Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 6 Một số yếu tố xác suất

Mô tả thêm:

Trong chương trình Toán 12 Cánh Diều, Chương 6: Một số yếu tố xác suất là phần kiến thức quan trọng, thường xuyên xuất hiện trong các đề kiểm tra và đề thi. Đây là chuyên đề giúp học sinh rèn luyện khả năng tư duy xác suất, biết cách phân tích tình huống, xử lý dữ liệu và áp dụng công thức phù hợp. Bài viết này cung cấp đề kiểm tra 45 phút Toán 12 Chương 6 bám sát nội dung SGK, giúp học sinh hệ thống kiến thức, luyện tập kỹ năng giải toán và tự tin chuẩn bị cho các kỳ kiểm tra 1 tiết cũng như ôn tập thi tốt nghiệp.

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Chọn đáp án đúng

    Cho hai biến cố AB sao cho P(A) = 0,6; P(B) = 0,4; P\left( A|B \right) = 0,3. Khi đó P\left( B|A \right) bằng?

    Áp dụng công thức Bayes, ta có:

    P\left( B|A \right) = \frac{P(B)P\left(
A|B \right)}{P(A)} = \frac{0,4.0,3}{0,6} = 0,2.

  • Câu 2: Thông hiểu

    Xét tính đúng sai của các phương án

    Một thùng có các hộp loại I và loại II, trong đó có 2 hộp loại I, mỗi hộp có 13 sản phẩm tốt và 2 phế phẩm và có 3 hộp loại II, mỗi hộp có 6 sản phẩm tốt và 4 phế phẩm. Các khẳng định sau đúng hay sai?

    a) Số cách chọn được 2 sản phẩm tốt trong hộp loại I là 78.Đúng||Sai

    b) Xác suất chọn được 2 phế phẩm trong hộp loại II là \frac{12}{15} Sai||Đúng

    c) Chọn ngẫu nhiên trong thùng một hộp và từ hộp đó lấy ra hai sản phẩm để kiểm tra, xác suất để hai sản phẩm này đều tốt là \frac{87}{175}. Đúng||Sai

    d) Chọn ngẫu nhiên trong thùng một hộp và từ hộp đó lấy ra hai sản phẩm để kiểm tra, giả sử hai sản phẩm đó đều tốt thì xác suất để hai sản phẩm đó thuộc hộp loại I là \frac{52}{87}. Đúng||Sai

    Đáp án là:

    Một thùng có các hộp loại I và loại II, trong đó có 2 hộp loại I, mỗi hộp có 13 sản phẩm tốt và 2 phế phẩm và có 3 hộp loại II, mỗi hộp có 6 sản phẩm tốt và 4 phế phẩm. Các khẳng định sau đúng hay sai?

    a) Số cách chọn được 2 sản phẩm tốt trong hộp loại I là 78.Đúng||Sai

    b) Xác suất chọn được 2 phế phẩm trong hộp loại II là \frac{12}{15} Sai||Đúng

    c) Chọn ngẫu nhiên trong thùng một hộp và từ hộp đó lấy ra hai sản phẩm để kiểm tra, xác suất để hai sản phẩm này đều tốt là \frac{87}{175}. Đúng||Sai

    d) Chọn ngẫu nhiên trong thùng một hộp và từ hộp đó lấy ra hai sản phẩm để kiểm tra, giả sử hai sản phẩm đó đều tốt thì xác suất để hai sản phẩm đó thuộc hộp loại I là \frac{52}{87}. Đúng||Sai

    a) Chọn 2 sản phẩm tốt từ 13 sản phẩm tốt trong hộp loại I là C_{13}^{2} = 78 cách.

    b) Số cách chọn 2 phế phẩm từ 4 phế phẩm trong hộp loại II là C_{4}^{2} = 6 cách.

    Tổng số cách chọn 2 sản phẩm từ 10 sản phẩm (6 tốt và 4 phế phẩm) trong hộp II là C_{10}^{2} = 45 cách

    Vậy xác suất chọn được hai phế phẩm là: \frac{6}{45} = \frac{2}{15}.

    c) Gọi A: “Chọn được trong thùng một hộp loại I”.

    Và B: “Chọn được trong thùng một hộp loại II”.

    Xác suất chọn hộp loại I là P(A) =
\frac{2}{5} và xác suất chọn hộp loại II là P(B) = \frac{3}{5}

    Gọi C là biến cố “Cả 2 sản phẩm lấy ra đều tốt”.

    Xác suất lấy được 2 sản phẩm tốt từ hộp loại I là P\left( C|A ight) =
\frac{C_{13}^{2}}{C_{15}^{2}} = \frac{26}{35}

    Xác suất lấy được 2 sản phẩm tốt từ hộp II là P\left( C|B ight) = \frac{C_{6}^{2}}{C_{10}^{2}}
= \frac{1}{3}

    Vậy xác suất hai sản phẩm lấy ra từ một hộp trong thùng đều tốt là:

    P(C) = P\left( C|A ight).P(A) +
P\left( C|B ight).P(B)

    \Rightarrow P(C) =
\frac{26}{35}.\frac{2}{5} + \frac{1}{3}.\frac{3}{5} =
\frac{87}{175}

    d) Xác suất lấy ra hai sản phẩm đều tốt thuộc hộp loại I là

    P\left( A|C ight) = \dfrac{P\left( C|Aight).P(A)}{P(C)} = \dfrac{\dfrac{26}{35}.\dfrac{2}{5}}{\dfrac{87}{125}} =\dfrac{52}{87}

  • Câu 3: Nhận biết

    Chọn kết luận đúng

    Cho AB là hai biến cố, trong đó P(B) > 0. Khi đó

    Ta có : P\left( \left. \ A \right|B
\right) = \frac{P(A \cap B)}{P(B)}.

  • Câu 4: Nhận biết

    Tìm khẳng định sai

    Giả sử AB là hai biến cố ngẫu nhiên thỏa mãn P(A) > 00 < P(B) < 1. Khẳng định nào dưới đây sai?

    Giả sử AB là hai biến cố ngẫu nhiên thỏa mãn P(A) > 00 < P(B) < 1.

    Khi đó, công thức Bayes:

    P\left( B|A \right) = \frac{P(B)P\left(
A|B \right)}{P(B)P\left( A|B \right) + P\left( \overline{B}
\right)P\left( A|\overline{B} \right)}

    Hay còn có thể viết dưới dạng: P\left( B|A \right) =
\frac{P(B)P\left( A|B \right)}{P(A)}.

  • Câu 5: Thông hiểu

    Xét tinh đúng sai của các kết luận

    Một hộp có 10 bi xanh và 8bi đen, các viên bi đều có cùng hình dáng, kích thước và khối lượng. Bạn Nam lấy ngẫu nhiên một viên trong hộp, không trả lại. Sau đó Bạn Lan lấy ngẫu nhiên một trong 17 viên bi còn lại. Gọi A là biến cố bạn Nam lấy được một viên bi xanh và Blà biến cố bạn Lan lấy được một viên bi đen.

    a) n(A) = 10.Đúng||Sai

    b) P(A) =
\frac{5}{9}Đúng||Sai

    c) P\left( \left. \ B \right|A \right) =
\frac{4}{9}.Sai||Đúng

    d) P(A.B) = 0,8. Sai||Đúng

    Đáp án là:

    Một hộp có 10 bi xanh và 8bi đen, các viên bi đều có cùng hình dáng, kích thước và khối lượng. Bạn Nam lấy ngẫu nhiên một viên trong hộp, không trả lại. Sau đó Bạn Lan lấy ngẫu nhiên một trong 17 viên bi còn lại. Gọi A là biến cố bạn Nam lấy được một viên bi xanh và Blà biến cố bạn Lan lấy được một viên bi đen.

    a) n(A) = 10.Đúng||Sai

    b) P(A) =
\frac{5}{9}Đúng||Sai

    c) P\left( \left. \ B \right|A \right) =
\frac{4}{9}.Sai||Đúng

    d) P(A.B) = 0,8. Sai||Đúng

    a) Đ Vì hộp có 10 bi xanh nên số phần tử của biến cố An(A) = 10.

    b) Đ Vì bạn Nam lấy ngẫu nhiên 1 viên bi từ hộp chứa 10 bi xanh và 8 bi đen nên n(\Omega) = 18

    Do đó, P(A) = \frac{n(A)}{n(\Omega)} =
\frac{10}{18} = \frac{5}{9}.

    c) S Nếu A xảy ra tức là bạn Nam lấy được bi xanh thì trong hộp có 17viên bi với 8bi đen

    Do đó, P\left( \left. \ B \right|A
\right) = \frac{8}{17} \neq \frac{4}{9}.

    d) S Áp dụng công thức nhân xác suất, ta có:

    P(A.B) = P(A).P\left( \left. \ B
\right|A \right) = \frac{5}{9}.\frac{8}{17} = \frac{40}{153} \approx 0,3
\neq 0,8.

  • Câu 6: Thông hiểu

    Xét tính đúng sai của các phương án

    Lớp 10A có 35 học sinh, mỗi học sinh đều giỏi ít nhất một trong hai môn Toán hoặc Văn. Biết rằng có 23 học sinh giỏi môn Toán và 20 học sinh giỏi môn Văn. Chọn ngẫu nhiên một học sinh của lớp 10A.

    a) Xác suất để học sinh được chọn giỏi môn Toán biết rằng học sinh đó cũng giỏi môn Văn bằng \frac{2}{5}.Đúng||Sai

    b) Xác suất để học sinh được chọn "giỏi môn Văn biết rằng học sinh đó cũng giỏi môn Toán" bằng \frac{8}{23}. Đúng||Sai

    c) Xác suất để học sinh được chọn "không giỏi môn Toán biết rằng học sinh đó giỏi môn Văn" bằng \frac{15}{23}. Sai||Đúng

    d) Xác suất để học sinh được chọn "không giỏi môn Văn biết rằng học sinh đó giỏi môn Toán" bằng \frac{3}{5}.Sai||Đúng

    Đáp án là:

    Lớp 10A có 35 học sinh, mỗi học sinh đều giỏi ít nhất một trong hai môn Toán hoặc Văn. Biết rằng có 23 học sinh giỏi môn Toán và 20 học sinh giỏi môn Văn. Chọn ngẫu nhiên một học sinh của lớp 10A.

    a) Xác suất để học sinh được chọn giỏi môn Toán biết rằng học sinh đó cũng giỏi môn Văn bằng \frac{2}{5}.Đúng||Sai

    b) Xác suất để học sinh được chọn "giỏi môn Văn biết rằng học sinh đó cũng giỏi môn Toán" bằng \frac{8}{23}. Đúng||Sai

    c) Xác suất để học sinh được chọn "không giỏi môn Toán biết rằng học sinh đó giỏi môn Văn" bằng \frac{15}{23}. Sai||Đúng

    d) Xác suất để học sinh được chọn "không giỏi môn Văn biết rằng học sinh đó giỏi môn Toán" bằng \frac{3}{5}.Sai||Đúng

    Gọi A : “Học sinh được chọn giỏi môn Toán”

    B: “Học sinh được chọn giỏi môn Văn”

    Gọi C : “Học sinh được chọn không giỏi môn Toán”

    D: “Học sinh được chọn không giỏi môn Văn”

    Số học sinh giỏi cả 2 môn là: 23 + 20 -
35 = 8

    a) Trong số 23 học sinh giỏi Toán, chỉ có đúng 8 học sinh giỏi Văn nên xác suất để học sinh được chọn giỏi môn Toán biết rằng học sinh đó cũng giỏi môn Văn là:

    P\left( A|B ight) = \frac{8}{20} =
\frac{2}{5}

    b) Trong số 20 học sinh giỏi Văn, chỉ có đúng 8 học sinh giỏi Toán nên xác suất để học sinh được chọn giỏi môn Văn biết rằng học sinh đó cũng giỏi môn Toán là:

    P\left( B|A ight) =
\frac{8}{23}

    c) Trong số 20 học sinh giỏi Văn, có đúng 8 học sinh giỏi cả Văn và Toán, nên số học sinh giỏi Văn mà không giỏi Toán là 12.

    Xác suất để học sinh được chọn "không giỏi môn Toán biết rằng học sinh đó giỏi môn Văn" là:

    P\left( C|B ight) = \frac{12}{20} =
\frac{3}{5}

    d) Trong số 23 học sinh giỏi Toán, có đúng 8 học sinh giỏi cả Toán và Văn nên số học sinh không giỏi Văn mà giỏi Toán là 23 - 8 = 15

    Xác suất để học sinh được chọn "không giỏi môn Văn biết rằng học sinh đó giỏi môn Toán" là: P\left( D|A ight) =
\frac{15}{23}

  • Câu 7: Nhận biết

    Chọn đáp án đúng

    Cho hai biến cố AB với 0 <
P(B) < 1. Khi đó

    Ta có: P(A) = P(B)P\left( \left. \ A
\right|B \right) + P\left( \overline{B} \right)P\left( \left. \ A
\right|\overline{B} \right)

  • Câu 8: Nhận biết

    Tính P(A)

    Cho hai biến cố AB với P(B) =
0,8;P\left( A|B ight) = 0,7,P\left( A|\overline{B} ight) =
0,45. Tính P(A)?

    Ta có:

    P\left( \overline{B} ight) = 1 - P(B)
= 1 - 0,8 = 0,2

    Áp dụng công thức xác suất toàn phần ta có:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    \Rightarrow P(A) = 0,8.0,7 + 0,2.0,45 =
0,65

  • Câu 9: Vận dụng cao

    Chọn đáp án chính xác nhất

    Có hai lô sản phẩm: lô I có 7 chính phẩm, 3 phế phẩm; lô II có 8 chính phẩm, 2 phế phẩm. Từ lô I lấy ngẫu nhiên ra 2 sản phẩm, từ lô II lấy ngẫu nhiên ra 3 sản phẩm. Sau đó từ số sản phẩm này lại lấy ngẫu nhiên 2 sản phẩm. Tính xác suất để trong 2 sản phẩm lấy ra sau cùng có ít nhất 1 chính phẩm.

    Gọi A_{i} là "trong 5 sản phẩm cuối có i chính phẩm".

    Khi đó hệ A_{0},A_{1},A_{2},A_{3},A_{4},A_{5} tạo thành hệ đầy đủ

    A_{0} xảy ra thì phải lấy 3 phế phẩm từ lô II, điều này là không thể.

    Suy ra P\left( A_{0} ight) =
0

    A_{1} xảy ra nếu lấy 2 phế từ lô I và 1 chính, 1 phế từ lô II.

    P\left( A_{1} ight) =
\frac{C_{3}^{2}}{C_{10}^{2}} \cdot \frac{C_{8}^{1}C_{2}^{2}}{C_{10}^{3}}
= \frac{1}{225}

    A_{2} xảy ra nếu lấy 1 chính, 1 phế từ lô I,1 chính, 2 phế từ lô II hoặc 2 phế từ lô I,2 chính, 1 phế từ lô II

    P\left( A_{2} ight) =
\frac{C_{7}^{1}C_{3}^{1}}{C_{10}^{2}} \cdot
\frac{C_{8}^{1}C_{2}^{2}}{C_{10}^{3}} + \frac{C_{3}^{2}}{C_{10}^{2}}
\cdot \frac{C_{8}^{2}C_{2}^{1}}{C_{10}^{3}} =
\frac{14}{225}

    A_{3} xảy ra nếu lấy 2 chính từ lô I,1 chính, 2 phế từ lô II hoặc 1 chính, 1 phế từ lô I,2 chính, 1 phế từ lô II hoặc 2 phế từ lô I,3 chính từ lô II

    P\left( A_{3} ight) =
\frac{C_{7}^{2}}{C_{10}^{2}} \cdot \frac{C_{8}^{1}C_{2}^{2}}{C_{10}^{3}}
+ \frac{C_{7}^{1}C_{3}^{1}}{C_{10}^{2}} \cdot
\frac{C_{8}^{2}C_{2}^{1}}{C_{10}^{3}} + \frac{C_{3}^{2}}{C_{10}^{2}}
\cdot \frac{C_{8}^{3}}{C_{10}^{3}} = \frac{7}{25}

    A_{4} xảy ra nếu lấy 2 chính từ lô I,2 chính, 2 phế từ lô II hoặc 1 chính, 1 phế từ lô I,3 chính từ lô II

    P\left( A_{4} ight) =
\frac{C_{7}^{2}}{C_{10}^{2}} \cdot \frac{C_{8}^{2}C_{2}^{1}}{C_{10}^{3}}
+ \frac{C_{7}^{1}C_{3}^{1}}{C_{10}^{2}} \cdot
\frac{C_{8}^{3}}{C_{10}^{3}} = \frac{98}{225}

    A_{5} xảy ra nếu lấy 2 chính từ lô I,3 chính từ lô II

    P\left( A_{5} ight) =
\frac{C_{7}^{2}}{C_{10}^{2}} \cdot \frac{C_{8}^{3}}{C_{10}^{3}} =
\frac{49}{225}

    Gọi A là "trong 2 sản phẩm lấy ra có ít nhất 1 chính phẩm", áp dụng công thức xác suất đầy đủ

    P(\bar{A}) = \sum_{i =
0}^{5}\mspace{2mu}\mspace{2mu} P\left( A_{i} ight)P\left( \bar{A} \mid
A_{i} ight)

    = \frac{C_{5}^{2}}{C_{5}^{2}} \cdot 0 +
\frac{C_{4}^{2}}{C_{5}^{2}} \cdot \frac{1}{225} +
\frac{C_{3}^{2}}{C_{5}^{2}} \cdot \frac{14}{225} +
\frac{C_{2}^{2}}{C_{5}^{2}} \cdot \frac{7}{25} + 0 \cdot \frac{98}{225}
+ 0 \cdot \frac{49}{225}

    \simeq 0.4933

    Suy ra P(A) = 1 - P(\bar{A}) \simeq
0,6507.

  • Câu 10: Thông hiểu

    Chọn kết quả chính xác

    Trong danh sách sĩ số hai lớp 12 có 95 học sinh, trong đó có 40 nam và 55 nữ. Trong kỳ thi kiểm tra chất lượng có 23 học sinh đạt điểm giỏi (trong đó có 12 nam và 11 nữ). Gọi tên ngẫu nhiên một học sinh trong danh sách. Tìm xác suất gọi được học sinh đạt điểm giỏi, biết rằng học sinh đó là nữ?

    Gọi A là biến cố “gọi được học sinh nữ”

    Gọi B là biến cố “gọi được học sinh đạt điểm giỏi”

    Ta đi tính P\left( B|A ight). Ta có: P(A) = \frac{55}{95};P(A \cap B) =
\frac{11}{95}

    Khi đó: P\left( B|A ight) = \frac{P(A
\cap B)}{P(A)} = \frac{11}{95}:\frac{55}{95} = \frac{11}{55} =
\frac{1}{5}.

  • Câu 11: Vận dụng cao

    Xét tính đúng sai của các kết luận

    Ở cửa ra vào của một nhà sách có một thiết bị cảnh báo hàng hóa chưa được thanh toán khi qua cửa. Thiết bị phát chuông cảnh báo với 99\% các hàng hóa ra cửa mà chưa thanh toán và 0,1\% các hàng hóa đã thanh toán. Tỷ lệ hàng hóa qua cửa không được thanh toán là 0,1\%. Chọn ngẫu nhiên một hàng hóa khi đi qua cửa.

    a) Xác suất để hàng qua cửa đã thanh toán là 99,9\%. Đúng||Sai

    b) Xác suất để hàng qua cửa chưa thanh toán và thiết bị phát chuông cảnh báo là 1\%.Sai||Đúng

    c) Xác suất để hàng qua cửa đã thanh toán và thiết bị phát chuông cảnh báo là 0,1\%. Đúng||Sai

    d) Xác suất để hàng qua cửa chưa thanh toán và thiết bị không phát chuông cảnh báo là 0,001\%. Đúng||Sai

    Đáp án là:

    Ở cửa ra vào của một nhà sách có một thiết bị cảnh báo hàng hóa chưa được thanh toán khi qua cửa. Thiết bị phát chuông cảnh báo với 99\% các hàng hóa ra cửa mà chưa thanh toán và 0,1\% các hàng hóa đã thanh toán. Tỷ lệ hàng hóa qua cửa không được thanh toán là 0,1\%. Chọn ngẫu nhiên một hàng hóa khi đi qua cửa.

    a) Xác suất để hàng qua cửa đã thanh toán là 99,9\%. Đúng||Sai

    b) Xác suất để hàng qua cửa chưa thanh toán và thiết bị phát chuông cảnh báo là 1\%.Sai||Đúng

    c) Xác suất để hàng qua cửa đã thanh toán và thiết bị phát chuông cảnh báo là 0,1\%. Đúng||Sai

    d) Xác suất để hàng qua cửa chưa thanh toán và thiết bị không phát chuông cảnh báo là 0,001\%. Đúng||Sai

    Gọi A là biến cố “Hàng qua cửa đã được thanh toán” và B là biến cố “Thiết bị phát chuông cảnh báo”.

    Tỷ lệ hàng qua cửa không được thanh toán là 0,1\% tức là P\left( \overline{A} \right) = 0,1\% suy ra P(A) = 100\% - 0,1\% =
99,9\%.

    Ta có P\left( B|A \right) =
0,1\%P\left( B|\overline{A}
\right) = 99\%; Mệnh đề a) đúng

    P\left( \overline{B}|A \right) = 100\% -
P\left( B|A \right) = 99,9\%; P\left( \overline{B}|\overline{A} \right) = 100\%
- P\left( B|\overline{A} \right) = 1\%.

    Ta có sơ đồ hình cây như sau:

    A diagram of a number of numbersDescription automatically generated with medium confidence

    Từ đây ta có:

    Xác suất để hàng qua cửa đã thanh toán là 99,9\%.

    Xác suất để hàng qua cửa chưa thanh toán và thiết bị phát chuông cảnh báo là P\left( \overline{A}B \right) =
0,099\%.Mệnh đề b) sai

    Xác suất để hàng hóa qua cửa đã thanh toán và thiết bị phát chuông cảnh báo là P\left( \overline{A}B \right) =
0,1\%. Mệnh đề c) đúng

    Xác suất để hàng qua cửa chưa thanh toán và thiết bị không phát chuông cảnh báo là P\left(
\overline{A}\overline{B} \right) = 0,001\%. Mệnh đề d) đúng

    Đáp án: a) Đ, b) S, c) Đ, d) Đ.

  • Câu 12: Nhận biết

    Tính xác suất

    Cho hai biến cố A;B với P(A) = \frac{1}{3};P(B) = \frac{1}{2};P(A + B) =
\frac{3}{4}. Tính P(A.B)?

    Ta có: P(A.B) = P(A) + P(B) - P(A + B) =
\frac{1}{12}

  • Câu 13: Vận dụng

    Chọn đáp án chính xác

    Cho hai hộp đựng các viên bi có cùng kích thước và khối lượng như sau:

    Hộp thứ nhất có 3 viên bi xanh và 6 viên vi đỏ.

    Hộp thứ hai có 3 viên vi xanh và 7 viên bi đỏ.

    Lấy ngẫu nhiên ra một viên bi từ hộp thứ nhất chuyển sang hộp thứ hai. Sau đó lại lấy ngẫu nhiên đồng thời hai viên từ hộp thứ hai, biết rằng hai bi lấy ra từ hộp thứ hai là bi màu đỏ, tính xác suất viên bi lấy ra từ hộp thứ nhất cũng là bi màu đỏ.

    Gọi A1: “Lấy ra một bi một màu xanh ở hộp thứ nhất”

    Và A2: “Lấy ra một bi một màu đỏ ở hộp thứ nhất”

    Nên A_{1};A_{2} là hệ biến cố đầy đủ

    Gọi B: “Hai bi lấy ra từ hộp thứ hai là màu đỏ”

    Ta có:

    P\left( A_{1} ight) =
\frac{C_{3}^{1}}{C_{9}^{1}} = \frac{1}{3};P\left( A_{2} ight) =
\frac{C_{6}^{1}}{C_{9}^{1}} = \frac{2}{3}

    P\left( B|A_{1} ight) =
\frac{C_{7}^{2}}{C_{11}^{2}} = \frac{21}{55};P\left( B|A_{2} ight) =
\frac{C_{8}^{2}}{C_{11}^{2}} = \frac{28}{55}

    Áp dụng công thức xác suất toàn phần

    P(B) = P\left( B|A_{1} ight).P\left(
A_{1} ight) + P\left( B|A_{2} ight).P\left( A_{2}
ight)

    \Rightarrow P(B) =
\frac{1}{3}.\frac{21}{55} + \frac{2}{3}.\frac{28}{55} =
\frac{7}{15}

    Xác suất viên bi lấy ra từ hộp thứ nhất màu đỏ, biết rằng hai bi lấy ra từ hộp thứ hai màu đỏ, ta áp dụng công thức Bayes:

    P\left( A_{2}|B ight) = \dfrac{P\left(B|A_{2} ight).P\left( A_{2} ight)}{P(B)} =\dfrac{\dfrac{28}{55}.\dfrac{2}{3}}{\dfrac{7}{15}} =\dfrac{8}{11}

  • Câu 14: Thông hiểu

    Tính xác suất thắng thầu

    Một công ty xây dựng đấu thầu 2 dự án độc lập. Khả năng thắng thầu của các dự án 1 là 0,6 và dự án 2 là 0,7. Biết công ty thắng thầu dự án 1, tìm xác suất công ty thắng thầu dự án 2?

    Gọi A là biến cố ”Thắng thầu dự án 1″

    Gọi B là biến cố “Thắng thầu dự án 2″

    Theo đề bài ta có: \left\{ \begin{matrix}
P(A) = 0,6 \Rightarrow P\left( \overline{A} ight) = 0,4 \\
P(B) = 0,3 \Rightarrow P\left( \overline{B} ight) = 0,7 \\
\end{matrix} ight. với 2 biến cố A; B độc lập.

    Gọi D là biến cố “thắng thầu dự án thứ 2 biết thắng thầu dự án 1” do A; B là hai biến cố độc lập nên:

    P(D) = P\left( B|A ight) = P(B) =
0,7

  • Câu 15: Thông hiểu

    Chọn đáp án đúng

    Cho bảng dữ liệu sau về kết quả xét nghiệm một loại bệnh:

    Dương tính

    Âm tính

    Mắc bệnh

    100

    20

    Không mắc bệnh

    30

    850

    Nếu một người có kết quả xét nghiệm dương tính, xác suất người đó mắc bệnh là bao nhiêu?

    Gọi biến cố A: "Người đó mắc bệnh"

    Biến cố B:''Người đó có kết quả xét nghiệm dương tính''.

    Với P\left( B|A \right): xác suất kết quả dương tính khi người đó mắc bệnh

    P\left( B|A \right) = \frac{100}{100 +
20} = \frac{5}{6}.

    \begin{matrix}P(A) = \dfrac{100 + 20}{1000} = \dfrac{120}{1000} = 0.12.\end{matrix}

    P(B) = \frac{100 + 30}{1000} = 0.13

    Từ đó suy ra: P\left( A|B \right) =
\frac{P\left( B|A \right).P(A)}{P(B)} = \frac{5}{6}.\frac{0.12}{0.13} =
0.7692 \simeq 77\%.

  • Câu 16: Vận dụng cao

    Tính xác suất bắn trúng

    Cuối tuần M đến sân chơi để bắn cung, biết khoảng cách bắn tên thay đổi liên tục và khả năng bạn M bắn trúng bia tỉ lệ nghịch với khoảng cách bắn. M bắn lần đầu ở khoảng cách 20m với xác suất trúng bia là 0,5, nếu bị trượt M bắn tiếp mũi tên thứ hai ở khoảng cách 30m, nếu lại trượt M bắn mũi tên thứ ba ở khoảng cách 40m. Tính xác suất để M bắn trúng bia?

    Gọi A là biến cố “M bắn trúng bia ở lần thứ nhất”

    Gọi B là biến cố “M bắn trúng bia ở lần thứ hai”

    Gọi C là biến cố “M bắn trúng bia ở lần thứ ba”

    Ta có: P(A) = 0,5

    Vì xác suất bắn trúng bia trong mỗi lần bắn tỷ lệ nghịch với khoảng cách bắn nên ta có:

    \left\{ \begin{matrix}P\left( B|\overline{A} ight) = \dfrac{20.0,5}{30} = \dfrac{1}{3} \\P\left( C|\overline{A}.\overline{B} ight) = \dfrac{20.0,5}{40} =\dfrac{1}{4} \\\end{matrix} ight.

    Ta có sơ đồ cây như sau:

    Xác suất để M bắn trúng bia là:

    P(A) + P\left( \overline{A}B ight) +
P\left( \overline{A}\overline{B}C ight) = 0,5 + 0,5.\frac{1}{3} +
0,5.\frac{2}{3}.\frac{1}{4} = 0,75

  • Câu 17: Thông hiểu

    Xác định tính đúng sai của từng phương án

    Một chiếc hộp có 100 viên bi, trong đó có 70 viên bi có tô màu và 30 viên bi không tô màu; các viên bi có kích thước và khối lượng như nhau. Bạn Nam lấy ra viên bi đầu tiên, sau đó bạn Việt lấy ra viên bi thứ hai.

    a) Xác suất để bạn Nam lấy ra viên bi có tô màu là \frac{3}{7}. Đúng||Sai

    b) Sơ đồ cây biểu thị tình huống trên là. Đúng||Sai

    c) Xác suất để bạn Việt lấy ra viên bi có tô màu là: \frac{191}{330}Đúng||Sai

    d) Xác suất để bạn Việt lấy ra viên bi không có tô màu là: \frac{139}{330}. Đúng||Sai

    Đáp án là:

    Một chiếc hộp có 100 viên bi, trong đó có 70 viên bi có tô màu và 30 viên bi không tô màu; các viên bi có kích thước và khối lượng như nhau. Bạn Nam lấy ra viên bi đầu tiên, sau đó bạn Việt lấy ra viên bi thứ hai.

    a) Xác suất để bạn Nam lấy ra viên bi có tô màu là \frac{3}{7}. Đúng||Sai

    b) Sơ đồ cây biểu thị tình huống trên là. Đúng||Sai

    c) Xác suất để bạn Việt lấy ra viên bi có tô màu là: \frac{191}{330}Đúng||Sai

    d) Xác suất để bạn Việt lấy ra viên bi không có tô màu là: \frac{139}{330}. Đúng||Sai

    Gọi A là biến cố “bạn Việt lấy ra viên bi có tô màu”

    Gọi B là biến cố “bạn Nam lấy ra viên bi có tô màu”, suy ra B là biến cố “bạn Việt lấy ra viên bi không có tô màu”.

    a) Xác suất để bạn Nam lấy ra viên bi có tô màu là P(B) = \frac{70}{100} = \frac{7}{10}.

    b) Ta có:

    P\left( \overline{B} ight) = 1 - P(B)
= 0,3

    P\left( A|B ight) = \frac{P(A \cap
B)}{P(B)} = \frac{n(A \cap B)}{n(B)} = \frac{70.69}{70.99} =
\frac{23}{33}

    P\left( A|\overline{B} ight) = 1 -
P\left( A|B ight) = 1 - \frac{23}{33} = \frac{10}{33}

    Sơ đồ cây cần tìm là:

    c) Xác suất để bạn Việt lấy ra viên bi có tô màu là:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    \Rightarrow P(A) =
\frac{7}{10}.\frac{23}{33} + \frac{3}{10}.\frac{10}{33} =
\frac{191}{330}

    d) A là biến cố “bạn Việt lấy ra viên bi có tô màu” suy ra A là biến cố “bạn Việt lấy ra viên bi không có tô màu”

    \Rightarrow P\left( \overline{A} ight)
= 1 - P(A) = 1 - \frac{191}{330} = \frac{139}{330}

  • Câu 18: Vận dụng

    Chọn đáp án đúng

    Theo thống kê ở các gia đình có hai con thì xác suất để con thứ nhất và con thứ hai là đều con trai là 0,27 và hai con đều là gái là 0,23, còn xác suất con thứ nhất và con thứ hai có một trai và một gái là đồng khả năng. Biết khi xét một gia đình được chọn ngẫu nhiên có con thứ nhất là con gái, tìm xác suất để con thứ hai là trai.

    Gọi A là 'con thứ nhất là con trai' và B là 'con thứ hai là con trai' thì theo đề bài ta có:

    P(AB) = 0,27, P(\bar{A}\bar{B}) = 0,23P(A\bar{B}) = P(\bar{A}B) = 0,25

    Ta cần tìm B \mid \bar{A}.

    Ta có

    P\left( B\mid\bar{A} ight) =
\frac{P\left( B\bar{A} ight)}{P\left( \bar{A} ight)} = \frac{P\left(
B\bar{A} ight)}{P\left( \bar{A}B ight) + P\left( \bar{A}\bar{B}
ight)}= \frac{0,25}{0,25 + 0,23} \simeq
0,5208

  • Câu 19: Vận dụng cao

    Chọn đáp án đúng

    Giả sử có một loại bệnh S mà tỉ lệ người mắc bệnh là 0,1\%. Giả sử có một loại xét nghiệm, mà ai mắc bệnh S khi xét nghiệm cũng có phản ứng dương tính, nhưng tỉ lệ phản ứng dương tính giả là 5\% (tức là trong số những người không bị bệnh S có 5\% số người xét nghiệm lại có phản ứng dương tính). Khi một người xét nghiệm có phản ứng dương tính thì khả năng mắc bệnh S của người đó là bao nhiêu phần trăm (làm tròn kết quả đến hàng phần trăm)?

    Gọi A là biến cố: “Người đó mắc bệnh S”

    B là biến cố: “Người đó xét nghiệm có phản ứng dương tính”.

    Ta cần tính P\left( A|B
\right).

    Ta có: P(A) = 0,001; P\left( \overline{A} \right) = 1 - P(A) = 1 -
0,001 = 0,999;

    P\left( B|A \right)
= 1; P\left( B|\overline{A} \right)
= 0,05.

    Thay vào công thức Bayes ta được:

    P\left( A|B \right) = \frac{P(A).P\left(
B|A \right)}{P(A).P\left( B|A \right) + P\left( \overline{A}
\right).P\left( B|\overline{A} \right)}

    = \frac{0,001.1}{0,001.1 + 0,999.0,05} =
\frac{20}{1019} \approx 1,96\%.

  • Câu 20: Vận dụng

    Tính xác suất của biến cố

    Một công ty may mặc có hai hệ thống máy chạy độc lập với nhau. Xác suất để hệ thống máy thứ nhất hoạt động tốt là 95%, xác suất để hệ thống máy thứ hai hoạt động tốt là 85%. Công ty chỉ có thể hoàn thành đơn hàng đúng hạn nếu ít nhất một trong hai hệ thống máy hoạt động tốt. Xác suất để công ty hoàn thành đúng hạn là

    Gọi A là biến cố: "Hệ thống máy thứ nhất hoạt động tốt".

    B là biến cố: "Hệ thống máy thứ hai hoạt động tốt".

    C là biến cố: "Công ty hoàn thành đúng hạn".

    Ta có \overline{A} là biến cố: "Hệ thống máy thứ nhất hoạt động không tốt".

    \overline{B} là biến cố: "Hệ thống máy thứ hai hoạt động không tốt".

    \overline{C} là biến cố: "Công ty hoàn thành không đúng hạn".

    P(A) = 0,95;P(B) = 0,85;P(\overline{A})
= 0,05;P(\overline{B}) = 0,15

    AB là hai biến cố độc lập nên \overline{A}\overline{B} là hai biến cố độc lập

    \overline{C} =
\overline{A.B}

    P(\overline{C}) =
P(\overline{A}.\overline{B}) = P(\overline{A}).P(\overline{B}) =
0,0075.

    \Rightarrow P(C) = 1 - P(\overline{C}) =
0,9925.

  • Câu 21: Vận dụng

    Tính xác suất chọn học sinh theo yêu cầu

    Người ta khảo sát khả năng chơi nhạc cụ của một nhóm học sinh tại trường X . Nhóm này có 70\% học sinh là nam. Kết quả khảo sát cho thấy có 30\% học sinh nam và 15\% học sinh nữ biết chơi ít nhất một nhạc cụ. Chọn ngẫu nhiên một học sinh trong nhóm này. Tính xác suất để chọn được học sinh biết chơi ít nhất một nhạc cụ.

    Xét phép thử chọn ngẫu nhiên một học sinh trong nhóm.

    Gọi A là biến cố "Chọn được một học sinh biết chơi ít nhất một nhạc cụ" và B,\overline{B} lần lượt là các biến cố "Chọn được một học sinh nam" và "Chọn được một học sinh nữ".

    Theo đề bài:

    P(B) = 70\% =
0,7;P(\overline{B}) = 1 - 0,7 = 0,3;

    P(A \mid B) = 30\% = 0,3;P(A \mid
\overline{B}) = 15\% = 0,15.

    Áp dụng công thức xác suất toàn phần, ta có:

    P(A) = P(B) \cdot P\left( A\mid B
\right) + P\left( \overline{B} \right) \cdot P\left( A\mid\overline{B}
\right)

    = 0,7 \cdot 0,3 + 0,3 \cdot 0,15 =
0,255.

    Vậy xác suất để chọn được một học sinh biết chơi nhạc cụ là 0,255.

  • Câu 22: Nhận biết

    Tính P(A|B)

    Cho P(A) = 0,3; P(B) = 0,5; P\left( B\left| A \right.\  \right) =
0,7. Khi đó P\left( A\left| B
\right.\  \right) bằng

    Theo công thức Bayes, ta có:

    P\left( A\left| B \right.\  \right) =
\frac{P(A).P\left( B\left| A \right.\  \right)}{P(B)} =
\frac{0,3.0,7}{0,5} = 0,42.

  • Câu 23: Vận dụng

    Xác định số kẹo ban đầu

    Trong một túi có một số viên kẹo cùng loại, chỉ khác màu, trong đó có 6 viên kẹo màu trắng, còn lại là kẹo màu xanh. Bạn T lấy ngẫu nhiên 1 viên kẹo từ trong túi, không trả lại. Sau đó T lại lấy ngẫu nhiên thêm 1 viên kẹo khác từ trong túi. Hỏi ban đầu trong túi có bao nhiêu viên kẹo? Biết rằng xác suất T lấy được cả hai viên kẹo màu trắng là \frac{1}{3}.

    Gọi A là biến cố “T lấy được viên kẹo màu trắng ở lần thứ nhất”

    Gọi B là biến cố “T lấy được viên kẹo màu trắng ở lần thứ hai”.

    Ta có xác suất để T lấy được cả hai viên kẹo màu trắng là: \frac{1}{3}

    Gọi số kẹo ban đầu trong túi là: n (viên)

    Điều kiện n \in \mathbb{N}^{*};n eq1

    Ta có: P(A) = \frac{6}{n};P\left( B|Aight) = \frac{5}{n - 1}

    Theo công thức nhân xác suất, ta có:

    P(AB) = P(A).P\left( B|A ight) =\frac{6}{n}.\frac{5}{n - 1} = \frac{30}{n^{2} - n}

    P(AB) = \frac{1}{3}

    \Rightarrow \frac{30}{n^{2} - n} =\frac{1}{3} \Leftrightarrow n^{2} - n = 90 \Leftrightarrow \left\lbrack\begin{matrix}n = - 9(ktm) \\n = 10(tm) \\\end{matrix} ight.

    Vậy ban đầu trong túi có 10 viên kẹo.

  • Câu 24: Thông hiểu

    Ghi lời giải bài toán vào chỗ trống

    Gieo hai con xúc xắc cân đối, đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn hoặc bằng 10, nếu biết rằng có ít nhất một con đã ra mặt 5 chấm?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Gieo hai con xúc xắc cân đối, đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn hoặc bằng 10, nếu biết rằng có ít nhất một con đã ra mặt 5 chấm?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 25: Nhận biết

    Tính giá trị của biểu thức

    Cho P(A) = 0,4; P\left( B\left| \overline{A} \right.\  \right) =
0,2. Giá trị của P\left(
B\overline{A} \right)

    Ta có P\left( \overline{A} \right) = 1 -
P(A) = 1 - 0,4 = 0,6.

    P\left( B\overline{A} \right) = P\left(
\overline{A} \right).P\left( B\left| \overline{A} \right.\  \right) =
0,6.0,2 = 0,12.

  • Câu 26: Thông hiểu

    Xác định xác suất bốc được 2 bi đỏ

    Một hộp chứa 8 bi xanh, 2 bi đỏ. Lần lượt bốc từng bi. Giả sử lần đầu tiên bốc được bi xanh. Xác định xác suất lần thứ 2 bốc được bi đỏ.

    Gọi A là biến cố lần 1 bốc được bi xanh.

    Gọi B là biến cố lần 2 bốc được bi đỏ.

    Xác suất lần 2 bốc được bi đỏ khi lần 1đã bốc được bi trắng là P\left( B|A \right)

    Ta có P(A) = \frac{8}{10} =
\frac{4}{5};P(AB) = \frac{8}{10}.\frac{2}{9} =
\frac{8}{45}.

    Suy ra P\left( B|A \right) =\dfrac{P(AB)}{P(A)} = \dfrac{\dfrac{8}{45}}{\dfrac{4}{5}} =\dfrac{2}{9}.

  • Câu 27: Thông hiểu

    Tính xác suất

    Trong một trường học, tỉ lệ học sinh nữ là 53\%. Tỉ lệ học sinh nữ và tỉ lệ học sinh nam tham gia câu lạc bộ M lần lượt là 21\%17\%. Chọn ngẫu nhiên 1 học sinh của trường. Tính xác suất học sinh đó có tham gia câu lạc bộ M.

    Gọi A: “Học sinh được chọn là nữ” ⇒\overline{A} : “Học sinh được chọn là nam”

    B: “học sinh được chọn có tham gia câu lạc bộ M”.

    Từ giả thiết ta có:

    \left\{ \begin{matrix}
P(A) = 0,53 \Rightarrow P\left( \overline{A} ight) = 1 - 0,53 = 0,47
\\
P\left( B|A ight) = 0,21 \\
P\left( B|\overline{A} ight) = 0,17 \\
\end{matrix} ight.

    Theo công thức xác suất toàn phần, ta có xác suất học sinh được chọn có tham gia câu lạc bộ M là:

    P(B) = P(A).P\left( B|A ight) +
P\left( \overline{A} ight).P\left( B|\overline{A} ight)

    \Rightarrow P(B) = 0,53.0,21 + 0,47.0,17
= \frac{239}{1250}.

  • Câu 28: Nhận biết

    Tính P(A|B)

    Cho hai biến cố AB với P(A) =
0,2; P(B) = 0,26; P\left( B|A \right) = 0,7. Tính P\left( A|B \right).

    Ta có: P\left( A|B \right) =
\frac{P(A).P\left( B|A \right)}{P(B)} = \frac{0,2.0,7}{0,26} =
\frac{7}{13}.

  • Câu 29: Nhận biết

    Tính xác suất

    Nếu hai biến cố A;B thỏa mãn P(A) = 0,4;P(B) = 0,3;P\left( A|B ight) =
0,25 thì P\left( B|A
ight) bằng bao nhiêu?

    Theo công thức Bayes ta có:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(A)}

    \Rightarrow P\left( B|A ight) =
\frac{0,3.0,25}{0,4} = \frac{3}{16}

  • Câu 30: Nhận biết

    Tính xác suất có điều kiện

    Cho hai biến cố AB, với P(A) =
0,6, P(B) = 0,7, P(A \cap B) = 0,3. Tính P\left( \overline{B}|A \right).

    Ta có:

    P\left( \overline{B}|A \right) = 1- P\left( B|A \right)

    = 1 - \frac{P(A \cap B)}{P(A)} = 1 -\frac{0,3}{0,6}= 1 - \frac{1}{2} = \frac{1}{2}

  • Câu 31: Vận dụng

    Chọn phương án gần đúng với đáp án

    Phòng thi đánh giá năng lực có 10 học sinh trong đó có 2 học sinh giỏi (trả lời 100% các câu hỏi), 3 học sinh khá (trả lời 80% các câu hỏi), 5 học sinh trung bình (trả lời 50% các câu hỏi). Gọi ngẫu nhiên một học sinh vào thi và phát đề có 4 câu hỏi (được lấy ngẫu nhiên từ 20 câu). Thấy học sinh này trả lời được cả 4 câu, tính xác suất để học sinh đó là học sinh khá? Xác suất gần bằng số nào sau đây?

    Gọi A_{1};A_{2};A_{3} lần lượt là các biến cố gọi một học sinh Giỏi, Khá, Trung Bình

    Nên A_{1};A_{2};A_{3} là hệ biến cố đầy đủ.

    Gọi B “học sinh đó trả lời được 4 câu hỏi”

    Ta có: \left\{ \begin{matrix}
P\left( A_{1} ight) = \frac{C_{2}^{1}}{C_{10}^{1}} = \frac{1}{5} \\
P\left( A_{2} ight) = \frac{C_{3}^{1}}{C_{10}^{1}} = \frac{3}{10} \\
P\left( A_{3} ight) = \frac{C_{5}^{1}}{C_{10}^{1}} = \frac{1}{2} \\
\end{matrix} ight.

    Ta lại có:

    2 học sinh Giỏi (trả lời 100% các câu hỏi) ⇒ Trả lời 20 câu hỏi

    3 học sinh Khá (trả lời 80% các câu hỏi) ⇒ Trả lời 20.80\% = 16 câu hỏi.

    5 học sinh Trung Bình (trả lời 50% các câu hỏi) ⇒ Trả lời 20.50\% = 10 câu hỏi.

    Từ đó: \left\{ \begin{matrix}P\left( B|A_{1} ight) = \dfrac{C_{20}^{4}}{C_{20}^{4}} = 1 \\P\left( B|A_{2} ight) = \dfrac{C_{16}^{4}}{C_{20}^{4}} =\dfrac{364}{969} \\P\left( B|A_{3} ight) = \dfrac{C_{10}^{4}}{C_{20}^{4}} = \dfrac{14}{323}\\\end{matrix} ight.

    Áp dụng công thức xác suất toàn phần:

    P(B) = P\left( B|A_{1} ight).P\left(
A_{1} ight) + P\left( B|A_{2} ight).P\left( A_{2} ight) + P\left(
B|A_{3} ight).P\left( A_{3} ight)

    \Rightarrow P(B) = 1.\frac{1}{5} +
\frac{364}{969}.\frac{3}{10} + \frac{14}{323}.\frac{1}{2} =
\frac{108}{323}

    Xác suất để sinh viên đó là sinh viên khá là P\left( A_{2}|B ight)

    Áp dụng công thức Bayes ta có:

    P\left( A_{2}|B ight) = \frac{P\left(
B|A_{2} ight).P\left( A_{2} ight)}{P(B)}

    \Rightarrow P\left( A_{2}|B ight) =\dfrac{\dfrac{364}{969}.\dfrac{3}{10}}{\dfrac{108}{323}} = \dfrac{91}{270}\approx 0,337

  • Câu 32: Nhận biết

    Chọn kết quả đúng

    Cho hai biến cố A,B có xác suất Ρ(A) = 0,4;Ρ(B) = 0,3;Ρ\left( A|B \right) =
0,25. Tính xác suất Ρ\left( B|A
\right).

    Theo định nghĩa xác suất có điều kiện, ta có Ρ\left( A|B \right) =
\frac{Ρ(AB)}{Ρ(B)}.

    Do đó Ρ(AB) = Ρ\left( A|B \right).Ρ(B) =
0,3.0,25 = 0,075.

    Từ đó suy ra Ρ\left( B|A \right) =
\frac{Ρ(AB)}{Ρ(A)} = \frac{0,075}{0,4} = 0,1875.

  • Câu 33: Nhận biết

    Chọn mệnh đề đúng

    Cho hai biến cố AB. Chọn mệnh đề đúng?

    Ta có: P(A \cap B) = P(A).P\left( B|A
\right) = P(B).P\left( A|B \right).

  • Câu 34: Thông hiểu

    Tính xác suất P

    Có ba kiện hàng (mỗi kiện hàng có 20 sản phẩm) với số sản phẩm tốt tương ứng của mỗi kiện là 18, 16, 12. Lấy ngẫu nhiên một kiện hàng, rồi từ đó lấy ngẫu nhiên một sản phẩm thì được sản phẩm tốt. Trả sản phẩm này lại kiện hàng vừa lấy, sau đó lại lấy ngẫu nhiên một sản phẩm thì được sản phẩm tốt. Tính xác suất để các sản phẩm tốt đó được lấy từ kiện hàng thứ nhất?

    Gọi Ai là "sản phẩm lấy từ kiện thứ i" thì A1, A2, A3 tạo thành hệ đầy đủ.

    Gọi A là các sản phẩm lấy ra đều tốt.

    P\left( A_{1} ight) = P\left( A_{2}
ight) = P\left( A_{3} ight) = \frac{1}{3}

    Áp dụng công thức xác suất toàn phần ta có:

    P\left( A|A_{1} ight) =
\frac{18}{20}.\frac{18}{20}

    P\left( A|A_{2} ight) =
\frac{16}{20}.\frac{16}{20}

    P\left( A|A_{3} ight) =
\frac{12}{20}.\frac{12}{20}

    Từ đó ta có:

    P(A) = P\left( A_{1} ight).P\left(
A|A_{1} ight) + P\left( A_{2} ight).P\left( A|A_{2} ight) +
P\left( A_{3} ight).P\left( A|A_{3} ight)

    \Rightarrow P(A) =
\frac{1}{3}.\frac{18}{20}.\frac{18}{20} +
\frac{1}{3}.\frac{16}{20}.\frac{16}{20} +
\frac{1}{3}.\frac{12}{20}.\frac{12}{20} = \frac{181}{300} \approx
0,6033

  • Câu 35: Vận dụng

    Tính số viên bi ban đầu có trong túi

    Một hộp gồm một số viên bi cùng loại, chỉ khác màu, trong đó có 6 bi xanh, còn lại là bi màu đỏ. Minh lấy ngẫu nhiên 1 viên bi trong hộp (không bỏ lại), sau đó Minh lại lấy ngẫu nhiên tiếp 1 viên bi trong hộp. Biết xác suất để Minh lấy được cả hai viên bi màu xanh là…..Hỏi ban đầu trong túi có số viên bi đỏ là bao nhiêu?

    Gọi A là biến cố “Lần 1 Minh lấy được bi màu xanh”,

    B là biến cố “Lần 2 Minh lấy được bi có màu xanh”

    Khi đó AB là biến cố “Cả hai lần Minh lấy được bi màu xanh”. Ta có P(AB) =
\frac{5}{7}

    Gọi x là số kẹo ban đầu trong túi (x > 0)

    Ta có P(A) = \frac{6}{n}, P\left( B|A \right) = \frac{5}{n -
1}.

    Theo công thức nhân xác suất, ta có P(AB)
= P(A).P\left( B|A \right)

    Hay \frac{6}{n} \cdot \frac{5}{n - 1} =
\frac{5}{7} \Rightarrow n = 7.

    Vậy số bi đỏ trong túi ban đầu là 7 - 6 =
1 bi

  • Câu 36: Thông hiểu

    Chọn kết quả đúng

    Một trạm chỉ phát hai tín hiệu A và B với xác suất tương ứng 0,840,16. do có nhiễu trên đường truyền nên \frac{1}{6} tín hiệu A bị méo và thu được như tín hiệu B còn \frac{1}{8} tín hiệu B bị méo và thu được như A. Tìm xác suất thu được tín hiệu A?

    Gọi A, B lần lượt là "phát ra tín hiệu A, B".

    Khi đó A, B tạo thành hệ đầy đủ.

    P(A) = 0,84;P(B) = 0,16

    Gọi C là "thu được tín hiệu A". Khi đó: P\left( C|A ight) = \frac{5}{6};P\left( C|B
ight) = \frac{1}{8}

    Áp dụng công thức xác suất toàn phần ta có:

    P(C) = P(A).P\left( C|A ight) +
P(B).P\left( C|B ight)

    \Rightarrow P(C) = 0,84.\frac{5}{6} +
0,16.\frac{1}{8} = 0,72.

    Ta cần tính P(A|C). Áp dụng công thức Bayes ta có:

    P\left( A|C ight) = \frac{P(A)P\left(C|A ight)}{P(C)} = \dfrac{0,84.\dfrac{5}{6}}{0,72} =\dfrac{35}{36}

  • Câu 37: Nhận biết

    Chọn phát biểu đúng

    Cho hai biến cố A, B với 0 <
P(B) < 1. Phát biểu nào sau đây đúng?

    Theo công thức xác suất toàn phần, ta có:

    P(A) = P(B).P\left( A|B ight) + P\left(
\overline{B} ight).P\left( A|\overline{B} ight).

  • Câu 38: Thông hiểu

    Chọn đáp án đúng

    Có 6 khẩu súng cũ và 4 khẩu súng mới, trong đó xác suất trúng khi bắn bằng súng cũ là 0,8, còn súng mới là 0,95. Thực hiện bắn bằng một khẩu súng vào một mục tiêu thì thấy trúng. Hỏi sử dụng loại súng nào khả năng bắn trúng cao hơn?

    Gọi M là biến cố "bắn bằng khẩu mới" thì \overline{M} là biến cố "bắn bằng khẩu cũ".

    Có P(M) = 0,4 và P( \overline{M} ) = 0,6.

    Gọi T là biến cố "bắn trúng" thì theo đề bài, ta có:

    P(T | M) = 0,95; P(T |  \overline{M} ) = 0,8.

    Áp dụng công thức xác suất điều kiện suy ra

    P\left( M|T ight) = \frac{P(M).P\left(
T|M ight)}{P(T)} = \frac{0,38}{P(T)}

    P\left( \overline{M}|T ight) =
\frac{P\left( \overline{M} ight).P\left( T|\overline{M} ight)}{P(T)}
= \frac{0,48}{P(T)}

    Suy ra bắn bằng khẩu cũ có khả năng xảy ra cao hơn.

  • Câu 39: Thông hiểu

    Xét tính đúng sai của các khẳng định

    Để nghiên cứu sự phát triển của một loại cây, người ta trồng hạt giống của loại cây đó trên hai lô đất thí nghiệm M,N khác nhau. Xác suất phát triển bình thường của cây đó trên các lô đất MN lần lượt là 0,56 và 0,62. Lặp lại thí nghiệm trên với đầy đủ các điều kiện tương đồng. Xét các biến cố:

    A : "Cây phát triển bình thường trên lô đất M ";

    B : "Cây phát triển bình thường trên lô đất N".

    a) Các cặp biến cố \overline{A}B,A\overline{B} là độc lập. Đúng||Sai

    b) Hai biến cố C = \overline{A} \cap
BD = A \cap
\overline{B} không là hai biến cố xung khắc.Sai||Đúng
    c) P\left( \overline{A} ight) =
0,56;P\left( \overline{B} ight) = 0,62. Sai||Đúng

    d) Xác suất để cây chỉ phát triển bình thường trên một lô đất là 0,4856. Đúng||Sai

    Đáp án là:

    Để nghiên cứu sự phát triển của một loại cây, người ta trồng hạt giống của loại cây đó trên hai lô đất thí nghiệm M,N khác nhau. Xác suất phát triển bình thường của cây đó trên các lô đất MN lần lượt là 0,56 và 0,62. Lặp lại thí nghiệm trên với đầy đủ các điều kiện tương đồng. Xét các biến cố:

    A : "Cây phát triển bình thường trên lô đất M ";

    B : "Cây phát triển bình thường trên lô đất N".

    a) Các cặp biến cố \overline{A}B,A\overline{B} là độc lập. Đúng||Sai

    b) Hai biến cố C = \overline{A} \cap
BD = A \cap
\overline{B} không là hai biến cố xung khắc.Sai||Đúng
    c) P\left( \overline{A} ight) =
0,56;P\left( \overline{B} ight) = 0,62. Sai||Đúng

    d) Xác suất để cây chỉ phát triển bình thường trên một lô đất là 0,4856. Đúng||Sai

    Các cặp biến cố \overline{A}B,A\overline{B} là độc lập vì hai lô đất khác nhau.

    Hai biến cố C = \overline{A} \cap
BD = A \cap\overline{B} là hai biến cố xung khắc.

    Ta có: \left\{ \begin{matrix}
P\left( \overline{A} ight) = 1 - P(A) = 1 - 0,56 = 0,44 \\
P\left( \overline{B} ight) = 1 - P(B) = 1 - 0,62 = 0,38 \\
\end{matrix} ight..

    Xác suất để cây chi phát triển bình thường trên một lô đất là:

    P(C \cup D)

    \  = P(C) + P(D) = P\left( \overline{A}
ight) \cdot P(B) + P(A) \cdot P\left( \overline{B}
ight)

    \  = 0,44.0,62 + 0,56.0,38 =
0,4856

  • Câu 40: Thông hiểu

    Tính xác suất khỏi bệnh

    Điều trị phương pháp I, phương pháp II, phương pháp III tương ứng cho 5000,3000,2000 bệnh nhân. Xác suất khỏi của các phương pháp tương ứng là 0,85;0,9;0,95. Tìm xác suất khỏi của 3 phương pháp khi điều trị cho bệnh nhân

    Tổng số bệnh nhân điều trị là 10000 người

    Gọi A1 là biến cố bệnh nhân điều trị bởi phương pháp thứ I.

    A2 là biến cố bệnh nhân điều trị bởi phương pháp thứ II.

    A3 là biến cố bệnh nhân điều trị bởi phương pháp thứ III.

    Khi đó: P\left( A_{1} ight) =
0,5;P\left( A_{2} ight) = 0,3;P\left( A_{3} ight) = 0,2

    Gọi B là biến cố điều trị khỏi bệnh.

    Khi đó P\left( B|A_{1} ight) =
0,85;P\left( B|A_{2} ight) = 0,9;P\left( B|A_{3} ight) =
0,95

    Áp dụng công thức xác suất toàn phần ta có:

    P(B) = P\left( A_{1} ight).P\left(
B|A_{1} ight) + P\left( A_{2} ight).P\left( B|A_{2} ight) +
P\left( A_{3} ight).P\left( B|A_{3} ight)

    \Rightarrow P(A) = 0,5.0,85 + 0,3.0,9 +
0,2.0,95 = 0,885

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 6 Một số yếu tố xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo