Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 3 Các số đặc trưng đo mức độ phân tán cho mẫu số liệu ghép nhóm

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 40 câu
  • Điểm số bài kiểm tra: 40 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tìm số trung bình

    Thống kê mức lương (đơn vị: triệu đồng) của nhân viên hai phân xưởng A và B được ghi lại trong bảng sau:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Phân xưởng A

    4

    5

    5

    4

    2

    Phân xưởng B

    3

    6

    5

    5

    1

    Số trung bình của mẫu số liệu ghép nhóm của đối tương A và đối tượng B lần lượt là:

    Hướng dẫn:

    Ta có:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

     

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

     

    Phân xưởng A

    4

    5

    5

    4

    2

    N = 20

    Phân xưởng B

    3

    6

    5

    5

    1

    N’ = 20

    Số trung bình của mẫu số liệu ghép nhóm của đối tượng A là:

    \overline{x_{A}} = \frac{4.5,5 + 5.6,5 +
5.7,5 + 4.8,5 + 2.9,5}{20} = 7,25

    Số trung bình của mẫu số liệu ghép nhóm của đối tượng B là:

    \overline{x_{B}} = \frac{3.5,5 + 6.6,5 +
5.7,5 + 5.8,5 + 1.9,5}{20} = 7,25

  • Câu 2: Nhận biết
    Xét tính đúng sai của các nhận định

    Một nhà thực vật học độ chiều dài trung bình của 74 lá cây (đơn vị: milimét) và thu được bảng tần số ghép nhóm như sau:

    a) Chiều dài trung bình của 74 lá cây bằng \approx 6,4(\ mm). Sai||Đúng

    b) Khoảng biến thiên của mẫu số liệu là 2,4. Sai||Đúng

    c) Phương sai của mẫu số liệu \approx
0,35. Đúng||Sai

    d) Khoảng tứ phân vị của mẫu số liệu trên \approx 8,93. Sai||Đúng

    (Các kết quả tính được trong bài làm tròn đến hàng phần trăm)

    Đáp án là:

    Một nhà thực vật học độ chiều dài trung bình của 74 lá cây (đơn vị: milimét) và thu được bảng tần số ghép nhóm như sau:

    a) Chiều dài trung bình của 74 lá cây bằng \approx 6,4(\ mm). Sai||Đúng

    b) Khoảng biến thiên của mẫu số liệu là 2,4. Sai||Đúng

    c) Phương sai của mẫu số liệu \approx
0,35. Đúng||Sai

    d) Khoảng tứ phân vị của mẫu số liệu trên \approx 8,93. Sai||Đúng

    (Các kết quả tính được trong bài làm tròn đến hàng phần trăm)

    a) Chiều dài trung bình của 74 lá cây là:

    \overline{x} = \frac{1}{74}.\lbrack
5,65.5 + 6,05.9 + 6,45 \cdot 15 + 6,85 \cdot 19 + 7,25.16 + 7,65 \cdot 8
+ 8,05.2\rbrack

    = \frac{5029}{740} \approx 6,8(\
mm)

    Suy ra a) sai.

    b) Khoảng biến thiên của mẫu số liệu là 8,25 - 5,45 = 2,8 nên b) sai.

    c) Phương sai của mẫu số liệu trên là

    {S_{x}}^{2} = \frac{5.(5,65 - 6,8)^{2} +
9.(6,05 - 6,8)^{2} + 15.(6,45 - 6,8)^{2}}{74}

    + \frac{19.(6,85 - 6,8)^2+ 16.(7,25 -6,8)^{2}}{74}

    + \frac{8(7,65 - 6,8)^{2} + 2(8,05 -
6,8)^{2}}{74} \approx 0,35(\ mm)

    Vậy c) đúng.

    d) Cỡ mẫu: n = 5 + 9 + 15 + 19 + 16 + 8 +
2 = 74.

    Gọi x_{1};\ x_{2};\ \ldots;\ x_{74}là độ dài của 74 lá cây và được sắp xếp theo thứ tự không giảm.

    Tứ phân vị thứ nhất Q_{1}x_{19}. Do x_{19} thuộc nhóm \lbrack 6,25;6,65) nên ta có Q_{1} = 6,25 + \frac{\frac{74}{4} - 14}{15}.4 =
7,45.

    Tứ phân vị thứ ba Q_{3}x_{56}. Do x_{56} thuộc nhóm \lbrack 7,05;7,45) nên ta có Q_{3} = 7,05 + \frac{\frac{3.74}{4} - 48}{16}.4
\approx 8,93.

    Khi đó khoảng tứ phân vị là \Delta_{Q} =
Q_{3} - Q_{1} \approx 1,48. Vậy d) sai.

  • Câu 3: Vận dụng
    Tính tổng độ lệch chuẩn

    Biểu đồ dưới đây mô tả kết quả điều tra về mức lương khởi điểm (đơn vị: triệu đồng) của một số công nhân ở hai khu vực AB.

    A graph with blue and yellow barsDescription automatically generated

    Tổng độ lệch chuẩn của mẫu số liệu ghép nhóm ở 2 khu vực gần bằng với số nào sau đây nhất.

    Hướng dẫn:

    Ta có

    A grid of numbers and lettersDescription automatically generated

    » Xét mẫu số liệu của khu vực A

    Cỡ mẫu là n_{A} = 4 + 5 + 5 + 4 + 2 =
20.

    Số trung bình của mẫu số liệu ghép nhóm là

    {\overline{x}}_{A} = \frac{4 \cdot 5,5 +
5 \cdot 6,5 + 5 \cdot 7,5 + 4 \cdot 8,5 + 2 \cdot 9,5}{20} =
7,25.

    Phương sai của mẫu số liệu ghép nhóm là

    S_{A}^{2} = \frac{1}{20}\left( 4 \cdot
5,5^{2} + 5 \cdot 6,5^{2} + 5 \cdot 7,5^{2} + 4 \cdot 8,5^{2} + 2 \cdot
9,5^{2} \right) - 7,25^{2} = 1,5875.

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là S_{A} = \sqrt{1,5875} \approx 1,2300.

    » Xét mẫu số liệu của khu vực B

    Cỡ mẫu là n_{B} = 3 + 6 + 5 + 5 + 1 =
20.

    Số trung bình của mẫu số liệu ghép nhóm là

    {\overline{x}}_{B} = \frac{3 \cdot 5,5 +
6 \cdot 6,5 + 5 \cdot 7,5 + 5 \cdot 8,5 + 1 \cdot 9,5}{20} =
7,25.

    Phương sai của mẫu số liệu ghép nhóm là

    S_{B}^{2} = \frac{1}{20}\left( 3 \cdot
5,5^{2} + 6 \cdot 6,5^{2} + 5 \cdot 7,5^{2} + 5 \cdot 8,5^{2} + 1 \cdot
9,5^{2} \right) - 7,25^{2} = 1,2875.

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là S_{B} = \sqrt{1,2875} \approx 1,1347.

    Tổng: khoảng 2,3647.

  • Câu 4: Thông hiểu
    Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm

    Mỗi ngày bác Hương đều đi bộ để rèn luyện sức khoẻ. Quãng đường đi bộ mỗi ngày (đơn vị: km) của bác Hương trong 20 ngày được thống kê lại ở bảng sau:

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là

    Hướng dẫn:

    Cỡ mẫu

    n = 20

    Gọi x_{1};x_{2};\ldots;x_{20} là mẫu số liệu gốc về quãng đường đi bộ mỗi ngày của bác Hương trong 20 ngày được xếp theo thứ tự không giảm.

    Ta có: x_{1};\ldots;x_{3} \in \lbrack2,7;3,0);x_{4};\ldots;x_{9} \in \lbrack 3,0;3,3);x_{10};\ldots;x_{14}\in \lbrack 3,3;3,6);;x_{15};\ldots;x_{18} \in \lbrack3,6;3,9);x_{19};x_{20} \in \lbrack 3,9;4,2).

    Tứ phân vị thứ nhất của mẫu số liệu gốc là \frac{1}{2}\left( x_{5} + x_{6} \right) \in
\lbrack 3,0;3,3).

    Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: Q_{1} = 3,0 + \frac{\frac{20}{4} - 3}{6}(3,3 -
3,0) = 3,1

    Tứ phân vị thứ ba của mẫu số liệu gốc là \frac{1}{2}\left( x_{15} + x_{16} \right) \in
\lbrack 3,6;3,9).

    Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

    Q_{3} = 3,6 + \frac{\frac{3.20}{4} - (3
+ 6 + 5)}{4}(3,9 - 3,6) = 3,675

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:

    \Delta_{Q} = Q_{3} - Q_{1} =
0,575

  • Câu 5: Thông hiểu
    Chọn đáp án thích hợp

    Kết quả thống kê điểm trung bình năm học của hai lớp 12C và 12D như sau:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12CD

    2

    5

    4

    3

    1

    Nếu so sánh theo độ lệch chuẩn của mẫu số liệu ghép nhóm thì học sinh của lớp nào có điểm đồng đều hơn?

    Hướng dẫn:

    Ta có:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12D

    2

    5

    4

    3

    1

    Điểm trung bình của lớp 12C:

    \overline{x_{C}} = \frac{4.5,5 + 5.6,5 +3.7,5 + 4.8,5 + 2.9,5}{18} = \frac{65}{9}.

    Phương sai của mẫu số liệu ghép nhóm của lớp 12C:

    {S_{C}}^{2} = \frac{1}{18}\left(4.5,5^{2} + 5.6,5^{2} + 3.7,5^{2} + 4.8,5^{2} + 2.9,5^{2} ight) -\left( \frac{65}{9} ight)^{2} = \frac{569}{324}

    Suy ra độ lệch chuẩn của mẫu số liệu ghép nhóm lớp 12C là: S_{C} = \sqrt{{S_{C}}^{2}} =\sqrt{\frac{569}{324}} \approx 1,33

    Điểm trung bình của lớp 12D:

    \overline{x_{D}} = \frac{2.5,5 + 5.6,5 +4.7,5 + 3.8,5 + 1.9,5}{15} = \frac{217}{30}

    Phương sai của mẫu số liệu ghép nhóm của lớp 12D:

    {S_{D}}^{2} = \frac{1}{15}\left(2.5,5^{2} + 5.6,5^{2} + 4.7,5^{2} + 3.8,5^{2} + 1.9,5^{2} ight) -\left( \frac{217}{30} ight)^{2} = \frac{284}{225}

    Suy ra độ lệch chuẩn của mẫu số liệu ghép nhóm lớp 12D là: S_{D} = \sqrt{{S_{D}}^{2}} =\sqrt{\frac{284}{225}} \approx 1,12

    Ta có: S_{C} > S_{D} nên nếu so sánh theo độ lệch chuẩn của mẫu số liệu ghép nhóm thì học sinh lớp 12D có điểm đồng đều hơn lớp 12C.

  • Câu 6: Thông hiểu
    Tính phương sai của mẫu số liệu

    Thống kê kết quả giải rubik của một bạn học sinh được ghi lại như sau:

    Thời gian (giây)

    [8; 10)

    [10; 12)

    [12; 14)

    [14; 16)

    [16; 18)

    Số lần

    4

    6

    8

    4

    3

    Phương sai của mẫu số liệu ghép nhóm có giá trị gần nhất với giá trị nào sau đây?

    Hướng dẫn:

    Ta có:

    Thời gian (giây)

    [8; 10)

    [10; 12)

    [12; 14)

    [14; 16)

    [16; 18)

    Giá trị đại diện

    9

    11

    13

    15

    17

    Số lần

    4

    6

    8

    4

    3

    Số trung bình của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{4.9 + 6.11 + 8..13
+ 4.15 + 3.17}{25} = 12,68

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{25}\left( 4.9^{2} +
6.11^{2} + 8.13^{2} + 4.15^{2} + 3.17^{2} ight) - (12,68)^{2} =
5,9776

    Phương sai của mẫu số liệu ghép nhóm có giá trị gần nhất với giá trị 6,2.

  • Câu 7: Nhận biết
    Xác định khoảng biến thiên

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu đã cho là: R = 250 - 0 = 250.

  • Câu 8: Thông hiểu
    Ghi đáp án đúng vào ô trống

    Trong một đợt khám sức khỏe của 50 học sinh nam lớp 12, người ta được kết quả như trong bảng sau:

    Nhóm

    Tần số

    [160; 164)

    3

    [164; 168)

    8

    [168; 172)

    18

    [172; 176)

    12

    [176; 180)

    9

    n = 50

    Độ lệch chuẩn của mẫu số liệu ghép nhóm cho ở bảng trên bằng bao nhiêu centimets (làm tròn kết quả đến hàng phần mười)

    Đáp án: 4,5 (cm)

    Đáp án là:

    Trong một đợt khám sức khỏe của 50 học sinh nam lớp 12, người ta được kết quả như trong bảng sau:

    Nhóm

    Tần số

    [160; 164)

    3

    [164; 168)

    8

    [168; 172)

    18

    [172; 176)

    12

    [176; 180)

    9

    n = 50

    Độ lệch chuẩn của mẫu số liệu ghép nhóm cho ở bảng trên bằng bao nhiêu centimets (làm tròn kết quả đến hàng phần mười)

    Đáp án: 4,5 (cm)

    Số trung bình cộng của mẫu số liệu đó là:

    \overline{x} = \frac{3.162 + 8.166 +
18.170 + 12.174 + 9.178}{50} = 171,28\ (cm).

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{1}{50}\lbrack 3.(171,28 -162)^{2} + 8.(171,28 - 166)^{2} + 18.(171,28 - 170)^{2}

    + 12.(171,28 - 174)^{2} + 9.(171,28 -178)^{2}brack = 20,1216.

    Độ lệch chuẩn của mẫu số liệu là: s =
\sqrt{s^{2}} = \sqrt{20,1216} \approx 4,5\ (cm).

    Đáp số: 4,5 (cm).

  • Câu 9: Nhận biết
    Chọn công thức tính khoảng tứ phân vị

    Công thức tính khoảng tứ phân vị của mẫu số liệu ghép nhóm là

    Hướng dẫn:

    Công thức tính khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta_{Q} = Q_{3} - Q_{1}

  • Câu 10: Thông hiểu
    Chọn đáp án đúng

    Số đặc trưng nào sau đây thay đổi khi ta cộng tất cả các giá trị của mẫu số liệu với 1 số không đổi d?

    Hướng dẫn:

    Giả sử mẫu số liệu có n giá trị được sắp xếp theo thứ tự không giảm là x_{1};\ x_{2};\ \ldots;\ x_{n}. Khi đó:

    Giá trị trung bình \overline{x} =
\frac{1}{n}\left( x_{1} + \ x_{2} + \ \ldots + x_{n} \right)

    Khoảng biến thiên R = x_{n} -
x_{1}.

    Khoảng tứ phân vị \Delta_{Q} = Q_{3} -
Q_{1}.

    Phương sai {S_{x}}^{2} =
\frac{1}{n}\left\lbrack \left( x_{1} - \overline{x} \right)^{2} + \left(
x_{2} - \overline{x} \right)^{2} + ... + \left( x_{n} - \overline{x}
\right)^{2} \right\rbrack

    Độ lệch chuẩn S_{x} =
\sqrt{{S_{x}}^{2}}

    Khi cộng tất cả các giá trị với số không đổi d ta được dãy số liệu x_{1} + d;\ x_{2} + d;\ \ldots;\ x_{n} + d

    Giá trị trung bình {\overline{x}}^{'}
= \frac{1}{n}\left( x_{1} + d + \ x_{2} + d + \ \ldots + x_{n} + d
\right)\  = \overline{x} + d

    Khoảng biến thiên R' = x_{n} + d -
\left( x_{1} + d \right) = x_{n} - x_{1} = R.

    Khoảng tứ phân vị {\Delta_{Q}}^{'} =
Q_{3} + d - \left( Q_{1} + d \right) = \Delta_{Q}.

    Phương sai

    {{S^{'}}_{x}}^{2} =
\frac{1}{n}\lbrack\left( x_{1} + d - \overline{x} - d \right)^{2} +
\left( x_{2} + d - \overline{x} - d \right)^{2}

    + ... + \left( x_{n} + d - \overline{x}
- d \right)^{2}\rbrack = {S_{x}}^{2}

    Độ lệch chuẩn {S'}_{x} =
\sqrt{{{S'}_{x}}^{2}} = S_{x}

    Từ đó suy ra giá trị trung bình sẽ thay đổi khi ta cộng tất cả các giá trị của dãy số liệu với một số không đổi d.

  • Câu 11: Nhận biết
    Chọn đáp án đúng

    Một mẫu số liệu ghép nhóm có độ lệch chuẩn bằng bằng 3 thì có phương sai bằng

    Hướng dẫn:

    Phương sai: s^{2} = 9.

  • Câu 12: Nhận biết
    Tính thời gian trung bình của mẫu số liệu

    Kết quả khảo sát thời gian sử dụng liên tục (đơn vị: giờ) từ lúc sạc đầy cho đến khi hết của pin một số loại máy tính xách tay được mô tả như sau:

    Tính thời gian sử dụng pin trung bình?

    Hướng dẫn:

    Ta có:

    Thời gian (giờ)

    [7,2; 7,4)

    [7,4; 7,6)

    [7,6; 7,8)

    [7,8; 8,0)

    Giá trị đại diện

    7,3

    7,5

    7,7

    7,9

    Số máy vi tính

    2

    4

    7

    5

    Thòi gian trung bình là:

    \overline{x} = \frac{2.7,3 + 4.7,5 +
7.7,7 + 5.7,9}{18} = \frac{23}{3} \approx 7,7 giờ

  • Câu 13: Vận dụng
    Chọn khẳng định đúng

    Cân nặng (đơn vị: kg) của một số lợn con mới sinh thuộc hai giống A và B được cho ở bảng sau.

    Cân nặng

    [1,0; 1,1)

    [1,1; 1,2)

    [1,2; 1,3)

    [1,3; 1,4)

    Giống A

    8

    28

    32

    17

    Giống B

    13

    14

    24

    14

    Chọn đáp án có khẳng định đúng?

    Hướng dẫn:

    Đối với lợn con giống A

    Cân nặng

    [1,0; 1,1)

    [1,1; 1,2)

    [1,2; 1,3)

    [1,3; 1,4)

    Giống A

    8

    28

    32

    17

    Tần số tích lũy

    8

    36

    68

    85

    Cỡ mẫu N = 85

    Ta có: \frac{N}{4} = \frac{{85}}{4}

    => Nhóm chứa Q_{1} là [1,1; 1,2)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 1,1;m = 8,f = 28;c = 1,2
- 1,1 = 0,1

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 1,1 + \dfrac{\dfrac{85}{4} - 8}{28}.0,1\approx 1,15

    Ta có: \frac{3N}{4} = \frac{3.85}{4} =
\frac{255}{4}

    => Nhóm chứa Q_{3} là [1,2; 1,3)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 1,2;m = 36,f = 32;c =
1,3 - 1,2 = 0,1

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 1,2 + \dfrac{\dfrac{255}{4} - 36}{32}.0,1\approx 1,29.

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm A là \Delta Q_{A} = Q_{3} - Q_{1} \approx
0,14

    Đối với lợn con giống B

    Cân nặng

    [1,0; 1,1)

    [1,1; 1,2)

    [1,2; 1,3)

    [1,3; 1,4)

    Giống B

    13

    14

    24

    14

    Tần số tích lũy

    13

    27

    51

    65

    Cỡ mẫu N = 65

    Ta có: \frac{N}{4} =
\frac{65}{4}

    => Nhóm chứa Q_{1} là [1,1; 1,2)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 1,1;m = 13;f = 14;c =
1,2 - 1,1 = 0,1

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 1,1 + \dfrac{\dfrac{65}{4} - 13}{14}.0,1\approx 1,123

    Ta có: \frac{3N}{4} = \frac{3.65}{4} =
\frac{195}{4}

    => Nhóm chứa Q_{3} là [1,2; 1,3)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 1,2;m = 27;f = 24;c =
1,3 - 1,2 = 0,1

    \Rightarrow {Q_3} = l + \frac{{\frac{{3N}}{4} - m}}{f}.c= 1,2 + \frac{{\dfrac{{195}}{4} - 27}}{{24}}.0,1 \approx 1,29

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm B là \Delta Q_{B} = Q_{3} - Q_{1} \approx
0,167

    Ta thấy \Delta Q_{A} < \Delta
Q_{B} nên cân nặng của lợn con mới sinh thuộc giống A đồng đều hơn cân nặng của lợn con mới sinh thuộc giống B.

  • Câu 14: Nhận biết
    Xác định khoảng biến thiên của mẫu số liệu

    Chiều cao của 50 học sinh (chính xác đến cm) và nhóm được các kết quả như sau:

    Chiều cao (cm)

    Số học sinh

    (149,5; 154,5]

    5

    (154,5; 159,5]

    2

    (159,5; 164,5]

    6

    (164,5; 169,5]

    8

    (169,5; 174,5]

    9

    (174,5; 179,5]

    11

    (179,5; 184,5]

    6

    (184,5; 189,5]

    3

    Tìm khoảng biến thiên của mẫu số liệu ghép nhóm trên?

    Hướng dẫn:

    Ta có khoảng biến thiên của mẫu số liệu ghép nhóm đã cho là:

    R = 189,5 - 149,5 = 40.

  • Câu 15: Thông hiểu
    Tìm tứ phân vị thứ nhất của mẫu số liệu

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Tính giá trị Q_{1} của mẫu dữ liệu ghép nhóm trên?

    Hướng dẫn:

    Ta có:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

     

    Số ngày

    2

    7

    7

    3

    1

    N = 20

    Tần số tích lũy

    2

    9

    16

    19

    20

     

    Cỡ mẫu N = 20 \Rightarrow \frac{N}{4} =
5

    => Nhóm chứa tứ phân vị thứ nhất là [7; 9)

    (Vì 5 nằm giữa hai tần số tích lũy 2 và 9)

    Do đó: l = 7;m = 2,f = 7;c = 9 - 7 =
2

    Khi đó tứ phân vị thứ nhất là:

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 7 + \dfrac{5 - 2}{7}.2 =\dfrac{55}{7}

  • Câu 16: Vận dụng
    Tìm khoảng biến thiên và khoảng tứ phân vị

    Điều tra 42 học sinh của một lớp 11 về số giờ tự học ở nhà, người ta có bảng sau đây:

    Lớp (Số giờ tự học)

    Tần số

    Tần số tích lũy

    \lbrack 1\ ;\ 2) 8 8
    \lbrack 2\ ;\ 3) 10 18
    \lbrack 3\ ;\ 4) 12 30
    \lbrack 4\ ;\ 5) 9 39
    \lbrack 5\ ;\ 6) 3 42
    n = 42

    Khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm trên lần lượt là

    Hướng dẫn:

    Trong mẫu số liệu ghép nhóm trên, ta có: đầu mút trái của nhóm 1 là a_{1} = 1, đầu mút phải của nhóm 5 là a_{6} = 6. Vậy khoảng biến thiên của mẫu số liệu ghép nhóm đó là: R = a_{6} -
a_{1} = 6 - 1 = 5(giờ)

    Số phần tử của mẫu là n = 42

    Ta có: \frac{n}{4} = \frac{42}{4} =
10,58 < 10,5 <
18.

    Suy ra nhóm 2 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng 10,5. Xét nhóm 2 là nhóm \lbrack 2\ ;\ 3)s = 2; h =
1; n_{2} = 10 và nhóm 1 là nhóm \lbrack 1\ ;\ 2)cf_{1} = 8.

    Áp dụng công thức, ta có tứ phân vị thứ nhất là:

    Q_{1} = 2 + \left( \frac{10,5 - 8}{10}
\right).1 = 2,25(giờ)

    Ta có: \frac{3n}{4} = \frac{3.42}{4} =
31,530 < 31,5 <
39. Suy ra nhóm 4 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng 31,5. Xét nhóm 4 là nhóm \lbrack 4\ ;\ 5)t = 4; l =
1; n_{4} = 9 và nhóm 3 là nhóm \lbrack 3\ ;\ 4)cf_{3} = 30.

    Áp dụng công thức, ta có tứ phân vị thứ ba là:

    Q_{3} = 4 + \left( \frac{31,5 - 30}{9}
\right).1 \approx 4,2(giờ)

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho là:

    \Delta_{Q} = Q_{3} - Q_{1} \approx 4,2 -2,25= 1,95(giờ)

  • Câu 17: Nhận biết
    Tìm khoảng biến thiên

    Thống kê tốc độ của các loại xe hơi (đơn vị: km/h) được ghi lại như sau:

    42

    43,4

    43,4

    46,5

    46,7

    46,8

    47,5

    47,7

    48,1

    48,4

    50,8

    51,1

    52,7

    53,9

    54,8

    57,6

    57,5

    59,6

    60,3

    61,1

    Lập bảng tần số ghép nhóm với nhóm đầu [42; 46) và độ dài mỗi nhóm bằng 4. Tìm khoảng biến thiên của mẫu dữ liệu ghép nhóm?

    Hướng dẫn:

    Ta lập được bảng tần số ghép nhóm như sau:

    Tốc độ

    [42; 46)

    [46; 50)

    [50; 54)

    [54; 58)

    [58; 62)

    Số xe

    3

    7

    4

    3

    3

    Vậy khoảng biến thiên của mẫu dữ liệu ghép nhóm là R = 62 - 42 = 20.

  • Câu 18: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu ghép nhóm

    Thống kê đường kính thân gỗ của một số cây xoan đào 7 năm tuổi được trồng ở một lâm trường ở bảng 1.

    Đường kính

    \lbrack 40;45) \lbrack 45;50) \lbrack 50;55) \lbrack 55;60) \lbrack 60;65)

    Tần số

    5

    20

    18

    7

    3

    Hãy tìm khoảng biến thiên của mẫu số liệu ghép nhóm trên.

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm là

    a_{m + 1} - a_{1} = 65 - 40 =
25.

  • Câu 19: Thông hiểu
    Tính khoảng tứ phân vị của mẫu số liệu

    Kiểm tra điện lượng của một số viên pin tiểu do một hãng sản xuất thu được kết quả sau.

    Điện lượng (nghìn mAh)

    [0,9; 0,95)

    [0,95; 1,0)

    [0,1; 1,05)

    [1,05; 1,1)

    [1,1; 1,15)

    Số viên pin

    10

    20

    35

    15

    5

    Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm này? (Làm tròn các kết quả đến hàng phần trăm)

    Hướng dẫn:

    Ta có:

    Điện lượng (nghìn mAh)

    [0,9; 0,95)

    [0,95; 1,0)

    [1,0; 1,05)

    [1,05; 1,1)

    [1,1; 1,15)

    Số viên pin

    10

    20

    35

    15

    5

    Tần số tích lũy

    10

    30

    65

    80

    85

    Cỡ mẫu N = 85

    \frac{N}{4} = \frac{85}{4}

    => Nhóm chứa Q_{1} là [0,95; 1,0)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 0,95;m = 10,f = 20;c = 1
- 0,95 = 0,05

    \Rightarrow {Q_1} = l + \dfrac{{\dfrac{N}{4} - m}}{f}.c = 0,95 + \dfrac{{\dfrac{{85}}{4} - 10}}{{20}}.0,05 \approx 0,98

    \frac{3N}{4} = \frac{3.85}{4} =
\frac{255}{4}

    => Nhóm chứa Q_{3} là [1,0; 1,05)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 1,0;m = 30,f = 35;c =
1,05 - 1,0 = 0,05

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 1,0 + \dfrac{\dfrac{255}{4} - 30}{35}.0,05\approx 1,05.

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là \Delta_{Q} = Q_{3} - Q_{1} \approx
0,07

  • Câu 20: Nhận biết
    Xét tính đúng sai của các nhận định

    Số tiền đầu tư của một cửa hàng đối với hai lĩnh vực A, B là như nhau và số tiền thu được mỗi tháng trong 24 tháng từ hai lĩnh vực trên được ghi lại ở bảng sau (đơn vị: triệu đồng):

    a) Giá trị trung bình khi đầu tư vào 2 lĩnh vực A và B là như nhau. Đúng||Sai

    b) Phương sai của số tiền thu được từ lĩnh vực A qua các tháng là 5.Sai||Đúng

    c) Độ lệch chuẩn của số tiền thu được từ lĩnh vực B qua các tháng \approx 8, 42. Đúng||Sai

    d) Đầu tư vào lĩnh vực B rủi ro hơn. Đúng||Sai

    Đáp án là:

    Số tiền đầu tư của một cửa hàng đối với hai lĩnh vực A, B là như nhau và số tiền thu được mỗi tháng trong 24 tháng từ hai lĩnh vực trên được ghi lại ở bảng sau (đơn vị: triệu đồng):

    a) Giá trị trung bình khi đầu tư vào 2 lĩnh vực A và B là như nhau. Đúng||Sai

    b) Phương sai của số tiền thu được từ lĩnh vực A qua các tháng là 5.Sai||Đúng

    c) Độ lệch chuẩn của số tiền thu được từ lĩnh vực B qua các tháng \approx 8, 42. Đúng||Sai

    d) Đầu tư vào lĩnh vực B rủi ro hơn. Đúng||Sai

    Số tiền trung bình thu được từ lĩnh vực A, B tương ứng là

    \overline{x_{A}} = \frac{1}{24}(2.7,5 +
4.12,5 + 12.17,5 + 4.22,5 + 2.27,5) = 17,5

    \overline{x_{B}} = \frac{1}{24}(8.7,5 +
2.12,5 + 4.17,5 + 2.22,5 + 8.27,5) = 17,5

    Suy ra a) đúng.

    Phương sai của số tiền thu được hàng tháng khi đầu tư vào lĩnh vực A, B tương ứng là:

    S_{\ _{x_{A}}}^{2} = \frac{1}{24}\lbrack
2.(17,5 - 7,5)^{2} + 4.(17,5 - 12,5)^{2}

    + 12.0^{2} + 4.(17,5 - 22,5)^{2} +
2.(17,5 - 27,5)^{2}\rbrack = 25

    \Rightarrow S_{x_{A}} = 5 suy ra b) sai.

    S_{\ _{x_{B}}}^{2} = \frac{1}{24}\lbrack
8.(17,5 - 7,5)^{2} + 2.(17,5 - 12,5)^{2}

    + 4.0^{2} + 2.(17,5 - 22,5)^{2} +
8.(17,5 - 27,5)^{2}\rbrack \approx 70,8

    \Rightarrow S_{x_{B}} \approx
8,42 suy ra c) đúng.

    Do S_{x_{A}} < S_{x_{B}}nên đầu tư vào lĩnh vực B rủi ro nhiều hơn. Suy ra d) đúng.

  • Câu 21: Nhận biết
    Tính giá trị trung bình của mẫu số liệu

    Cho bảng thống kê kết quả cự li ném bóng của một người như sau:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Số lần

    13

    45

    24

    12

    6

    Cự li ném bóng trung bình của người đó là:

    Hướng dẫn:

    Ta có:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Giá trị đại diện

    19,25

    19,75

    20,25

    20,75

    21,25

    Số lần

    13

    45

    24

    12

    6

    Cự li trung bình là:

    \overline{x} = \frac{13.9,25 + 45.19,75
+ 24.20,25 + 12.20,75 + 6.21,25}{100} \approx 20,02

  • Câu 22: Thông hiểu
    Ghi đáp án vào ô trống

    Bảng dưới đây thống kê cự li ném tạ của một vận động viên.

    C li

    \lbrack 19;19,5)[19,5;20)\lbrack 20;20,5)\lbrack 20,5;21)\lbrack 21;21,5)

    Tn s

    13

    45

    24

    12

    6

    Phương sai của mẫu số liệu ghép nhóm trên là một số thập phân xấp xỉ có dạng \overline{a,b77}. Tính a + b.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Bảng dưới đây thống kê cự li ném tạ của một vận động viên.

    C li

    \lbrack 19;19,5)[19,5;20)\lbrack 20;20,5)\lbrack 20,5;21)\lbrack 21;21,5)

    Tn s

    13

    45

    24

    12

    6

    Phương sai của mẫu số liệu ghép nhóm trên là một số thập phân xấp xỉ có dạng \overline{a,b77}. Tính a + b.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 23: Thông hiểu
    Xét tính đúng sai của các mệnh đề

    Một huấn luyện viên môn bóng rổ thống kê lại số quả bóng được ném vào rổ của một nhóm vận động viên đang tập luyện mỗi người ném 11 lần như sau:

    Xác định tính đúng, sai của các mệnh đề sau:

    a) [NB] Từ biểu đồ, có thể lập được bảng tần số ghép nhóm gồm 5 nhóm biết mỗi nhóm có độ dài là 2 Đúng||Sai

    b) [TH] Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên lớn hơn 5 Sai||Đúng

    c) [TH] Số trung bình của mẫu số liệu bằng \frac{85}{14} Đúng||Sai

    d) [VD] Độ lệch chuẩn của mẫu số liệu trên lớn hơn 3. Sai||Đúng

    Đáp án là:

    Một huấn luyện viên môn bóng rổ thống kê lại số quả bóng được ném vào rổ của một nhóm vận động viên đang tập luyện mỗi người ném 11 lần như sau:

    Xác định tính đúng, sai của các mệnh đề sau:

    a) [NB] Từ biểu đồ, có thể lập được bảng tần số ghép nhóm gồm 5 nhóm biết mỗi nhóm có độ dài là 2 Đúng||Sai

    b) [TH] Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên lớn hơn 5 Sai||Đúng

    c) [TH] Số trung bình của mẫu số liệu bằng \frac{85}{14} Đúng||Sai

    d) [VD] Độ lệch chuẩn của mẫu số liệu trên lớn hơn 3. Sai||Đúng

    Ta có:

    a) Bảng tần số ghép nhóm thoả yêu cầu:

    Số quả bóng

    \lbrack 1;3)

    \lbrack 3;5)

    \lbrack 5;7)

    \lbrack 7;9)

    \lbrack 9;11)

    Số người

    5

    7

    3

    8

    5

    Vậy có 5 nhóm.

    b) Gọi x_{1},x_{2},\ldots,x_{28} lần lượt là số quả bóng được ném vào rổ của các vận động viên sắp xếp theo thứ tự không giảm.

    Ta có x_{1},\ldots,x_{5} \in \lbrack
1;3);x_{6},\ldots,x_{12} \in \lbrack 3;5);x_{13},\ldots,x_{15} \in
\lbrack 5;7);x_{16},\ldots,x_{23} \in \lbrack 7;9);

    x_{24},\ldots,x_{28} \in \lbrack
9;11)

    Tứ phân vị thứ nhất của mẫu số liệu gốc là \frac{1}{2}\left( x_{7} + x_{8} ight) \in
\lbrack 3;5) nên tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:

    Q_{1} = 3 + \frac{\frac{28}{4} - 5}{7}(5
- 3) = \frac{25}{7}

    Tứ phân vị thứ ba của mẫu số liệu gốc là \frac{1}{2}\left( x_{21} + x_{22} ight) \in
\lbrack 7;9) nên tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

    Q_{3} = 7 + \frac{\frac{3.28}{4} -
15}{8}(9 - 7) = \frac{17}{2}

    Nên khoảng tứ phân vị của mẫu số liệu ghép nhóm là:

    \Delta_{Q} = Q_{3} - Q_{1} =
\frac{17}{2} - \frac{25}{7} = \frac{69}{14} \approx 4,93

    c) Ta có bảng thống kê theo giá trị đại diện:

    Số quả bóng đại diện

    2

    4

    6

    8

    10

    Số người

    5

    7

    3

    8

    5

    Cỡ mẫu: n = 28

    Số trung bình của mẫu số liệu:

    \overline{x} = \frac{1}{28}(5.2 + 7.4 + 3.6 + 8.8
+ 5.10) = \frac{85}{14}

    d) Phương sai của mẫu số liệu:

    S^{2} = \frac{1}{28}\left( 5.2^{2} +
7.4^{2} + 3.6^{2} + 8.8^{2} + 5.10^{2} ight) - \left( \frac{85}{14}
ight)^{2} = \frac{1539}{196}

    Độ lệch chuẩn của mẫu số liệu trên là: S
= \sqrt{\frac{1539}{196}} \approx 2,802.

    Kết luận:

    a) Đúng

    b) Sai

    c) Đúng

    d) Sai

     

  • Câu 24: Nhận biết
    Tìm tốc độ trung bình của mẫu dữ liệu

    Thống kê tốc độ của các loại xe hơi (đơn vị: km/h) được ghi lại như sau:

    42

    43,4

    43,4

    46,5

    46,7

    46,8

    47,5

    47,7

    48,1

    48,4

    50,8

    51,1

    52,7

    53,9

    54,8

    57,6

    57,5

    59,6

    60,3

    61,1

    Lập bảng tần số ghép nhóm với nhóm đầu [42; 46) và độ dài mỗi nhóm bằng 4. Tìm tốc độ trung bình của mẫu dữ liệu ghép nhóm?

    Hướng dẫn:

    Ta lập được bảng tần số ghép nhóm như sau:

    Tốc độ

    [42; 46)

    [46; 50)

    [50; 54)

    [54; 58)

    [58; 62)

    Giá trị đại diện

    44

    48

    52

    56

    60

    Số xe

    3

    7

    4

    3

    3

    Tốc độ trung bình là:

    \overline{x} = \frac{3.44 + 7.48 + 4.52
+ 3.56 + 3.60}{20} = 51,2

  • Câu 25: Thông hiểu
    Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm

    Cho bảng thống kê cân nặng của 50 quả xoài được lựa chọn ngẫu nhiên sau khi thu hoạch như sau:

    Cân nặng

    [250; 290)

    [290; 330)

    [330; 370)

    [370; 410)

    [410; 450)

    Số quả

    3

    13

    18

    11

    5

    Tìm khoảng tứ phân vị của mẫu số liệu đã cho?

    Hướng dẫn:

    Ta có:

    Cân nặng

    [250; 290)

    [290; 330)

    [330; 370)

    [370; 410)

    [410; 450)

    Số quả

    3

    13

    18

    11

    5

    Tần số tích lũy

    3

    16

    34

    45

    50

    Cỡ mẫu N = 50

    Cỡ mẫu \Rightarrow \frac{N}{4} =
12,5

    => Nhóm chứa Q_{1} là [290; 330)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 290;m = 3,f = 13;c = 330
- 290 = 40

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 290 + \dfrac{12,5 - 3}{13}.40 =\dfrac{4150}{13}

    Cỡ mẫu N = 50 \Rightarrow \frac{3N}{4} =
37,5

    => Nhóm chứa Q_{3} là [370; 410)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 370;m = 34,f = 11;c =
410 - 370 = 40

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 370 + \dfrac{37,5 - 34}{11}.40 =\dfrac{4210}{11}.

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là \Delta_{Q} = \frac{4210}{11} - \frac{4150}{13} =
\frac{9080}{143} \approx 63,5

  • Câu 26: Thông hiểu
    Chọn kết luận đúng

    Dưới đây là tốc độ của 20 phương tiện giao thông di chuyển trên đường.

    Tốc độ

    Tần số

    40 ≤ x < 50

    4

    50 ≤ x < 60

    5

    60 ≤ x < 70

    7

    70 ≤ x < 80

    4

    Xác định giá trị của \Delta_{Q} = Q_{3} -
Q_{1}?

    Hướng dẫn:

    Ta có:

    Tốc độ

    Tần số

    Tần số tích lũy

    40 ≤ x < 50

    4

    4

    50 ≤ x < 60

    5

    9

    60 ≤ x < 70

    7

    16

    70 ≤ x < 80

    4

    20

    Tổng

    N = 20

     

    Ta có: \frac{N}{4} = \frac{20}{4} =
5

    => Nhóm chứa tứ phân vị thứ nhất là: [50; 60)

    Khi đó: \left\{ \begin{matrix}l = 50;\dfrac{N}{4} = 5 \\m = 4,f = 5,d = 10 \\\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 50 + \frac{5 -
4}{5}.10 = 52

    Ta có: \frac{3N}{4} = \frac{3.20}{4} =
15

    => Nhóm chứa tứ phân vị thứ ba là: [60; 70]

    Khi đó: \left\{ \begin{matrix}l = 60;\dfrac{3N}{4} = 15 \\m = 9,f = 7,d = 10 \\\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{3} = l + \dfrac{\dfrac{3N}{4} -m}{f}.d

    \Rightarrow Q_{3} = 60 + \frac{15 -
9}{7}.10 = \frac{480}{7}

    \Rightarrow \Delta_{Q} = Q_{3} - Q_{1} =
\frac{480}{7} - 52 \approx 16,6

  • Câu 27: Thông hiểu
    Tính phương sai của mẫu số liệu ghép nhóm

    Mỗi ngày bác Hương đều đi bộ để rèn luyện sức khỏe. Quãng đường đi bộ mỗi ngày (đơn vị: km) của bác Hương trong 20 ngày được thống kê lại ở bảng sau:

    Phương sai của mẫu số liệu ghép nhóm là (làm tròn đến hàng phần trăm)

    Hướng dẫn:

    Cỡ mẫu: n = 20.

    Số trung bình của mẫu số liệu ghép nhóm là

    \overline{x} = \frac{2,85.3 + 3,15.6 +
3,45.5 + 3,75.4 + 4,05.2}{20} = 3,39.

    Phương sai của mẫu số liệu ghép nhóm là

    S^{2} = \frac{1}{20}\left( 2,85^{2}.3 +
3,15^{2}.6 + 3,45^{2}.5 + 3,75^{2}.4 + 4,05^{2}.2 ight) - 3,39^{2}
\approx 0,13

  • Câu 28: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu

    Cho mẫu số liệu ghép nhóm cho bởi bảng sau:

    Nhóm

    [0; 10)

    [10; 20)

    [20; 30)

    [30; 40)

    Tần số

    3

    7

    2

    9

    Khoảng biến thiên của mẫu số liệu ghép nhóm này là

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm là:

    R = 40 – 0 = 40.

  • Câu 29: Thông hiểu
    Xác định tứ phân vị thứ ba của mẫu số liệu

    Tìm tứ phân vị thứ ba của mẫu số liệu:

    Thời gian

    Số học sinh

    [0; 5)

    6

    [5; 10)

    10

    [10; 15)

    11

    [15; 20)

    9

    [20; 25)

    1

    [25; 30)

    1

    [30; 35)

    2

    Hướng dẫn:

    Ta có:

    Thời gian

    Số học sinh

    Tần số tích lũy

    [0; 5)

    6

    6

    [5; 10)

    10

    16

    [10; 15)

    11

    27

    [15; 20)

    9

    36

    [20; 25)

    1

    37

    [25; 30)

    1

    38

    [30; 35)

    2

    40

    Cỡ mẫu là: N = 40 \Rightarrow
\frac{3N}{4} = 30

    => Nhóm chứa tứ phân vị thứ ba là [15; 20) (vì 30 nằm giữa hai tần số tích lũy 36 và 27)

    Khi đó \left\{ \begin{matrix}l = 15;\dfrac{3N}{4} = 30;m = 27;f = 9 \\c = 20 - 15 = 5 \\\end{matrix} ight.

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c

    \Rightarrow Q_{3} = 15 + \frac{30 -
27}{9}.5 = \frac{50}{3} \approx 17.

  • Câu 30: Thông hiểu
    Tìm độ lệch chuẩn của mẫu số liệu ghép nhóm

    Khảo sát chiều cao (đơn vị cm) của học sinh lớp 12A, ta thu được kết quả như sau:

    Kết quả đo (cm)

    \lbrack 150;155) \lbrack 155;160) \lbrack 160;165) \lbrack 165;170) \lbrack 170;175)

    Số học sinh

    6

    10

    14

    5

    5

    Độ lệch chuẩn của mẫu số liệu ghép nhóm trên thuộc khoảng nào sau đây:

    Hướng dẫn:

    Chọn giá trị đại diện cho các nhóm số liệu, ta có:

    Giá trị đại diện

    152,5 157,5 162,5 167,5 172,5

    Số học sinh

    6

    10

    14

    5

    5

    Tổng số học sinh tham gia khảo sát là : n
= 6 + 10 + 14 + 5 + 5 = 40.

    Chiều cao trung bình của học sinh trong lớp là:

    \overline{x} = \frac{152,5.6 + 157,5.10 +162,5.14 + 167,5.5 + 172,5.5}{40}= 161,625 \approx 161,6.

    Phương sai của mẫu số liệu trên là :

    s^{2} = \frac{m_{1}\left( x_{1} -
\overline{x} \right)^{2} + \ldots + m_{k}\left( x_{k} - \overline{x}
\right)^{2}}{n}

    = \frac{1}{40}\lbrack 6(152,5 -
161,6)^{2} + 10(157,5 - 161,6)^{2} + 14(162,5 - 161,6)^{2}

    + 5(167,5 - 161,6)^{2} + 6(172,5 -
161,6)^{2}\rbrack \approx 36,1

    Độ lệch chuẩn của mẫu số liệu trên là s =
\sqrt{s^{2}} = \sqrt{36,1} \approx 6,009.

  • Câu 31: Thông hiểu
    Tính phương sai của mẫu số liệu ghép nhóm

    Thống kê thời gian làm bài test ngắn của học sinh hai lớp 12A và 12B ghi lại trong bảng sau:

    Thời gian (phút)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    [10; 11)

    Học sinh lớp 12A

    8

    10

    13

    10

    9

    Học sinh lớp 12B

    4

    12

    17

    14

    3

    Phương sai của mẫu số liệu ghép nhóm lớp 12A và lớp 12B lần lượt là

    Hướng dẫn:

    Ta có:

    Thời gian (phút)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    [10; 11)

    Giá trị đại diện

    6,5

    7,5

    8,5

    9,5

    10,5

    Học sinh lớp 12A

    8

    10

    13

    10

    9

    Học sinh lớp 12B

    4

    12

    17

    14

    3

    Số trung bình của mẫu số liệu ghép nhóm lớp 12A:

    \overline{x_{A}} = \frac{6.6,5 + 10.7,5
+ 13.8,5 + 10.9,5 + 9.10,5}{50} = 8,54

    Phương sai của mẫu số liệu ghép nhóm lớp 12A là:

    {S_{A}}^{2} = \frac{1}{50}\left(
6.6,5^{2} + 10.7,5^{2} + 13.8,5^{2} + 10.9,5^{2} + 9.10,5^{2} ight) -
8,54^{2} = 1,7584

    Số trung bình của mẫu số liệu ghép nhóm lớp 12B:

    \overline{x_{B}} = \frac{4.6,5 + 12.7,5
+ 17.8,5 + 14.9,5 + 3.10,5}{50} = 8,5

    Phương sai của mẫu số liệu ghép nhóm lớp 12B là:

    {S_{B}}^{2} = \frac{1}{50}\left( 4.6,5^{2} +
12.7,5^{2} + 17.8,5^{2} + 14.9,5^{2} + 3.10,5^{2} ight) - 8,5^{2} =
1,08

  • Câu 32: Nhận biết
    Tìm số trung bình của mẫu số liệu ghép nhóm

    Thống kê quãng đường một xe taxi công nghệ đi mỗi ngày (đơn vị: km) như sau:

    Quãng đường ((km)

    [50; 100)

    [100; 150)

    [150; 200)

    [200; 250)

    [250; 300)

    Số ngày

    5

    10

    9

    4

    2

    Tìm số trung bình của mẫu số liệu ghép nhóm?

    Hướng dẫn:

    Ta có:

    Quãng đường ((km)

    [50; 100)

    [100; 150)

    [150; 200)

    [200; 250)

    [250; 300)

    Giá trị đại diện

    75

    125

    175

    225

    275

    Số ngày

    5

    10

    9

    4

    2

    Số trung bình của mẫu số liệu ghép nhóm:

    \overline{x} = \frac{5.75 + 10.125 +
9.175 + 4.225 + 2.275}{30} = 155

  • Câu 33: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Thống kê mức lương (đơn vị: triệu đồng) tháng 11 của nhân viên thuộc các phòng ban trong cơ quan thu được kết quả sau:

    Mức lương

    [4; 6)

    [6; 8)

    [8; 10)

    [10; 12)

    Số nhân viên

    6

    20

    30

    5

    Xác định tính đúng sai của các khẳng định dưới đây:

    a) Trong thống kê số lượng nhân viên có mức lương cao nhất có số lượng thấp nhất. Đúng||Sai

    b) Lương trung bình của các nhân viên trong thống kê là 10. Sai||Đúng

    c) Nhóm tứ phân vị thứ hai của thống kê là nhóm [6; 8). Sai||Đúng

    d) Khoảng tứ phân vị thống kê là nhỏ hơn 1. Đúng||Sai

    Đáp án là:

    Thống kê mức lương (đơn vị: triệu đồng) tháng 11 của nhân viên thuộc các phòng ban trong cơ quan thu được kết quả sau:

    Mức lương

    [4; 6)

    [6; 8)

    [8; 10)

    [10; 12)

    Số nhân viên

    6

    20

    30

    5

    Xác định tính đúng sai của các khẳng định dưới đây:

    a) Trong thống kê số lượng nhân viên có mức lương cao nhất có số lượng thấp nhất. Đúng||Sai

    b) Lương trung bình của các nhân viên trong thống kê là 10. Sai||Đúng

    c) Nhóm tứ phân vị thứ hai của thống kê là nhóm [6; 8). Sai||Đúng

    d) Khoảng tứ phân vị thống kê là nhỏ hơn 1. Đúng||Sai

    Ta có:

    Mức lương

    [4; 6)

    [6; 8)

    [8; 10)

    [10; 12)

    Giá trị đại diện

    5

    7

    9

    11

    Số nhân viên

    6

    20

    30

    5

    a) Đúng: Trong thống kê số lượng nhân viên có mức lương cao nhất có số lượng thấp nhất.

    b) Sai: Lương trung bình của các nhân viên trong thống kê là 8,11

    \overline{x} = \frac{5.6 + 7.20 + 9.30 +
11.5}{61} = \frac{495}{61} \approx 8,11

    c) Sai: Ta có:

    \frac{n}{2} = 30,5nên nhóm chứa tứ phân vị thứ 2 của thống kê là [8;10).

    d) Đúng: Ta có: \frac{n}{4} =
15,25;\frac{3n}{4} \approx 45,75

    \left\{ \begin{matrix}
  {Q_1} = 6 + \dfrac{{\dfrac{{61}}{4} - 6}}{{26}}.2 = \dfrac{{439}}{{52}} \hfill \\
  {Q_3} = 8 + \dfrac{{\dfrac{{3.61}}{4} - 26}}{{56}}.2 = \dfrac{{975}}{{112}} \hfill \\ 
\end{matrix}  ight. \Rightarrow \Delta Q = {Q_3} - {Q_1} \approx 0,26.

  • Câu 34: Thông hiểu
    Xác định tính đúng sai của các nhận định

    Bảng thống kê thời gian (đơn vị: phút) tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn Bình và bạn An:

    a) Khoảng biến thiên của mẫu số liệu về thời gian tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn An là 20. Đúng||Sai

    b) Khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn Bình là 28. Sai||Đúng

    c) Khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn An là 22. Sai||Đúng

    d) Dựa vào khoảng tứ phân vị của hai mẫu số liệu trên thì thời gian tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn Bình phân tán hơn bạn An. Đúng||Sai

    Đáp án là:

    Bảng thống kê thời gian (đơn vị: phút) tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn Bình và bạn An:

    a) Khoảng biến thiên của mẫu số liệu về thời gian tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn An là 20. Đúng||Sai

    b) Khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn Bình là 28. Sai||Đúng

    c) Khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn An là 22. Sai||Đúng

    d) Dựa vào khoảng tứ phân vị của hai mẫu số liệu trên thì thời gian tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn Bình phân tán hơn bạn An. Đúng||Sai

    a) Khoảng biến thiên của mẫu số liệu về thời gian tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn An là 35 - 15 = 20

    Mệnh đề đúng.

    b) Cỡ mẫu là: 28. Gọi x_{1}\ ;\ x_{2}\
;...;\ x_{28} là mẫu số liệu gốc về thời gian tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn Bình đã được sắp xếp theo thứ tự không giảm. Nên tứ phân vị thứ nhất của mẫu số liệu gốc là \frac{1}{2}\left( x_{7} + x_{8} \right) nên nhóm chứa tứ phân vị thứ nhất là nhóm \lbrack 20\ ;25)và ta có Q_{1} = 20 + \frac{\left( \frac{1.28}{4} - 5
\right)}{10}.5 = 21

    Tứ phân vị thứ ba của mẫu số liệu gốc là \frac{1}{2}\left( x_{21} + x_{22} \right) nên nhóm chứa tứ phân vị thứ ba là nhóm \lbrack 25\ ;30) và ta có Q_{3} = 25 + \frac{\left(\frac{3.28}{4} - 15\right)}{10}.5 = 28

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là \Delta_{Q} = Q_{3} - Q_{1} = 28 - 21 =
7

    Mệnh đề Sai.

    c) Cỡ mẫu là: 28. Gọi x_{1}\ ;\ x_{2}\
;...;\ x_{28} thời gian tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn An và giả sử dãy số liệu gốc này đã được sắp xếp theo thứ tự không giảm. Tứ phân vị thứ nhất của mẫu số liệu gốc là \frac{1}{2}\left( x_{7} + x_{8}
\right) nên nhóm chứa tứ phân vị thứ nhất là nhóm \lbrack 20\ ;25)và ta có Q_{1} = 20 + \frac{\left( \frac{1.28}{4} - 5
\right)}{5}.5 = 22

    Tứ phân vị thứ ba của mẫu số liệu gốc là \frac{1}{2}\left( x_{21} + x_{22} \right) nên nhóm chứa tứ phân vị thứ ba là nhóm \lbrack 25\ ;30)và ta có Q_{3} = 25 + \frac{\left( \frac{3.28}{4} - 10
\right)}{15}.5 = 26

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là \Delta_{Q} = Q_{3} - Q_{1} = 26 - 22 =
4

    Mệnh đề Sai.

    d) Do 4 <7 nên thời gian tập thể dục mỗi buổi sáng trong tháng 2 năm 2023 của bạn Bình phân tán hơn bạn An.

    Mệnh đề đúng.

  • Câu 35: Vận dụng
    Ghi đáp án vào ô trống

    Kết quả điều tra thu nhập (triệu đồng/năm) năm 2023 của một số hộ gia đình tại địa phương được ghi lại trong bảng sau:

    Tổng thu nhập

    [200; 250)

    [250; 300)

    [300; 350)

    [350; 400)

    [400; 450)

    Số hộ gia đình

    24

    62

    34

    21

    9

    Một doanh nghiệp địa phương muốn hướng dịch vụ của mình đến các gia đình có mức thu nhập ở tầm trung, tức là 50% các hộ gia đình có mức thu nhập ở chính giữa so với tất cả các hộ gia đình của địa phương. Hỏi doanh nghiệp cần hướng đến các gia đình có mức thu nhập trong khoảng nào?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Kết quả điều tra thu nhập (triệu đồng/năm) năm 2023 của một số hộ gia đình tại địa phương được ghi lại trong bảng sau:

    Tổng thu nhập

    [200; 250)

    [250; 300)

    [300; 350)

    [350; 400)

    [400; 450)

    Số hộ gia đình

    24

    62

    34

    21

    9

    Một doanh nghiệp địa phương muốn hướng dịch vụ của mình đến các gia đình có mức thu nhập ở tầm trung, tức là 50% các hộ gia đình có mức thu nhập ở chính giữa so với tất cả các hộ gia đình của địa phương. Hỏi doanh nghiệp cần hướng đến các gia đình có mức thu nhập trong khoảng nào?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 36: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu

    Số điểm thi đấu của các đội được biểu diễn trong bảng dưới đây:

    Nhóm dữ liệu

    Tần số

    (0; 2]

    5

    (2; 4]

    16

    (4; 6]

    13

    (6; 8]

    7

    (8; 10]

    5

    (10; 12]

    4

    Khoảng biến thiên của mẫu số liệu đó là:

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu đã cho là: R = 12 - 0 = 12.

  • Câu 37: Thông hiểu
    Tính phương sai của mẫu số liệu ghép nhóm

    Cân nặng (kg) của một số quả mít trong một khu vườn được thống kê ở bảng sau:

    Cân nặng (kg)

    [4; 6)

    [6; 8)

    [8; 10)

    [10; 12)

    [12; 14)

    Số cây giống

    6

    12

    19

    9

    4

    Hãy tính phương sai của mẫu số liệu ghép nhóm trên (làm tròn đến hàng phần mười).

    Hướng dẫn:

    Ta có giá trị đại diện được thể hiện trong bảng sau:

    Cân nặng (kg)

    [4; 6)

    [6; 8)

    [8; 10)

    [10; 12)

    [12; 14)

    Giá trị đại diện

    5

    7

    9

    11

    13

    Số cây giống

    6

    12

    19

    9

    4

    Cỡ mẫu: n = 50.

    Số trung bình

    \overline{x} = \frac{m_{1}.x_{1} +
m_{2}.x_{2} + ... + m_{k}.x_{k}}{n}

    = \frac{6.5 + 12.7 + 19.9 + 9.11 +
4.13}{50} = 8,72.

    Phương sai:

    s^{2} = \frac{1}{n}\left(m_{1}.{x_{1}}^{2} + m_{2}.{x_{2}}^{2} + ... + m_{k}.{x_{k}}^{2} ight)- \left( \overline{x} ight)^{2}

    = \frac{1}{50}\left( 6.5^{2} +12.7^{2} + 19.9^{2} + 9.11^{2} + 4.13^{2} ight) - (8,72)^{2} =4,8016.

  • Câu 38: Thông hiểu
    Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm

    Bạn An rất thích chạy bộ. Thời gian chạy bộ mỗi ngày trong thời gian gần đây của bạn An được thống kê lại ở bảng sau:

    Thời gian (phút)

    [20; 25)

    [25; 30)

    [30; 35)

    [35; 40)

    [40; 45)

    Số ngày

    6

    6

    4

    1

    1

    Hãy tính khoảng tứ phân vị của mẫu số liệu ghép nhóm trong bảng trên.

    Hướng dẫn:

    Cỡ mẫu n = 18.

    Gọi x_{1};x_{2};...;x_{18} là mẫu số liệu gốc gồm thời gian của 18 ngày chạy bộ của bạn An được sắp xếp theo thứ tự không giảm.

    Ta có: x_{1},...,x_{6} \in \lbrack20;25);\ \ x_{7},...,x_{12} \in \lbrack 25;30);\ \ x_{13},...,x_{16} \in\lbrack 30;35);\ \ x_{17} \in \lbrack 35;40);\ \ x_{18} \in \lbrack40;45)

    Tứ phân vị thứ nhất của mẫu số liệu gốc là x_{5} \in \lbrack 20;25).

    Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:

    Q_{1} = 20 + \frac{\frac{18}{4} - 0}{6}\cdot (25 - 20) = 23,75.

    Tứ phân vị thứ ba của mẫu số liệu gốc là x_{14} \in \lbrack 30;35).

    Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

    Q_{3} = 30 + \frac{\frac{3 \cdot 18}{4} -(6 + 6)}{4} \cdot (35 - 30) = 31,875.

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta_{Q}=31,875-23,75=8,125.

  • Câu 39: Nhận biết
    Chọn phương án thích hợp

    Một ý nghĩa của khoảng tứ phân vị là

    Hướng dẫn:

    Ý nghĩa của khoảng tứ phân vị:

    - Khoảng tứ phân vị của mẫu số liệu ghép nhóm xấp xỉ khoảng tứ phân vị của mẫu số liệu gốc và là một đại lượng cho biết mức độ phân tán của nửa giữa mẫu số liệu.

    • Khoảng tứ phân vị của mẫu số liệu ghép nhóm giúp xác định các giá trị bất thường của mẫu đó.
    • - Khoảng tứ phân vị thường được sử dụng thay cho khoảng biến thiên vì nó loại trừ hầu hết giá trị bất thường của mẫu số liệu và nó không bị ảnh hưởng bởi các giá trị bất thường đó.
  • Câu 40: Nhận biết
    Chọn đáp án đúng

    Thời gian hoàn thành bài kiểm tra môn Toán của các bạn trong lớp 12C được cho trong bảng sau:

    Thời gian (phút)

    [25;30)

    [30;35)

    [35;40)

    [40;45)

    Số học sinh

    8

    16

    4

    2

    Nếu biết học sinh hoàn thành bài kiểm tra sớm nhất mất 27 phút và muộn nhất mất 43 phút thì khoảng biến thiên của mẫu số liệu gốc là bao nhiêu?

    Hướng dẫn:

    Nếu biết học sinh hoàn thành bài kiểm tra sớm nhất mất 27 phút và muộn nhất mất 43 phút thì khoảng biến thiên của mẫu số liệu gốc là 43 – 27 = 16.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (42%):
    2/3
  • Thông hiểu (48%):
    2/3
  • Vận dụng (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo