Cho hình phẳng giới hạn bởi đường cong
, trục hoành và các đường thẳng
. Khối tròn xoay tạo thành khi quay
quanh trục hoành có thể tích V bằng bao nhiêu?
Ta có:
.
Cho hình phẳng giới hạn bởi đường cong
, trục hoành và các đường thẳng
. Khối tròn xoay tạo thành khi quay
quanh trục hoành có thể tích V bằng bao nhiêu?
Ta có:
.
Cho hai hàm số có đạo hàm trên
thỏa mãn
và
. Giá trị
bằng:
Chọn
Từ đó suy ra
Vậy
Hàm chi phí cận biên của sản phẩm được định nghĩa là đạo hàm của hàm chi phí. Một nhà máy sản xuất X với số lượng sản phẩm A thì chi phí cận biên được mô hình hóa bởi công thức
(nghìn đồng) và chi phí sản xuất một sản phẩm A là 52 nghìn đồng. Các mệnh đề sau đúng hay sai?
a) Nếu hàm chi phí sản phẩm A là thì
. Sai|||Đúng
b) .Đúng||Sai
c) . Đúng||Sai
d) Chi phí sản xuất 10 sản phẩm là (nghìn). Sai|||Đúng
Hàm chi phí cận biên của sản phẩm được định nghĩa là đạo hàm của hàm chi phí. Một nhà máy sản xuất X với số lượng sản phẩm A thì chi phí cận biên được mô hình hóa bởi công thức
(nghìn đồng) và chi phí sản xuất một sản phẩm A là 52 nghìn đồng. Các mệnh đề sau đúng hay sai?
a) Nếu hàm chi phí sản phẩm A là thì
. Sai|||Đúng
b) .Đúng||Sai
c) . Đúng||Sai
d) Chi phí sản xuất 10 sản phẩm là (nghìn). Sai|||Đúng
Hàm chi phí cận biên của sản phẩm được định nghĩa là đạo hàm của hàm chi phí. Một nhà máy sản xuất X với số lượng sản phẩm A thì chi phí cận biên được mô hình hóa bởi công thức
(nghìn đồng) và chi phí sản xuất một sản phẩm A là 52 nghìn đồng. Các mệnh đề sau đúng hay sai?
Hàm chi phí sản phẩm A là với
Theo giả thiết .
Vậy chi phí sản xuất 10 sản phẩm là (nghìn)
Đáp án: a) Sai; b) Đúng; c) Đúng; d) Sai.
Nguyên hàm của hàm số là:
Ta có:
Cho hàm số liên tục trên đoạn
và
. Tính tích phân
?
Ta có:
Một người chạy trong thời gian 1 giờ, vận tốc v (km/h) phụ thuộc thời gian t (h) có đồ thị là một phần của đường thẳng parabol với và trục đối xứng song song với trục tung như hình bên. Tính quãng đường s người đó chạy được trong khoảng thời gian 45 phút, kể từ khi bắt đầu chạy
Ta tìm được phương trình của parabol là
Quãng đường s mà người đó chạy được trong khoảng thời gian 0,75 (h) là:
Họ nguyên hàm của hàm số là
Phân tích
Ta có:
Khi đó , đồng nhất hệ số thì ta được
Giải chi tiết
Ta có
Đáp số bài tập kiểm tra khả năng vận dụng:
Tìm nguyên hàm của hàm số
với
.
Ta có
Biết rằng . Xác định
?
Ta có:
Do đó:
Cho hàm số liên tục trên đoạn
. Gọi
là hình phẳng giới hạn bởi đồ thị
, trục hoành, hai đường thẳng
(như hình vẽ bên).
Giả sử là diện tích của hình phẳng
. Chọn công thức đúng?
Dựa vào đồ thị hình vẽ ta thấy:
+ Đồ thị cắt trục hoành tại điểm
+ Trên đoạn , đồ thị ở phía dưới trục hoành nên
+ Trên đoạn , đồ thị ở phía trên trục hoành nên
Do đó:
Cho hình vẽ:
Diện tích hình phẳng bôi đậm trong hình vẽ được xác định theo công thức:
Dựa vào đồ thị hàm số ta thấy công thức tính diện tích hình phẳng cần tìm là:
.
Tích phân có giá trị là:
Tích phân có giá trị là:
Xét
Ta có:
Đáp án đúng là .
Biết luôn có hai số để
là một nguyên hàm của hàm số
và thỏa mãn
. Khẳng định nào sau đây là đúng và đầy đủ nhất?
Do . Vì luôn có hai số
để
là một nguyên hàm của hàm số
nên
không phải là hàm hằng.
Từ giả thiết
Lấy nguyên hàm hai vế với vi phân ta được:
với C là hằng số.
TH1: ta có:
Đồng nhất hệ số ta có:
Loại do điều kiện
. Do đó
TH2: ta có:
Đồng nhất hệ số ta có:
Loại do điều kiện
. Do đó
Vậy khẳng định đúng và đầy đủ nhất là .
Tìm công thức tính thể tích V của khối tròn xoay được tao ra khi quay hình thang cong giới hạn bởi đồ thị hàm số y = f(x), trục Ox và hai đường thẳng xung quanh trục Ox.
Ta có :
Theo phương pháp đổi biến số với , nguyên hàm của
là:
Ta có:.
Xét .
Đặt .
Xét .
Đặt .
Tìm nguyên hàm của hàm số .
Ta có
Hàm số nào sau đây là một nguyên hàm của hàm số ?
Ta có:
Họ nguyên hàm của hàm số
là :
Ta có: .
Cho hàm số có đạo hàm
liên tục trên
;
. Tính giá trị
?
Ta có:
Cho một mô hình mô phỏng một đường hầm như hình vẽ bên. Biết rằng đường hầm mô hình có chiều dài
; khi cắt hình này bởi mặt phẳng vuông góc với đấy của nó, ta được thiết diện là một hình parabol có độ dài đáy gấp đôi chiều cao parabol. Chiều cao của mỗi thiết diện parobol cho bởi công thức
, với
là khoảng cách tính từ lối vào lớn hơn của đường hầm mô hình. Tính thể tích (theo đơn vị
) không gian bên trong đường hầm mô hình (làm tròn kết quả đến hàng đơn vị )


Xét một thiết diện parabol có chiều cao là và độ dài đáy
và chọn hệ trục
như hình vẽ trên.
Parabol có phương trình
Có
Diện tích của thiết diện:
,
Suy ra thể tích không gian bên trong của đường hầm mô hình:
Cho hình phẳng giới hạn bởi các đường
. Thể tích vật thể tròn xoay có được khi
quay quanh trục
bằng:
Gọi là thể tích khối tròn xoay cần tính. Ta có:
Tính thể tích khối tròn xoay khi cho hình phẳng giới hạn bởi đồ thị các hàm số và
quay quanh trục Ox.
Xét phương trình hoành độ giao điểm
Khi đó thể tích khối tròn xoay có được khi quay hình phẳng giới hạn bởi các đồ thị hàm số
quay quanh trục Ox được tính bởi công thức
Ta thấy trên thì
, do vậy ta có công thức
(đvtt)
Cho biết . Tính
.
Ta có:
Thay
.
Thành phố định xây cây cầu bắc ngang con sông dài , biết rằng người ta định xây cầu có 10 nhịp cầu hình dạng parabol, biết hai bên đầu cầu và giữa mối nhịp nối người ta xây một chân trụ rộng
khoảng cách giữa 2 chân trụ liên tiếp là
. Bề dày nhịp cầu không đổi là
. Biết một nhịp cầu như hình vẽ. Hỏi lượng bê tông để xây các nhịp cầu là bao nhiêu
? (kết quả làm tròn đến hàng đơn vị)
Đáp án: 40 m3.
Thành phố định xây cây cầu bắc ngang con sông dài , biết rằng người ta định xây cầu có 10 nhịp cầu hình dạng parabol, biết hai bên đầu cầu và giữa mối nhịp nối người ta xây một chân trụ rộng
khoảng cách giữa 2 chân trụ liên tiếp là
. Bề dày nhịp cầu không đổi là
. Biết một nhịp cầu như hình vẽ. Hỏi lượng bê tông để xây các nhịp cầu là bao nhiêu
? (kết quả làm tròn đến hàng đơn vị)
Đáp án: 40 m3.
Cả hai bên cầu có tất cả nhịp cầu.
Chọn hệ trục tọa độ như hình vẽ với gốc là chân cầu, đỉnh
, điểm
Gọi Parabol phía trên có phương trình: (vì
)
là phương trình parabol phía dưới
(Vì bề dày nhịp cầu là )
Ta có
Khi đó diện tích S của mỗi nhịp cầu là diện tích phần hình phẳng giới hạn bởi và trục Ox nên ta có:
Vì bề dày nhịp cầu không đổi nên thể tích của mỗi nhịp cầu là
Suy ra lượng bê tông cần cho 20 nhịp của cả hai bên cầu (mỗi bên 10 nhịp cầu) là
Diện tích hình phẳng giới hạn bởi các đường là
. Tính giá trị
?
Diện tích hình phẳng cần tìm là:
Đặt
Đổi cận . Khi đó:
hay
Cho đường cong . Xét điểm
có hoành độ dương thuộc
, tiếp tuyến của
tại
tạo với
một hình phẳng có diện tích bằng
. Hoành độ điểm
thuộc khoảng nào dưới đây??
Ta có: có
Phương trình tiếp tuyến d của (C) tại A là
Gọi S là diện tích của hình phẳng giới hạn bởi tiếp tuyến d và (C)
Vậy
Tính diện tích của hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành, trục tung và đường thẳng
.
Phương trình hoành độ giao điểm .
![]()
.
Có bao nhiêu giá trị của a trong đoạn thỏa mãn
.
Ta có:
Đặt
Mà
Suy ra, đáp án là 2.
Tìm một nguyên hàm của hàm số
biết
.
Ta có
Mà
Đẳng thức xảy ra nếu
Ta có:
Trong 4 phương án, chỉ có phương án thỏa mãn.
Tích phân có giá trị là:
Thực hiện giải toán theo hai bước sau:
Cách 1: .
Cách 2: Dùng máy tính cầm tay.
Tích phân có giá trị nhỏ nhất khi số thực dương a có giá trị là:
Tích phân có giá trị nhỏ nhất khi số thực dương a có giá trị là:
Vì a là số thực dương nên .
Đáp án đúng là .
Tích phân có giá trị là:
Tích phân có giá trị là:
Cách 1:.
Đáp án đúng là .
Cách 2: Dùng máy tính cầm tay.
Tích phân có giá trị là:
Tích phân
Ta biến đổi: .
Đặt .
Đổi cận.
.
Đáp án đúng là .
Các mệnh đề sau, mệnh đề nào sai.
Đáp án sai:
Một vật chuyển động trong 3 giờ với vận tốc (km/h) phụ thuộc thời gian t (h) có đồ thị của vận tốc như hình dưới. Trong khoảng thời gian 1 giờ kể từ khi bắt đầu chuyển động, đồ thị đó là một phần của đường parabol có đỉnh và trục đối xứng song song với trục tung, khoảng thời gian còn lại đồ thị là một đoạn thẳng song song với trục hoành. Tính quãng đường s mà vật di chuyển được trong 3 giờ đó (kết quả làm tròn đến hàng phần trăm)
Ta tìm được phương trình của parabol là
.
Khi thì
Vậy
Vậy quãng đường mà vật di chuyển được trong 3 giờ là:
Giá trị của tích phân bằng:
Ta có: .
Diện tích hình phẳng giới hạn bởi các đường , trục hoành;
và
bằng:
Hoành độ giao điểm của đồ thị hàm số và trục hoành là nghiệm của phương trình:
Diện tích hình phẳng giới hạn bởi các đường là:
Một nguyên hàm F(x) của hàm số thỏa mãn
là:
Ta có:
Vậy
Cho hàm số là một nguyên hàm của hàm số
. Phát biểu nào sau đây đúng?
Ta có .
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: