x > {Q_3} + 1,5\Delta Q = 417,25 + 1,5.162,35 = \frac{{26431}}{{40}} \approx 660,775 \hfill \\
  x < {Q_1} - 1,5\Delta Q = 254,25 - 1,5.162,35 = \frac{{91}}{8} \approx 11,375 \hfill \\ 
\end{gathered}  ight.

    Vậy \left\lbrack \begin{matrix}
x > 660,775 \\
x < 11,375 \\
\end{matrix} ight.

  • Câu 11: Thông hiểu
    Tìm giá trị gần nhất với kết quả

    Bạn Chi rất thích nhảy hiện đại. Thời gian tập nhảy mỗi ngày trong thời gian gần đây của bạn Chi được thống kê lại ở bảng sau

    A white rectangular with black numbersDescription automatically generated

    Phương sai của mẫu số liệu ghép nhóm có giá trị gần nhất với giá trị nào dưới đây?

    Hướng dẫn:

    Xét mẫu số liệu ghép nhóm cho bởi bảng sau

    A white grid with black numbersDescription automatically generated

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{1}{18}.(22,5.6 +
27,5.6 + 32,5.4 + 37,5.1 + 42,5.1) = \frac{85}{3}.

    Phương sai của mẫu số liệu ghép nhóm là

    S^{2} = \frac{1}{18}(6.22,5^{2} +
6.27,5^{2} + 4.32,5^{2}+ 1.37,5^{2} + 1.42,5^{2}) - \left(
\frac{85}{3} \right)^{2} = 31,25.

    Vậy phương sai của mẫu số liệu ghép nhóm gần nhất với 31,44.

  • Câu 12: Nhận biết
    Tính điểm trung bình của từng lớp

    Kết quả thống kê điểm trung bình năm học của hai lớp 12C và 12D như sau:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12CD

    2

    5

    4

    3

    1

    Điểm trung bình của lớp 12C và điểm trung bình của lớp 12D lần lượt là:

    Hướng dẫn:

    Ta có:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12CD

    2

    5

    4

    3

    1

    Điểm trung bình của lớp 12C:

    \overline{x_{C}} = \frac{4.5,5 + 5.6,5 +
3.7,5 + 4.8,5 + 2.9,5}{18} = \frac{65}{9}.

    Điểm trung bình của lớp 12D:

    \overline{x_{D}} = \frac{2.5,5 + 5.6,5 +
4.7,5 + 3.8,5 + 1.9,5}{15} = \frac{217}{30}.

  • Câu 13: Vận dụng
    Ghi đáp án vào ô trống

    Cho bảng thống kê lượng mưa (đơn vị: mm) đo được vào tháng 6 từ năm 2023 đến 2024 tại khu vực A:

    341,4

    187,1

    242,2

    522,9

    251,4

    432,2

    200,7

    388,6

    258,4

    288,5

    298,1

    413,5

    413,5

    332

    421

    475

    400

    305

    520

    147

    Chia mẫu số liệu thành 4 nhóm với nhóm đầu tiên [140; 240). Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho bảng thống kê lượng mưa (đơn vị: mm) đo được vào tháng 6 từ năm 2023 đến 2024 tại khu vực A:

    341,4

    187,1

    242,2

    522,9

    251,4

    432,2

    200,7

    388,6

    258,4

    288,5

    298,1

    413,5

    413,5

    332

    421

    475

    400

    305

    520

    147

    Chia mẫu số liệu thành 4 nhóm với nhóm đầu tiên [140; 240). Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 14: Nhận biết
    Chọn công thức đúng

    Xét mẫu số liệu ghép nhóm cho ở bảng dưới đây. Gọi \overline{x} là số trung bình cộng của mẫu số liệu ghép nhóm. Độ lệch chuẩn của mẫu số liệu ghép nhóm đó được tính bằng công thức nào trong các công thức sau?

    Hướng dẫn:

    Độ lệch chuẩn của mẫu số liệu ghép nhóm được tính bởi công thức:

    • s = \sqrt {\frac{{{n_1}{{\left( {{x_1} - \bar x} \right)}^2} + {n_2}{{\left( {{x_2} - \bar x} \right)}^2} + ... + {n_m}{{\left( {{x_m} - \bar x} \right)}^2}}}{n}} .
  • Câu 15: Thông hiểu
    Chọn kết luận đúng

    Cho mẫu số liệu ghép nhóm như sau:

    Đối tượng

    [3; 5)

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    Tần số

    6

    7

    6

    6

    5

    Kết luận nào dưới đây đúng?

    Hướng dẫn:

    Ta có:

    Đối tượng

    [3; 5)

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    Giá trị đại diện

    4

    6

    8

    10

    12

    Tần số

    6

    7

    6

    6

    5

    Giá trị trung bình là:

    \overline{x} = \frac{6.4 + 7.6 + 6.8 +
6.10 + 5.12}{30} = 7,8

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{30}\left( 6.4^{2} +
7.6^{2} + 6.8^{2} + 6.10^{2} + 5.12^{2} ight) - 7,8^{2} =
7,56

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là:

    S = \sqrt{S^{2}} = \sqrt{7,56} \approx
2,75.

    Vậy kết luận đúng là: \overline{x} =
7,8;S \approx 2,75.

  • Câu 16: Nhận biết
    Tìm tốc độ trung bình của mẫu dữ liệu

    Thống kê tốc độ của các loại xe hơi (đơn vị: km/h) được ghi lại như sau:

    42

    43,4

    43,4

    46,5

    46,7

    46,8

    47,5

    47,7

    48,1

    48,4

    50,8

    51,1

    52,7

    53,9

    54,8

    57,6

    57,5

    59,6

    60,3

    61,1

    Lập bảng tần số ghép nhóm với nhóm đầu [42; 46) và độ dài mỗi nhóm bằng 4. Tìm tốc độ trung bình của mẫu dữ liệu ghép nhóm?

    Hướng dẫn:

    Ta lập được bảng tần số ghép nhóm như sau:

    Tốc độ

    [42; 46)

    [46; 50)

    [50; 54)

    [54; 58)

    [58; 62)

    Giá trị đại diện

    44

    48

    52

    56

    60

    Số xe

    3

    7

    4

    3

    3

    Tốc độ trung bình là:

    \overline{x} = \frac{3.44 + 7.48 + 4.52
+ 3.56 + 3.60}{20} = 51,2

  • Câu 17: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu ghép nhóm

    Một vườn thú ghi lại tuổi thọ (đơn vị: năm) của 20 con hổ và thu được kết quả như sau:

    Tuổi thọ

    [14; 15)

    [15; 16)

    [16; 17)

    [17; 18)

    [18; 19)

    Số con hổ

    1

    3

    8

    6

    2

    Khoảng biến thiên của mẫu số liệu ghép nhóm này là

    Hướng dẫn:

    Khoảng biến thiên R = 19 – 14 = 5

  • Câu 18: Nhận biết
    Tính khoảng biến thiên

    Thống kê chiều cao (đơn vị: cm) của các bạn học sinh nữ của lớp 12A ở bảng sau:

    Chiều cao

    [150; 155)

    [150; 155)

    [150; 155)

    [150; 155)

    [150; 155)

    Số học sinh

    2

    4

    10

    0

    1

    Xác định khoảng biến thiên của chiều cao của các bạn học sinh nữ lớp 12A?

    Hướng dẫn:

    Khoảng biến thiên của chiều cao của các bạn học sinh nữ lớp 12A là 175 – 155 = 20 (cm)

  • Câu 19: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Thu nhập theo tháng (đơn vị: triệu đồng) của 20 người lao động ở ba nhà máy như sau:

    Thu nhập

    [5; 8)

    [8; 11)

    [11; 14)

    [14; 17)

    [17; 20)

    [20; 23)

    Số người nhà máy A

    2

    5

    4

    4

    5

    0

    Số người nhà máy B

    0

    6

    4

    3

    7

    0

    Số người nhà máy C

    1

    5

    8

    6

    0

    0

    Xét tính đúng, sai các mệnh đề sau:

    (a) Trong 20 người lao động ở nhà máy A, hiệu số thu nhập của hai người lao động bất kì không vượt quá 15 triệu đồng. Đúng||Sai

    (b) Trong 20 người lao động ở nhà máy B, hiệu số thu nhập của hai người lao động bất kì không vượt quá 18 triệu đồng. Sai|| Đúng

    (c) Nếu dựa vào khoảng biến thiên thì thu nhập của người lao động ở nhà máy A phân tán hơn so với người lao động ở nhà máy B. Đúng||Sai

    (d) Nếu dựa vào khoảng biến thiên thì thu nhập của người lao động ở nhà máy C phân tán hơn so với người lao động ở nhà máy A. Sai|| Đúng

    Đáp án là:

    Thu nhập theo tháng (đơn vị: triệu đồng) của 20 người lao động ở ba nhà máy như sau:

    Thu nhập

    [5; 8)

    [8; 11)

    [11; 14)

    [14; 17)

    [17; 20)

    [20; 23)

    Số người nhà máy A

    2

    5

    4

    4

    5

    0

    Số người nhà máy B

    0

    6

    4

    3

    7

    0

    Số người nhà máy C

    1

    5

    8

    6

    0

    0

    Xét tính đúng, sai các mệnh đề sau:

    (a) Trong 20 người lao động ở nhà máy A, hiệu số thu nhập của hai người lao động bất kì không vượt quá 15 triệu đồng. Đúng||Sai

    (b) Trong 20 người lao động ở nhà máy B, hiệu số thu nhập của hai người lao động bất kì không vượt quá 18 triệu đồng. Sai|| Đúng

    (c) Nếu dựa vào khoảng biến thiên thì thu nhập của người lao động ở nhà máy A phân tán hơn so với người lao động ở nhà máy B. Đúng||Sai

    (d) Nếu dựa vào khoảng biến thiên thì thu nhập của người lao động ở nhà máy C phân tán hơn so với người lao động ở nhà máy A. Sai|| Đúng

    Ta có khoảng biến thiên thu nhập của người lao động ở nhà máy A là 20 - 5 = 15 triệu đồng.

    Ta có khoảng biến thiên thu nhập của người lao động ở nhà máy B là 20 - 8 = 12 triệu đồng.

    Ta có khoảng biến thiên thu nhập của người lao động ở nhà máy C là 17 – 5 = 12 triệu đồng.

    (a) Trong 20 người lao động ở nhà máy A, hiệu số thu nhập của hai người lao động bất kì không vượt quá 15 triệu đồng.

    Chọn ĐÚNG.

    (b) Trong 20 người lao động ở nhà máy B, hiệu số thu nhập của hai người lao động bất kì không vượt quá 18 triệu đồng.

    Chọn SAI.

    (c) Nếu dựa vào khoảng biến thiên thì thu nhập của người lao động ở nhà máy A phân tán hơn so với người lao động ở nhà máy B.

    Chọn ĐÚNG.

    (d) Nếu dựa vào khoảng biến thiên thì thu nhập của người lao động ở nhà máy C phân tán hơn so với người lao động ở nhà máy A.

    Chọn SAI.

  • Câu 20: Thông hiểu
    Tính khoảng tứ phân vị của mẫu số liệu

    Kiểm tra điện lượng của một số viên pin tiểu do một hãng sản xuất thu được kết quả sau.

    Điện lượng (nghìn mAh)

    [0,9; 0,95)

    [0,95; 1,0)

    [0,1; 1,05)

    [1,05; 1,1)

    [1,1; 1,15)

    Số viên pin

    10

    20

    35

    15

    5

    Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm này? (Làm tròn các kết quả đến hàng phần trăm)

    Hướng dẫn:

    Ta có:

    Điện lượng (nghìn mAh)

    [0,9; 0,95)

    [0,95; 1,0)

    [1,0; 1,05)

    [1,05; 1,1)

    [1,1; 1,15)

    Số viên pin

    10

    20

    35

    15

    5

    Tần số tích lũy

    10

    30

    65

    80

    85

    Cỡ mẫu N = 85

    \frac{N}{4} = \frac{85}{4}

    => Nhóm chứa Q_{1} là [0,95; 1,0)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 0,95;m = 10,f = 20;c = 1
- 0,95 = 0,05

    \Rightarrow {Q_1} = l + \dfrac{{\dfrac{N}{4} - m}}{f}.c = 0,95 + \dfrac{{\dfrac{{85}}{4} - 10}}{{20}}.0,05 \approx 0,98

    \frac{3N}{4} = \frac{3.85}{4} =
\frac{255}{4}

    => Nhóm chứa Q_{3} là [1,0; 1,05)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 1,0;m = 30,f = 35;c =
1,05 - 1,0 = 0,05

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 1,0 + \dfrac{\dfrac{255}{4} - 30}{35}.0,05\approx 1,05.

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là \Delta_{Q} = Q_{3} - Q_{1} \approx
0,07

  • Câu 21: Thông hiểu
    Tìm phương sai của mẫu số liệu

    Thời gian truy cập Internet mỗi buổi tối (đơn vị: phút) của một số học sinh được thống kê ở bảng sau:

    Thời gian

    [10,5; 12,5)

    [12,5; 14,5)

    [14,5; 16,5)

    [16,5; 18,5)

    [18,5; 20,5)

    Số học sinh

    3

    12

    15

    24

    2

    Phương sai của mẫu số liệu trên là:

    Hướng dẫn:

    Ta viết lại bảng ở đề bài như sau:

    Thời gian

    [10,5; 12,5)

    [12,5; 14,5)

    [14,5; 16,5)

    [16,5; 18,5)

    [18,5; 20,5)

     

    Giá trị đại diện

    11,5

    13,5

    15,5

    17,5

    19,5

     

    Số học sinh

    3

    12

    15

    24

    2

    n = 56

    Số trung bình cộng của mẫu số liệu ghép nhóm biểu thị số phút truy cập internet mỗi buổi tối của một số học sinh là:

    \overline{x} = \frac{3.11,5 + 12.13,5 +
15.15,5 + 24.17,5 + 2.19,5}{56} \approx 15,86(phút)

    Vậy phương sai của mẫu số liệu ghép nhóm biểu thị số phút truy cập internet mỗi buổi tối của một số học sinh là:

    s^{2} = \frac{1}{56}\lbrack 3.(11,5 -
15,86)^{2} + 12.(13,5 - 15,86)^{2} + 15.(15,5 - 15,86)^{2}

    + 24.(17,5 - 15,86)^{2} + 2.(19,5 -
15,86)^{2}\rbrack \approx 3,87

  • Câu 22: Nhận biết
    Xác định khoảng biến thiên của mẫu số liệu

    Cô Hà thống kê lại đường kính thân gỗ của một số cây xoan đào 6 năm tuổi được trồng ở một lâm trường ở bảng sau.

    Hãy tìm khoảng biến thiên của mẫu số liệu ghép nhóm trên.

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm trên là 65 - 40 = 25(\ cm).

  • Câu 23: Nhận biết
    Hoàn thành bảng số liệu

    Cho biểu đồ

    Hoàn thảnh bảng số liệu theo mẫu sau:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

    Đáp án là:

    Cho biểu đồ

    Hoàn thảnh bảng số liệu theo mẫu sau:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

     Hoàn thảnh bảng số liệu như sau:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

  • Câu 24: Nhận biết
    Tìm đường kính trung bình

    Kiểm lâm thực hiện đo đường kính của một số cây thân gỗ tại hai khu vực A và B thu được kết quả như sau:

    Đường kính (cm)

    [30; 32)

    [32; 34)

    [34; 36)

    [36; 38)

    [38; 40)

    A

    25

    28

    20

    10

    7

    B

    22

    27

    19

    18

    14

    Đường kính trung bình của cây tại hai khu vực A và B lần lượt là:

    Hướng dẫn:

    Ta có:

    Đường kính (cm)

    [30; 32)

    [32; 34)

    [34; 36)

    [36; 38)

    [38; 40)

    Giá trị đại diện

    31

    33

    35

    37

    39

    A

    25

    28

    20

    10

    7

    B

    22

    27

    19

    18

    14

    Suy ra

    \overline{x_{A}} = \frac{25.31 + 38.33 +
20.35 + 10.37 + 7.39}{100} = 33,72

    \overline{x_{B}} = \frac{25.31 + 27.33 +
19.35 + 18.37 + 14.39}{100} = 34,2

  • Câu 25: Nhận biết
    Xét tính đúng sai của các nhận định

    Một nhà thực vật học độ chiều dài trung bình của 74 lá cây (đơn vị: milimét) và thu được bảng tần số ghép nhóm như sau:

    a) Chiều dài trung bình của 74 lá cây bằng \approx 6,4(\ mm). Sai||Đúng

    b) Khoảng biến thiên của mẫu số liệu là 2,4. Sai||Đúng

    c) Phương sai của mẫu số liệu \approx
0,35. Đúng||Sai

    d) Khoảng tứ phân vị của mẫu số liệu trên \approx 8,93. Sai||Đúng

    (Các kết quả tính được trong bài làm tròn đến hàng phần trăm)

    Đáp án là:

    Một nhà thực vật học độ chiều dài trung bình của 74 lá cây (đơn vị: milimét) và thu được bảng tần số ghép nhóm như sau:

    a) Chiều dài trung bình của 74 lá cây bằng \approx 6,4(\ mm). Sai||Đúng

    b) Khoảng biến thiên của mẫu số liệu là 2,4. Sai||Đúng

    c) Phương sai của mẫu số liệu \approx
0,35. Đúng||Sai

    d) Khoảng tứ phân vị của mẫu số liệu trên \approx 8,93. Sai||Đúng

    (Các kết quả tính được trong bài làm tròn đến hàng phần trăm)

    a) Chiều dài trung bình của 74 lá cây là:

    \overline{x} = \frac{1}{74}.\lbrack
5,65.5 + 6,05.9 + 6,45 \cdot 15 + 6,85 \cdot 19 + 7,25.16 + 7,65 \cdot 8
+ 8,05.2\rbrack

    = \frac{5029}{740} \approx 6,8(\
mm)

    Suy ra a) sai.

    b) Khoảng biến thiên của mẫu số liệu là 8,25 - 5,45 = 2,8 nên b) sai.

    c) Phương sai của mẫu số liệu trên là

    {S_{x}}^{2} = \frac{5.(5,65 - 6,8)^{2} +
9.(6,05 - 6,8)^{2} + 15.(6,45 - 6,8)^{2}}{74}

    + \frac{19.(6,85 - 6,8)^2+ 16.(7,25 -6,8)^{2}}{74}

    + \frac{8(7,65 - 6,8)^{2} + 2(8,05 -
6,8)^{2}}{74} \approx 0,35(\ mm)

    Vậy c) đúng.

    d) Cỡ mẫu: n = 5 + 9 + 15 + 19 + 16 + 8 +
2 = 74.

    Gọi x_{1};\ x_{2};\ \ldots;\ x_{74}là độ dài của 74 lá cây và được sắp xếp theo thứ tự không giảm.

    Tứ phân vị thứ nhất Q_{1}x_{19}. Do x_{19} thuộc nhóm \lbrack 6,25;6,65) nên ta có Q_{1} = 6,25 + \frac{\frac{74}{4} - 14}{15}.4 =
7,45.

    Tứ phân vị thứ ba Q_{3}x_{56}. Do x_{56} thuộc nhóm \lbrack 7,05;7,45) nên ta có Q_{3} = 7,05 + \frac{\frac{3.74}{4} - 48}{16}.4
\approx 8,93.

    Khi đó khoảng tứ phân vị là \Delta_{Q} =
Q_{3} - Q_{1} \approx 1,48. Vậy d) sai.

  • Câu 26: Nhận biết
    Tính thể tích theo yêu cầu

    Khi thống kê chiều cao (đơn vị: centimét) của học sinh lớp 12A, người ta thu được mẫu số liệu ghép nhóm như Bảng sau.

    Nhóm

    Tần số

    [155; 160)

    2

    [160; 165)

    5

    [165; 170)

    21

    [170; 175)

    11

    [175; 1800

    11

    N = 40

    Khoảng biến thiên của mẫu số liệu ghép nhóm đó bằng:

    Hướng dẫn:

    Trong mẫu số liệu ghép nhóm ta có đầu mút trái của nhóm 1 là a_{1} = 155, đầu mút phải của nhóm 5 là a_{5} = 180.

    Vậy khoảng biến thiên của mẫu số liệu ghép nhóm là R = a_{5} - a_{1} = 180 - 155 = 25

  • Câu 27: Thông hiểu
    Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm

    Cho mẫu số liệu ghép nhóm sau về cân nặng của học sinh lớp 2 A:

    Khoảng tứ phân vị của mẫu số liệu trên là:

    Hướng dẫn:

    Ta có: n = 4 + 5 + 7 + 4 =
20

    Nhóm chứa tứ phân vị thứ nhất: Q_{1} =
\frac{x_{5} + x_{6}}{2} \in \lbrack 32;34)

    Do đó tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:

    Q_{1} = 32 + (34 -
32).\frac{\frac{20}{4} - 4}{5} = \frac{162}{5}

    Nhóm chứa tứ phân vị thứ ba: Q_{3} =
\frac{x_{15} + x_{16}}{2} \in \lbrack 34;36):

    Do đó tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

    Q_{3} = 36 + (36 -
34).\frac{3.\frac{20}{4} - 4 - 5}{7} = \frac{264}{7}

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta Q = Q_{3} - Q_{1} =
\frac{186}{35} 

  • Câu 28: Thông hiểu
    Tìm độ lệch chuẩn của mẫu số liệu đó

    Một mẫu số liệu ghép nhóm về chiều cao của một lớp (đơn vị là centimét) có phương sai là 6,25. Độ lệch chuẩn của mẫu số liệu đó bằng:

    Hướng dẫn:

    Độ lệch chuẩn của mẫu số liệu là: \sqrt{6,25} = 2,5.

  • Câu 29: Thông hiểu
    Ghi đáp án vào ô trống

    Bảng dưới đây thống kê cự li ném tạ của một vận động viên.

    Cự li

    [19; 21)

    [21; 23)

    [23; 25)

    [25; 27)

    [27; 29)

    Tần số

    13

    45

    24

    12

    6

    Hãy tính độ lệch chuẩn của mẫu số liệu ghép nhóm trên (kết quả được làm tròn đến hàng phần trăm)

    Đáp án: 2,07

    Đáp án là:

    Bảng dưới đây thống kê cự li ném tạ của một vận động viên.

    Cự li

    [19; 21)

    [21; 23)

    [23; 25)

    [25; 27)

    [27; 29)

    Tần số

    13

    45

    24

    12

    6

    Hãy tính độ lệch chuẩn của mẫu số liệu ghép nhóm trên (kết quả được làm tròn đến hàng phần trăm)

    Đáp án: 2,07

    Ta có:

    Cự li

    [19; 21)

    [21; 23)

    [23; 25)

    [25; 27)

    [27; 29)

    Giá trị đại diện

    20

    22

    24

    26

    28

    Tần số

    13

    45

    24

    12

    6

    Cỡ mẫu: n = 100

    Số trung bình:

    \overline{x} = \frac{13.20 + 45.22 +24.24 + 12.26 + 6.28}{100} = 23,06

    Phương sai:

    s^{2} = \frac{1}{100}\lbrack 13.(20 -23,06)^{2} + 45.(22 - 23,06)^{2}

    + 24.(24 - 23,06)^{2} + 12.(26 -23,06)^{2} + 6.(28 - 23,06)^{2}brack \approx 4,28

    Độ lệch chuẩn: \sigma = \sqrt{4,28}\approx 2,07.

  • Câu 30: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu

    Kết quả đo chiều cao của 100 cây thực nghiệm 2 năm tuổi được cho trong bảng sau:

    Chiều cao (m)

    [8,4; 8,6)

    [8,6; 8,8)

    [8,8; 9,0)

    [9,0; 9,2)

    [9,2; 9,4)

    Số cây

    5

    12

    25

    44

    14

    Xác định khoảng biến thiên của mẫu số liệu?

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu là R =
9,4 - 8,4 = 1.

  • Câu 31: Vận dụng
    Xét tính đúng sai của các khẳng định

    Bảng dưới đây thống kê điểm thi học kỳ I môn tiếng Anh của học sinh hai lớp 12A và 12B năm học 2023-2024.

    Điểm thi

    [0; 2)

    [2; 4)

    [4; 6)

    [6; 8)

    [8; 10)

    Số học sinh lớp 12A

    1

    5

    20

    8

    6

    Số học sinh lớp 12B

    2

    3

    10

    18

    7

    Xét tính đúng sai của các kết luận sau?

    a) Khoảng biến thiên của mẫu số liệu ghép nhóm của mỗi lớp là bằng nhau. Đúng||Sai

    b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12A bằng 2,6. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12B bằng 2,57. Sai||Đúng

    d) Nếu so sánh theo khoảng tứ phân vị thì điểm thi môn tiếng Anh của lớp 12B đồng đều hơn so với lớp 12A. Sai||Đúng

    Đáp án là:

    Bảng dưới đây thống kê điểm thi học kỳ I môn tiếng Anh của học sinh hai lớp 12A và 12B năm học 2023-2024.

    Điểm thi

    [0; 2)

    [2; 4)

    [4; 6)

    [6; 8)

    [8; 10)

    Số học sinh lớp 12A

    1

    5

    20

    8

    6

    Số học sinh lớp 12B

    2

    3

    10

    18

    7

    Xét tính đúng sai của các kết luận sau?

    a) Khoảng biến thiên của mẫu số liệu ghép nhóm của mỗi lớp là bằng nhau. Đúng||Sai

    b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12A bằng 2,6. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12B bằng 2,57. Sai||Đúng

    d) Nếu so sánh theo khoảng tứ phân vị thì điểm thi môn tiếng Anh của lớp 12B đồng đều hơn so với lớp 12A. Sai||Đúng

    a) Đúng. Khoảng biến thiên:

    R_{12A} = R_{12B} = 10 - 0 =
10.

    b) Lớp 12A:

    Ta có

    Q_{1} = 4 + \frac{\frac{1}{4}.40 - (1 +
5)}{20}.(6 - 4) = 4,4.

    Q_{3} = 6 + \frac{\frac{3}{4}.40 - (1 +
5 + 20)}{8}.(8 - 6) = 7.

    \Rightarrow \Delta Q_{12A} = Q_{3} -
Q_{1} = 2,6.

    c) Lớp 12B:

    Ta có

    Q_{1} = 4 + \frac{\frac{1}{4}.40 - (2 +
3)}{10}.(6 - 4) = 5.

    Q_{3} = 6 + \frac{\frac{3}{4}.40 - (2 +
3 + 10)}{18}.(8 - 6) = \frac{23}{3}.

    \Rightarrow \Delta Q_{12B} = Q_{3} -
Q_{1} = 2,67.

    d) Ta có \Delta Q_{12A} < \Delta
Q_{12B} \Rightarrow Lớp 12A sẽ đồng đều hơn so với lớp 12B.

  • Câu 32: Thông hiểu
    Tính phương sai của mẫu số liệu

    Cho bảng phân bố tần số ghép lớp về độ dài của 60 lá dương xỉ trưởng thành như sau:

    Độ dài (cm)

    \lbrack 10;20) \lbrack 20;30) \lbrack 30;40) \lbrack 40;50\rbrack

    Tần số

    8 18 24 10

    Tính phương sai bảng phân bố tần số ghép lớp đã cho

    Hướng dẫn:

    Độ dài (cm)

    \lbrack 10;20) \lbrack 20;30) \lbrack 30;40) \lbrack 40;50\rbrack

    Giá trị đại diện

    15 25 35 45

    Tần số

    8 18 24 10

    Trước hết ta có \overline{x} = \frac{15.8
+ 25.18 + 35.24 + 45.10}{60} = 31.

    Khi đó phương sai:

    s_{x}^{2} = \frac{8.(15
- 31)^{2} + 18 \cdot (25 - 31)^{2} + 24.(35 - 31)^{2} + 10.(45 -
31)^{2}}{60} = 84

  • Câu 33: Nhận biết
    Xét tính đúng sai của các nhận định

    Phỏng vấn một số học sinh lớp 11 về thời gian (giờ) ngủ của một buổi tối, thu được bảng số liệu sau:

    a) Số lượng học sinh nam là 45 bạn. Đúng||Sai

    b) Thời gian ngủ trung bình của các bạn học sinh nam là 8 giờ. Đúng||Sai

    c) Phương sai của mẫu số liệu trên là s^{2} = 3. Sai||Đúng

    d) Độ lệch chuẩn là 9. Sai||Đúng

    Đáp án là:

    Phỏng vấn một số học sinh lớp 11 về thời gian (giờ) ngủ của một buổi tối, thu được bảng số liệu sau:

    a) Số lượng học sinh nam là 45 bạn. Đúng||Sai

    b) Thời gian ngủ trung bình của các bạn học sinh nam là 8 giờ. Đúng||Sai

    c) Phương sai của mẫu số liệu trên là s^{2} = 3. Sai||Đúng

    d) Độ lệch chuẩn là 9. Sai||Đúng

    a) Đúng, b) Đúng, c) Sai, d) Sai.

    Số lượng học sinh nam là : 6 + 10 + 13 +
9 + 7 = 45

    Thời gian ngủ trung bình của các bạn học sinh nam là :

    \overline{x} = \frac{1}{45}.\lbrack
6.4,5 + 10.5,5 + 13.6,5 + 9.7,5 + 7.8,5\rbrack =
\frac{587}{90}

    Phương sai của mẫu số liệu trên là

    s^{2} = \frac{1}{45}.[ 6.4,5^{2} +10.5,5^{2} + 13.6,5^{2}+ 9.7,5^{2} + 7.8,5^{2}] - \left(\frac{587}{90} \right)^{2} = 1,5773

    Độ lệch chuẩn là s =
\sqrt{1,5773}.

  • Câu 34: Thông hiểu
    Ghi đáp án vào ô trống

    Thống kê thời gian làm bài test ngắn của học sinh hai lớp 12A và 12B ghi lại trong bảng sau:

    Thời gian (phút)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    [10; 11)

    Học sinh lớp 12A

    8

    10

    13

    10

    9

    Học sinh lớp 12B

    4

    12

    17

    14

    3

    Nếu so sánh theo khoảng tứ phân vị thì học sinh lớp nào có thời gian làm bài đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Thống kê thời gian làm bài test ngắn của học sinh hai lớp 12A và 12B ghi lại trong bảng sau:

    Thời gian (phút)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    [10; 11)

    Học sinh lớp 12A

    8

    10

    13

    10

    9

    Học sinh lớp 12B

    4

    12

    17

    14

    3

    Nếu so sánh theo khoảng tứ phân vị thì học sinh lớp nào có thời gian làm bài đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 35: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Tìm hiểu thời gian (đơn vị: giờ) sử dụng điện thoại di động của một nhóm bạn trẻ thu được kết quả sau như sau:

    Thời gian

    [0; 5)

    [5; 10)

    [10; 15)

    [15; 20)

    [20; 25)

    [25; 30)

    Số bạn

    2

    6

    8

    9

    3

    2

    Xác định tính đúng sai của các đáp án dưới đây?

    a) Khoảng biến thiên của mẫu số liệu ghép nhóm này là 25. Sai||Đúng

    b) Nhóm chứa tứ phân vị thứ 3 là [15; 20). Đúng||Sai

    c) Số trung bình của thống kê là 10. Sai||Đúng

    d) Khoảng tứ phân của mẫu số liệu ghép nhóm này lớn hơn 10. Sai||Đúng

    Đáp án là:

    Tìm hiểu thời gian (đơn vị: giờ) sử dụng điện thoại di động của một nhóm bạn trẻ thu được kết quả sau như sau:

    Thời gian

    [0; 5)

    [5; 10)

    [10; 15)

    [15; 20)

    [20; 25)

    [25; 30)

    Số bạn

    2

    6

    8

    9

    3

    2

    Xác định tính đúng sai của các đáp án dưới đây?

    a) Khoảng biến thiên của mẫu số liệu ghép nhóm này là 25. Sai||Đúng

    b) Nhóm chứa tứ phân vị thứ 3 là [15; 20). Đúng||Sai

    c) Số trung bình của thống kê là 10. Sai||Đúng

    d) Khoảng tứ phân của mẫu số liệu ghép nhóm này lớn hơn 10. Sai||Đúng

    Ta có

    Thời gian

    [0; 5)

    [5; 10)

    [10; 15)

    [15; 20)

    [20; 25)

    [25; 30)

    Giá trị đại diện

    2,5

    7,5

    12,5

    17,5

    22,5

    17,5

    Số bạn

    2

    6

    8

    9

    3

    2

    a) Sai: Khoảng biến thiên của mẫu số liệu ghép nhóm là R = 30 - 0 = 30.

    b) Đúng:

    16 < \frac{3n}{4} = \frac{3.30}{4}
= \frac{90}{4} = 22,5 < 25 nên nhóm chứa tứ phân vị thứ 3 là [15;20).

    c) Sai: Thời gian sử dụng điện thoại trung bình là:

    \overline{x} = \frac{2.2,5 + 6.7,5 +
8.12,5 + 9.17,5 + 3.22,5 + 2.27,5}{30} = \frac{43}{3} \approx
14,3

    d) Sai: Ta có: \frac{n}{4} =
7,5;\frac{n}{2} = 15;\frac{3n}{4} = 22,5

    \left\{ \begin{matrix}
  {Q_1} = 5 + \dfrac{{\dfrac{{30}}{4} - 2}}{6}.5 = 9,58 \hfill \\
  {Q_3} = 15 + \dfrac{{\dfrac{{90}}{4} - 16}}{9}.5 \approx 18,61 \hfill \\ 
\end{matrix}  ight. \Rightarrow \Delta Q = {Q_3} - {Q_1} \approx 9,03 < 10

  • Câu 36: Vận dụng
    Tìm giá trị ngoại lệ của mẫu số liệu

    Dưới đây là thống kê thời gian 100 lần đi làm bằng xe bus từ nhà đến trường của bạn Lan:

    Thời gian (phút)

    [15; 81)

    [18; 21)

    [21; 24)

    [24; 27)

    [27; 30)

    [30; 33)

    Số lượt

    22

    38

    27

    8

    4

    1

    Giá trị nào sau đây là giá trị ngoại lệ của mẫu số liệu?

    Hướng dẫn:

    Ta có:

    Thời gian (phút)

    [15; 81)

    [18; 21)

    [21; 24)

    [24; 27)

    [27; 30)

    [30; 33)

    Số lượt

    22

    38

    27

    8

    4

    1

    Tần số tích lũy

    22

    60

    87

    95

    99

    100

    Cỡ mẫu N = 100 \Rightarrow \frac{N}{4} =
25

    => Nhóm chứa tứ phân vị thứ nhất là [18; 21)

    Do đó: l = 18;m = 22,f = 38;c = 21 - 18 =
3

    Khi đó tứ phân vị thứ nhất là:

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 18 + \frac{25 - 22}{38}.3 =\frac{693}{38}

    N = 100 \Rightarrow \frac{3N}{4} =
75

    => Nhóm chứa tứ phân vị thứ ba là [21; 24)

    Do đó: l = 21;m = 60,f = 27;c =
3

    Khi đó tứ phân vị thứ ba là:

    \Rightarrow Q_{3} = l +
\frac{\frac{3N}{4} - m}{f}.c = 21 + \frac{75 - 60}{27}.3 =
\frac{68}{3}

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta_{Q} = Q_{3} - Q_{1} \approx
4,43

    Trong một lần duy nhất Lan đi hết 29 phút, thời gian đi của Lan thuộc nhóm [30; 33)

    Q_{3} + 1,5\Delta Q = \frac{6683}{228}
< 30 nên thời gian của lần Lan đi hết 29 phút là giá trị ngoại lệ của mẫu số liệu ghép nhóm.

  • Câu 37: Thông hiểu
    Chọn đáp án đúng

    Số đặc trưng nào sau đây thay đổi khi ta cộng tất cả các giá trị của mẫu số liệu với 1 số không đổi d?

    Hướng dẫn:

    Giả sử mẫu số liệu có n giá trị được sắp xếp theo thứ tự không giảm là x_{1};\ x_{2};\ \ldots;\ x_{n}. Khi đó:

    Giá trị trung bình \overline{x} =
\frac{1}{n}\left( x_{1} + \ x_{2} + \ \ldots + x_{n} \right)

    Khoảng biến thiên R = x_{n} -
x_{1}.

    Khoảng tứ phân vị \Delta_{Q} = Q_{3} -
Q_{1}.

    Phương sai {S_{x}}^{2} =
\frac{1}{n}\left\lbrack \left( x_{1} - \overline{x} \right)^{2} + \left(
x_{2} - \overline{x} \right)^{2} + ... + \left( x_{n} - \overline{x}
\right)^{2} \right\rbrack

    Độ lệch chuẩn S_{x} =
\sqrt{{S_{x}}^{2}}

    Khi cộng tất cả các giá trị với số không đổi d ta được dãy số liệu x_{1} + d;\ x_{2} + d;\ \ldots;\ x_{n} + d

    Giá trị trung bình {\overline{x}}^{'}
= \frac{1}{n}\left( x_{1} + d + \ x_{2} + d + \ \ldots + x_{n} + d
\right)\  = \overline{x} + d

    Khoảng biến thiên R' = x_{n} + d -
\left( x_{1} + d \right) = x_{n} - x_{1} = R.

    Khoảng tứ phân vị {\Delta_{Q}}^{'} =
Q_{3} + d - \left( Q_{1} + d \right) = \Delta_{Q}.

    Phương sai

    {{S^{'}}_{x}}^{2} =
\frac{1}{n}\lbrack\left( x_{1} + d - \overline{x} - d \right)^{2} +
\left( x_{2} + d - \overline{x} - d \right)^{2}

    + ... + \left( x_{n} + d - \overline{x}
- d \right)^{2}\rbrack = {S_{x}}^{2}

    Độ lệch chuẩn {S'}_{x} =
\sqrt{{{S'}_{x}}^{2}} = S_{x}

    Từ đó suy ra giá trị trung bình sẽ thay đổi khi ta cộng tất cả các giá trị của dãy số liệu với một số không đổi d.

  • Câu 38: Vận dụng
    Tính tổng độ lệch chuẩn

    Biểu đồ dưới đây mô tả kết quả điều tra về mức lương khởi điểm (đơn vị: triệu đồng) của một số công nhân ở hai khu vực AB.

    A graph with blue and yellow barsDescription automatically generated

    Tổng độ lệch chuẩn của mẫu số liệu ghép nhóm ở 2 khu vực gần bằng với số nào sau đây nhất.

    Hướng dẫn:

    Ta có

    A grid of numbers and lettersDescription automatically generated

    » Xét mẫu số liệu của khu vực A

    Cỡ mẫu là n_{A} = 4 + 5 + 5 + 4 + 2 =
20.

    Số trung bình của mẫu số liệu ghép nhóm là

    {\overline{x}}_{A} = \frac{4 \cdot 5,5 +
5 \cdot 6,5 + 5 \cdot 7,5 + 4 \cdot 8,5 + 2 \cdot 9,5}{20} =
7,25.

    Phương sai của mẫu số liệu ghép nhóm là

    S_{A}^{2} = \frac{1}{20}\left( 4 \cdot
5,5^{2} + 5 \cdot 6,5^{2} + 5 \cdot 7,5^{2} + 4 \cdot 8,5^{2} + 2 \cdot
9,5^{2} \right) - 7,25^{2} = 1,5875.

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là S_{A} = \sqrt{1,5875} \approx 1,2300.

    » Xét mẫu số liệu của khu vực B

    Cỡ mẫu là n_{B} = 3 + 6 + 5 + 5 + 1 =
20.

    Số trung bình của mẫu số liệu ghép nhóm là

    {\overline{x}}_{B} = \frac{3 \cdot 5,5 +
6 \cdot 6,5 + 5 \cdot 7,5 + 5 \cdot 8,5 + 1 \cdot 9,5}{20} =
7,25.

    Phương sai của mẫu số liệu ghép nhóm là

    S_{B}^{2} = \frac{1}{20}\left( 3 \cdot
5,5^{2} + 6 \cdot 6,5^{2} + 5 \cdot 7,5^{2} + 5 \cdot 8,5^{2} + 1 \cdot
9,5^{2} \right) - 7,25^{2} = 1,2875.

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là S_{B} = \sqrt{1,2875} \approx 1,1347.

    Tổng: khoảng 2,3647.

  • Câu 39: Thông hiểu
    Ghi đáp án vào ô trống

    Thống kê tổng số giờ nắng trong tháng 9 tại khu vực A trong các năm từ 2004 đến 2023 được thống kê như sau:

    111,6

    134,9

    130,3

    134,2

    140,9

    109,3

    154,4

    156,3

    116,1

    96,7

    105,2

    80,8

    80,8

    110

    109

    139

    145

    161

    126

    114

    Lập bảng tần số ghép nhóm với nhóm đầu tiên là [80; 98) và độ dài nhóm bằng 18. Tìm phương sai của mẫu số liệu ghép nhóm đó? (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Thống kê tổng số giờ nắng trong tháng 9 tại khu vực A trong các năm từ 2004 đến 2023 được thống kê như sau:

    111,6

    134,9

    130,3

    134,2

    140,9

    109,3

    154,4

    156,3

    116,1

    96,7

    105,2

    80,8

    80,8

    110

    109

    139

    145

    161

    126

    114

    Lập bảng tần số ghép nhóm với nhóm đầu tiên là [80; 98) và độ dài nhóm bằng 18. Tìm phương sai của mẫu số liệu ghép nhóm đó? (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 40: Thông hiểu
    Xác định tứ phân vị thứ ba

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    Tần số

    [150; 155)

    15

    [155; 160)

    10

    [160; 165)

    40

    [165; 170)

    27

    [170; 175)

    5

    [175; 180)

    3

    Tính tứ phân vị thứ ba của mẫu số liệu ghép nhóm?

    Hướng dẫn:

    Ta có:

    Đối tượng

    Tần số

    Tần số tích lũy

    [150; 155)

    15

    15

    [155; 160)

    11

    26

    [160; 165)

    39

    65

    [165; 170)

    27

    92

    [170; 175)

    5

    97

    [175; 180)

    3

    100

    Cỡ mẫu là: N = 100

    \frac{3N}{4} = 75=> tứ phân vị thứ ba nhóm [165; 170) (vì 75 nằm giữa hai tần số tích lũy 65 và 92)

    Do đó: \left\{ \begin{matrix}l = 165;\dfrac{3N}{4} = 75;m = 65;f = 27 \\c = 170 - 165 = 5 \\\end{matrix} ight.

    Khi đó tứ phân vị thứ ba là:

    Q_{3} = l + \dfrac{\left( \frac{3N}{4} -m ight)}{f}.c = 165 + \frac{75 - 65}{27}.5 \approx 166,85

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (42%):
    2/3
  • Thông hiểu (48%):
    2/3
  • Vận dụng (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo