Biết hàm số có nguyên hàm là
với
. Tính giá trị biểu thức
.
Ta có:
Theo bài ra ta có: khi đó:
Vậy đáp án cần tìm là:
Biết hàm số có nguyên hàm là
với
. Tính giá trị biểu thức
.
Ta có:
Theo bài ra ta có: khi đó:
Vậy đáp án cần tìm là:
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số và đồ thị hàm số
?
Phương trình hoành độ giao điểm
Khi đó ta có:
Tích phân có giá trị là:
Xét tích phân
Ta biến đổi:.
Đặt.
Đổi cận .
Biết rằng liên tục trên
là một nguyên hàm của hàm số
và
. Giá trị biểu thức
bằng:
Ta có:
Do đó:
Cho . Một nguyên hàm
của
thỏa
là:
Ta có:
Khi đó mặt khác
Vậy đáp án cần tìm là:
Tính diện tích hình phẳng giới hạn bởi các đường và các đường thẳng
như hình vẽ:
Phương trình hoành độ giao điểm
Xét
Xét
Diện tích hình phẳng là:
Một viên đạn được bắn theo phương thẳng đứng với vận tốc ban đầu 29,4 m/s. Gia tốc trọng trường là 9,8 m/s2. Tính quãng đường S viên đạn đi được từ lúc bắn lên cho đến khi chạm đất.
Ta có công thức liên hệ giữa vận tốc, gia tốc và quãng đường đi được là
Quãng đường đi được từ lúc bắn đến khi chạm đất là
Một biển quảng cáo có dạng hình elip với bốn đỉnh như hình vẽ:
Người ta chia elip bởi Parabol có đỉnh , trục đối xứng
và đi qua các điểm
. Sau đó sơn phần tô đậm với giá 200 nghìn đồng/m2 và trang trí đèn led phần còn lại với giá 500 nghìn đồng/m2. Hỏi kinh phí sử dụng gần nhất với giá trị nào dưới đây? Biết rằng
Chọn hệ trục tọa độ Oxy sao cho O là trung điểm của A1A2. Tọa độ các đỉnh A1(−2; 0), A2(2; 0), B1(0; −1), B2(0; 1)
Phương trình đường Elip
Ta có:
Parabol (P) có đỉnh B1(0; −1) và trục đối xứng là Ox nên (P) có phương trình , (a > 0), đi qua M; N
Diện tích phần tô đậm
Đặt
Đổi cận
Diện tích hình Elip là
Suy ra diện tích phần còn lại là:
Kinh phí sử dụng là đồng.
Diện tích hình phẳng giới hạn bởi đồ thị hàm số , trục hoành và hai đường thẳng
,
là
Ta có .
Gọi là diện tích hình phẳng giới hạn bởi đồ thị hàm số
và trục hoành như hình vẽ:
Mệnh đề nào sau đây sai?
Phương trình hoành độ giao điểm của đồ thị hàm số và trục hoành là:
Từ hình vẽ ta thấy
Do đó
Vậy mệnh đề sai là:
Diện tích hình phẳng giới hạn bởi các đường , trục hoành,
và
bằng
Diện tích hình giới hạn là
Cho biết . Tính
.
Ta có:
Thay
.
Biết , a là các số hữu tỉ. Giá trị của a là:
Ta có:
Đặt
Đổi cận .
.
Giá trị của tích phân bằng:
Ta có: .
Biết rằng và
. Tìm hàm số
?
Ta có:
Mà
Vậy
Công thức tính diện tích S của hình thang cong giới hạn bởi hai đồ thị ,
,
,
,
Đáp án đúng: .
Tích phân có giá trị là:
Ta có:
.
Đặt .
.
Một mảnh vườn hình elip có trục lớn bằng , trục nhỏ bằng
được chia thành hai phần bởi một đoạn thẳng nối hai đỉnh liên tiếp của elip. Phần nhỏ hơn trồng cây con và phần lớn hơn trồng rau. Biết lợi nhuận thu được là
mỗi
trồng cây con và
mỗi
trồng rau. Hỏi thu nhập từ cả mảnh vườn là bao nhiêu? (Kết quả làm tròn đến hàng nghìn).
Một mảnh vườn hình elip có trục lớn bằng , trục nhỏ bằng
được chia thành hai phần bởi một đoạn thẳng nối hai đỉnh liên tiếp của elip. Phần nhỏ hơn trồng cây con và phần lớn hơn trồng rau. Biết lợi nhuận thu được là
mỗi
trồng cây con và
mỗi
trồng rau. Hỏi thu nhập từ cả mảnh vườn là bao nhiêu? (Kết quả làm tròn đến hàng nghìn).
Cho hàm số có đồ thị như hình vẽ. Biết rằng đồ thị hàm số
tạo với trục hoành và 2 đường thẳng
một hình phẳng
gồm 2 phần có diện tích lần lượt là
.
Xét tính đúng, sai của các mệnh đề sau:
a) [NB] là một nguyên hàm của hàm số
trên
. Đúng||Sai
b) [TH] . Đúng||Sai
c) [TH] . Sai||Đúng
d) [VD,VDC] Biết đường thẳng (
là tham số ) cắt đồ thị
tại hai điểm phân biệt và diện tích hình phẳng giới hạn bởi
và
bằng
. Khi đó tổng các giá trị của tham số
bằng -4. Đúng||Sai
Cho hàm số có đồ thị như hình vẽ. Biết rằng đồ thị hàm số
tạo với trục hoành và 2 đường thẳng
một hình phẳng
gồm 2 phần có diện tích lần lượt là
.
Xét tính đúng, sai của các mệnh đề sau:
a) [NB] là một nguyên hàm của hàm số
trên
. Đúng||Sai
b) [TH] . Đúng||Sai
c) [TH] . Sai||Đúng
d) [VD,VDC] Biết đường thẳng (
là tham số ) cắt đồ thị
tại hai điểm phân biệt và diện tích hình phẳng giới hạn bởi
và
bằng
. Khi đó tổng các giá trị của tham số
bằng -4. Đúng||Sai
a) Đúng. Ta có:
b) Đúng. Ta có:
c) Sai. Ta có
Suy ra : .
d) Đúng.
Phương trình hoành độ giao điểm của và đồ thị hàm số
là
và
cắt nhau tại hai điểm phân biệt
Theo Viète: (
)
Ta có
Vậy .
Tính diện tích của hình phẳng giới hạn bởi đồ thị hai hàm số
và
?
Hoành độ giao điểm của đồ thị hai hàm số là nghiệm của phương trình
Hình vẽ minh hoạ
Diện tích S cần tìm là:
Cho . Hỏi
là nguyên hàm của hàm số nào dưới đây?
Để tìm là nguyên hàm của hàm số nào trong số 4 hàm số trên, ta sẽ đi đạo hàm
từ đó suy ra
.
Ta có
.
Cho hình giới hạn bởi các đường
, trục hoành. Quay hình phẳng
quanh trục
ta được khối tròn xoay có thể tích là:
Phương trình hoành độ giao điểm của là:
Khi đó .
Xét hai khẳng định sau:
(I) Mọi hàm số liên tục trên đoạn
đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số liên tục trên đoạn
đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên:
Trong hai khẳng định trên chỉ có khẳng định "(II) Mọi hàm số liên tục trên đoạn
đều có nguyên hàm trên đoạn đó” là khẳng định đúng."
Giá trị của tích phân . Biểu thức
có giá trị là:
Ta có:
.
.
Tìm nguyên hàm của hàm số
Công thức sử dụng trong bài toán là:
Ta có:
Biết rằng: . Trong đó a, b, c là những số nguyên. Khi đó
bằng
Ta có:
Cho tích phân . Tính tích phân
?
Đặt
Đổi cận
Khi đó
Cho hàm số thỏa mãn
và
. Mệnh đề nào dưới đây đúng?
Ta có
Do nên
.
Vậy .
Tích phân có giá trị là:
Tích phân có giá trị là:
.
Cho hình phẳng được giới hạn bởi đồ thị các hàm số
. Tính diện tích hình phẳng
?
Cho hình phẳng được giới hạn bởi đồ thị các hàm số
. Tính diện tích hình phẳng
?
Vào năm 2014, dân số nước ta khoảng triệu người. Giả sử, dân số nước ta sau
năm được xác định bởi hàm số
(đơn vị: triệu người), trong đó tốc độ gia tăng dân số được cho bởi
với
là số năm kể từ năm 2014,
tính bằng triệu người / năm.
a) là một nguyên hàm của
.Đúng||Sai
b) .Sai||Đúng
c) Theo công thức trên, tốc độ tăng dân số nước ta năm 2034 (làm tròn đến hàng phần mười của triệu người / năm) khoảng triệu người /năm. Đúng||Sai
d) Theo công thức trên, dân số nước ta năm 2034 (làm tròn đến hàng đơn vị của triệu người) khoẳng triệu người. Đúng||Sai
Vào năm 2014, dân số nước ta khoảng triệu người. Giả sử, dân số nước ta sau
năm được xác định bởi hàm số
(đơn vị: triệu người), trong đó tốc độ gia tăng dân số được cho bởi
với
là số năm kể từ năm 2014,
tính bằng triệu người / năm.
a) là một nguyên hàm của
.Đúng||Sai
b) .Sai||Đúng
c) Theo công thức trên, tốc độ tăng dân số nước ta năm 2034 (làm tròn đến hàng phần mười của triệu người / năm) khoảng triệu người /năm. Đúng||Sai
d) Theo công thức trên, dân số nước ta năm 2034 (làm tròn đến hàng đơn vị của triệu người) khoẳng triệu người. Đúng||Sai
Ta có là một nguyên hàm của
và
Vì nên
. Suy ra
.
Tốc độ tăng dân số ở nước ta năm 2034 là:
(triệu người/năm).
Dân số nước ta năm 2034 là: (triệu người).
Cho hàm số y = f(x) xác định trên thỏa mãn
. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:
Ta có:
Lấy nguyên hàm hai vế ta được:
Mặt khác
=>
Xét phương trình hoành độ giao điểm
Ta có:
Phương trình tiếp tuyến tại giao điểm với trục hoành là:
Cho . Tính
.
Ta có
Tìm nguyên hàm .
Đặt ;
Lúc này ta có
Nguyên hàm của hàm số
thỏa mãn điều kiện
là
Ta có:
Theo bài ra ta có:
Vậy đáp án cần tìm là:
Một nguyên hàm của là :
Ta có:
Đặt:
Khi đó:
Tính tích phân bằng cách đặt
. Công thức nào dưới đây chính xác?
Đặt
Suy ra
Họ nguyên hàm của hàm số là:
Ta có:
Khi đó
Cho là một nguyên hàm của hàm số
. Tìm nguyên hàm của hàm số
?
Cách 1: Sử dụng tính chất của nguyên hàm
.
Từ giả thiết, ta có:
Suy ra .
Vậy
Cách 2: Sử dụng công thức nguyên hàm từng phần.
Nếu u, v là hai hàm số có đạo hàm liên tục trên K thì:
.
Ta có
Từ giả thiết: .
Vậy .
Cho hàm số liên tục trên
và
,
là một nguyên hàm của
trên
. Chọn khẳng định sai trong các khẳng định sau?
Theo định nghĩa tích phân ta có: .
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: