Cho . Hỏi
là nguyên hàm của hàm số nào dưới đây?
Để tìm là nguyên hàm của hàm số nào trong số 4 hàm số trên, ta sẽ đi đạo hàm
từ đó suy ra
.
Ta có
.
Cho . Hỏi
là nguyên hàm của hàm số nào dưới đây?
Để tìm là nguyên hàm của hàm số nào trong số 4 hàm số trên, ta sẽ đi đạo hàm
từ đó suy ra
.
Ta có
.
Tính thể tích của vật thể sinh ra khi quay quanh trục
hình phẳng giới hạn bởi đồ thị hàm số
, đường thẳng
và trục hoành?
Thể tích V của vật thể là:
Tìm nguyên hàm .
Đặt
Khi đó
Biết . Khi đó
bằng:
Ta có:
Mệnh đề nào sau đây sai?
Đáp án sai là: là một nguyên hàm của
trên
Cho hàm số f(x) xác định trên thỏa mãn
. Tính giá trị của biểu thức
=>
Theo bài ra ta có:
=>
=>
Một người điều khiển ô tô đang ở đường dẫn muốn nhập làn vào đường cao tốc. Khi ô tô cách điểm nhập làn 200 m, tốc độ của ô tô là . Hai giây sau đó, ô tô bắt đầu tăng tốc với tốc độ
, trong đó
là thời gian tính bẳng giây kể từ khi bắt đầu tăng tốc. Biết rằng ô tô nhập làn cao tốc sau 12 giây và duy trì sự tăng tốc trong 24 giây kể từ khi bắt đầu tăng tốc.
a) Quãng đường ô tô đi được từ khi bắt đầu tăng tốc đến khi nhập làn là 180 m. Đúng||Sai
b) Giá trị của là 10. Đúng||Sai
c) Quãng đường (đơn vị: mét) mà ô tô đi được trong thời gian
giây
kể từ khi tăng tốc được tính theo công thức
. Sai||Đúng
d) Sau 24 giây kể từ khi tăng tốc, tốc độ của ô tô không vượt quá tốc độ tối đa cho phép là . Sai||Đúng
Một người điều khiển ô tô đang ở đường dẫn muốn nhập làn vào đường cao tốc. Khi ô tô cách điểm nhập làn 200 m, tốc độ của ô tô là . Hai giây sau đó, ô tô bắt đầu tăng tốc với tốc độ
, trong đó
là thời gian tính bẳng giây kể từ khi bắt đầu tăng tốc. Biết rằng ô tô nhập làn cao tốc sau 12 giây và duy trì sự tăng tốc trong 24 giây kể từ khi bắt đầu tăng tốc.
a) Quãng đường ô tô đi được từ khi bắt đầu tăng tốc đến khi nhập làn là 180 m. Đúng||Sai
b) Giá trị của là 10. Đúng||Sai
c) Quãng đường (đơn vị: mét) mà ô tô đi được trong thời gian
giây
kể từ khi tăng tốc được tính theo công thức
. Sai||Đúng
d) Sau 24 giây kể từ khi tăng tốc, tốc độ của ô tô không vượt quá tốc độ tối đa cho phép là . Sai||Đúng
a) Ta có .
Sau 2s quãng đường ô tô đi được lúc chưa tăng tốc là:
Quãng đường ô tô đi được từ khi bắt đầu tăng tốc đến khi nhập làn là
Do đó, a đúng
b) Tại thời điểm lúc ô tô bắt đầu tăng tốc thì vận tốc của ô tô vẫn đang là
nên
.
Do đó, b đúng
c) Quãng đường (đơn vị: mét) mà ô tô đi được trong thời gian t giây
kể từ khi tăng tốc được tính theo công thức
.
Do đó, c sai
d) Ta có: .
Quãng đường ô tô đi được từ khi bắt đầu tăng tốc đến khi nhập làn là đi trong thời gian 12s nên ta có:
Suy ra
Vậy sau 24 giây kể từ khi tăng tốc, tốc độ của ô tô là:
Do đó, d sai
Tính tích phân ?
Ta có:
.
Cho . Với
, khẳng định nào sau đây đúng?
Đặt t = ax + b
Xét , đặt t = ax + b
=>
=>
Tại một nơi không có gió, một chiếc khí cầu đang đứng yên ở độ cao so với mặt đất đã được phi công cài đặt cho nó chế độ chuyển động đi xuống. Biết rằng, khí cầu đã chuyển động theo phương thẳng đứng với vận tốc tuân theo quy luật
, trong đó
(phút) là thời gian tính từ lúc bắt đầu chuyển động,
được tính theo đơn vị mét/phút
. Nếu như vậy thì khi bắt đầu tiếp đất vận tốc
của khí cầu là:
Khi bắt đầu tiếp đất vật chuyển động được quãng đường là
Ta có: (với
là thời điểm vật tiếp đất)
Cho (Do
)
Khi đó vận tốc của vật là: .
Tính tổng ?
Ta có:
.
Do đó
.
Mặt khác:
.
Đặt .
Đổi cận và
. Khi đó
Một cửa hàng bán cá thiết kế một con cá làm biểu tượng cho cửa hàng của mình ở biển quảng cáo như hình bên dưới. Chủ cửa hàng dùng một miếng gỗ mỏng có chiều dài là 4m và chiều rộng 2m. Ông dùng hai parabol có đỉnh là trung điểm của cạnh dài và đi qua hai điểm đầu của cạnh đối diện để tạo thành con cá (phần tô đậm). Tính diện tích con cá (tính cả phần mắt của con cá) theo đơn vị m2 (làm tròn kết quả đến hàng phần trăm).
Đáp án: 4,32m2.
Một cửa hàng bán cá thiết kế một con cá làm biểu tượng cho cửa hàng của mình ở biển quảng cáo như hình bên dưới. Chủ cửa hàng dùng một miếng gỗ mỏng có chiều dài là 4m và chiều rộng 2m. Ông dùng hai parabol có đỉnh là trung điểm của cạnh dài và đi qua hai điểm đầu của cạnh đối diện để tạo thành con cá (phần tô đậm). Tính diện tích con cá (tính cả phần mắt của con cá) theo đơn vị m2 (làm tròn kết quả đến hàng phần trăm).
Đáp án: 4,32m2.
Đặt hệ trục tọa độ có gốc O trùng với giao điểm hai đường chéo hình chữ nhật.
Đồ thị của hàm số nhận trục Oy làm trục đối xứng đi qua hai điểm
và
có dạng hàm số
.
Đồ thị của hàm số nhận trục Oy làm trục đối xứng đi qua hai điểm
và
có dạng hàm số
.
Giao điểm của hai parabol tại
Do đó, diện tích của con cá là
Gọi là hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành và hai đường thẳng
. Gọi
là thể tích của khối tròn xoay thu được khi quay hình
xung quanh trục hoành. Chọn khẳng định đúng trong các khẳng định sau đây?
Áp dụng công thức thể tích khối tròn xoay ta có:
Khi đó áp dụng vào bài toán ta được:
.
Cho tích phân . Khẳng định nào dưới đây không đúng?
Ta có:
.
Phát biểu (): đúng.
Phát biểu (): sai.
Phát biểu (): đúng.
Phát biểu (): đúng.
Tìm nguyên hàm của hàm số:
Ta có:
Thể tích của khối tròn xoay sinh ra khi cho hình phẳng giới hạn bởi parabol và đường thẳng
xoay quanh trục
tính bởi công thức nào sau đây?
Hình vẽ minh họa
Ta có và
cắt nhau tại hai điểm
và
Suy ra thể tích khối tròn xoay đã cho bằng thể tích khối tròn xoay
trừ đi thể tích khối tròn xoay
. Trong đó:
được sinh ra khi quay hình phẳng giới hạn bởi các đường
, trục Ox, x = 0, x = 1.
được sinh ra khi quay hình phẳng giới hạn bởi các đường
, trục Ox, x = 0, x = 1.
Vậy thể tích khối tròn xoay đã cho bằng .
Cho hàm số có đồ thị như hình vẽ. Biết rằng đồ thị hàm số
tạo với trục hoành và 2 đường thẳng
một hình phẳng
gồm 2 phần có diện tích lần lượt là
.
Xét tính đúng, sai của các mệnh đề sau:
a) [NB] là một nguyên hàm của hàm số
trên
. Đúng||Sai
b) [TH] . Đúng||Sai
c) [TH] . Sai||Đúng
d) [VD,VDC] Biết đường thẳng (
là tham số ) cắt đồ thị
tại hai điểm phân biệt và diện tích hình phẳng giới hạn bởi
và
bằng
. Khi đó tổng các giá trị của tham số
bằng -4. Đúng||Sai
Cho hàm số có đồ thị như hình vẽ. Biết rằng đồ thị hàm số
tạo với trục hoành và 2 đường thẳng
một hình phẳng
gồm 2 phần có diện tích lần lượt là
.
Xét tính đúng, sai của các mệnh đề sau:
a) [NB] là một nguyên hàm của hàm số
trên
. Đúng||Sai
b) [TH] . Đúng||Sai
c) [TH] . Sai||Đúng
d) [VD,VDC] Biết đường thẳng (
là tham số ) cắt đồ thị
tại hai điểm phân biệt và diện tích hình phẳng giới hạn bởi
và
bằng
. Khi đó tổng các giá trị của tham số
bằng -4. Đúng||Sai
a) Đúng. Ta có:
b) Đúng. Ta có:
c) Sai. Ta có
Suy ra : .
d) Đúng.
Phương trình hoành độ giao điểm của và đồ thị hàm số
là
và
cắt nhau tại hai điểm phân biệt
Theo Viète: (
)
Ta có
Vậy .
Một vật chuyển động với vận tốc thay đổi theo thời gian được tính bởi công thức , thời gian tính theo đơn vị giây, quãng đường vật đi được tính theo đơn vị m. Biết tại thời điểm
thì vật đi được quãng đường là 10m. Hỏi tại thời điểm
thì vật đi được quãng đường là bao nhiêu?
Ta có:
.
.
Suy ra: Khi s, vật đi được quãng đường
m.
Vật thể giới hạn bởi mặt phẳng có phương trình
và
. Cắt vật thể
với mặt phẳng vuông góc với trục
tại điểm có hoành độ bằng
ta được thiết diện có diện tích bằng
. Thể tích của vật thể
:
Thể tích của vật thể B là:
Biết rằng liên tục trên
là một nguyên hàm của hàm số
và
. Giá trị biểu thức
bằng:
Ta có:
Vì hàm số liên tục trên
nên liên tục tại
tức là
. Từ (*) và (**) suy ra
Do đó
Giá trị tích phân bằng:
Ta có:
Tìm biết rằng
là phân số tối giản?
Ta có:
Đổi cận khi đó suy ra
Cho hàm số . Khẳng định nào sau đây đúng?
Vì nên
.
Vậy đáp án cần tìm là .
Một bác thợ xây bơm nước vào bể chứa nước. Gọi là thể tích nước bơm được sau
giây. Cho
và ban đầu bể không có nước. Sau 3 giây thì thể tích nước trong bể là
, sau
giây thì thể tích nước trong bể là
. Tính thể tích nước trong bể sau khi bơm được
giây.
Ta có:
(1)
(2)
Từ (1), (2) . Sau khi bơm
giây thì thể tích nước trong bể là:
=
.
Họ nguyên hàm của hàm số là:
Đặt
Cho hàm số liên tục trên đoạn
. Diện tích
của hình phẳng giới hạn bởi đồ thị của hàm số
, trục hoành và hai đường thẳng
được tính theo công thức
Theo lí thuyết về tính diện tích hình phẳng ta có diện tích S của hình phẳng giới hạn bởi đồ thị của hàm số , trục hoành và hai đường thẳng
được tính theo công thức:
.
Xác định nguyên hàm của hàm số
?
Ta có:
Giá trị của bằng
Giải toán bằng hai cách như sau:
Cách 1: Thử bằng máy tính
Lấy giá trị n càng lớn càng tốt. Giả sử .
Nhập biểu thức
Máy tính cho kết quả .
Cách 2: Giải chi tiết
Ta luôn có
Cho là một nguyên hàm của hàm số
. Tìm nguyên hàm của hàm số
?
Ta có: là một nguyên hàm của hàm số
nên
Hay
Xét , đặt
Khi đó
Có một cốc thủy tinh hình trụ, bán kính trong lòng đáy cốc là , chiều cao trong lòng cốc là
đang đựng một lượng nước.
Tính thể tích lượng nước trong cốc, biết khi nghiêng cốc nước vừa lúc nước chạm miệng cốc thì đáy mực nước trùng với đường kính đáy.
Có một cốc thủy tinh hình trụ, bán kính trong lòng đáy cốc là , chiều cao trong lòng cốc là
đang đựng một lượng nước.
Tính thể tích lượng nước trong cốc, biết khi nghiêng cốc nước vừa lúc nước chạm miệng cốc thì đáy mực nước trùng với đường kính đáy.
Tìm nguyên hàm của hàm số
thỏa mãn
.
Ta có
.
Do nên
.
Vậy hàm số cần tìm là .
Tích phân có giá trị là:
Tích phân
Ta có:
Xét .
Đặt .
.
.
Tìm ?
Đặt:
Mặt khác:
Từ ta có hệ:
Tìm nguyên hàm của hàm số
?
Ta có:
Vậy một nguyên hàm của hàm số là .
Tích phân có giá trị là:
Thực hiện giải toán theo hai bước sau:
Cách 1: .
Cách 2: Dùng máy tính cầm tay.
Xét hình phẳng giới hạn bởi các đường như hình vẽ (phần gạch sọc).
Diện tích hình phẳng được tính theo công thức
Ta có:
Tích phân có giá trị là:
Thực hiện tích phân theo hai cách như sau:
Cách 1: Ta nhận thấy: .
Ta dùng đổi biến số.
Đặt .
Đổi cận .
Ta có:
.
Cách 2: Dùng máy tính cầm tay, tuy nhiên chờ máy giải cũng khá mất thời gian.
Tính tích phân bằng cách đặt
. Công thức nào dưới đây chính xác?
Đặt
Suy ra
Hình elip được ứng dụng nhiều trong thực tiễn, đặc biệt là kiến trúc, xây dựng, thiết bị nội thất,... Mặt trong (lọt lòng) và ngoài (phủ bì) của một bồn rửa (lavabo) bằng sứ có hình dạng là một nửa khối tròn xoay khi quay quanh một trục của 2 elip có chung các trục đối xứng (hình minh họa). Thông số kĩ thuật mặt trên của bồn rửa: dài x rộng là mm (phủ bì) và elip (lọt lòng) có trục lớn, trục nhỏ ít hơn elip phủ bì một khoảng 40 mm. Tính thể tích chứa nước của bồn rửa (đơn vị: lít) (làm tròn kết quả đến hàng phần mười).
Đáp án: 18,8
Hình elip được ứng dụng nhiều trong thực tiễn, đặc biệt là kiến trúc, xây dựng, thiết bị nội thất,... Mặt trong (lọt lòng) và ngoài (phủ bì) của một bồn rửa (lavabo) bằng sứ có hình dạng là một nửa khối tròn xoay khi quay quanh một trục của 2 elip có chung các trục đối xứng (hình minh họa). Thông số kĩ thuật mặt trên của bồn rửa: dài x rộng là mm (phủ bì) và elip (lọt lòng) có trục lớn, trục nhỏ ít hơn elip phủ bì một khoảng 40 mm. Tính thể tích chứa nước của bồn rửa (đơn vị: lít) (làm tròn kết quả đến hàng phần mười).
Đáp án: 18,8
Chọn hệ trục tọa độ thích hợp với đơn vị trên trục là decimet.
Phương trình elip lọt lòng: .
Thể tích chứa nước của bồn rửa: lít.
Tính thể tích của vật thể giới hạn bởi hai mặt phẳng biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với
tại điểm có hoành độ
là hình chữ nhật có kích thước là
và
?
Thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với tại điểm có hoành độ
là hình chữ nhật có kích thước là
và
Diện tích thiết diện được xác định theo hàm là:
⇒ Thể tích vật thể tròn xoay:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: