Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 6 Một số yếu tố xác suất

Mô tả thêm:

Trong chương trình Toán 12 Cánh Diều, Chương 6: Một số yếu tố xác suất là phần kiến thức quan trọng, thường xuyên xuất hiện trong các đề kiểm tra và đề thi. Đây là chuyên đề giúp học sinh rèn luyện khả năng tư duy xác suất, biết cách phân tích tình huống, xử lý dữ liệu và áp dụng công thức phù hợp. Bài viết này cung cấp đề kiểm tra 45 phút Toán 12 Chương 6 bám sát nội dung SGK, giúp học sinh hệ thống kiến thức, luyện tập kỹ năng giải toán và tự tin chuẩn bị cho các kỳ kiểm tra 1 tiết cũng như ôn tập thi tốt nghiệp.

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Xét tính đúng sai của mỗi ý hỏi

    Truớc khi đưa một loại sản phẩm ra thị trường, người ta đã phỏng vấn ngẫu nhiên 200 khách hàng về sản phầm đó. Kết quả thống kê như sau: có 105 người trả lời "sẽ mua"; có 95 người trả lời "không mua". Kinh nghiệm cho thấy tỉ lệ khách hàng thực sự sẽ mua sản phẩm tương ưng với những cách trả lời "sẽ mua" và "không mua" lần lượt là 70\%30\%.

    Gọi A lả biến cố "Người được phỏng vấn thực sự se mua sản phẩm".

    Gọi B là biến cố "Người được phỏng vấn trả lời sẽ mua sản phẩm".

    a) Xác suất P(B) = \frac{21}{40}P\left( \overline{B} \right) =
\frac{19}{40}. Đúng||Sai

    b) Xác suất có điều kiện P(A \mid B) =
0,3. Sai||Đúng

    c) Xác suất P(A) = 0,51. Đúng||Sai

    d) Trong số những người được phỏng vấn thực sự sẽ mua sản phẩm có 70\% người đã trả lời "sẽ mua" khi được phỏng vấn (kết quả tính theo phần trăm được làm tròn đến hàng đơn vị). Sai||Đúng

    Đáp án là:

    Truớc khi đưa một loại sản phẩm ra thị trường, người ta đã phỏng vấn ngẫu nhiên 200 khách hàng về sản phầm đó. Kết quả thống kê như sau: có 105 người trả lời "sẽ mua"; có 95 người trả lời "không mua". Kinh nghiệm cho thấy tỉ lệ khách hàng thực sự sẽ mua sản phẩm tương ưng với những cách trả lời "sẽ mua" và "không mua" lần lượt là 70\%30\%.

    Gọi A lả biến cố "Người được phỏng vấn thực sự se mua sản phẩm".

    Gọi B là biến cố "Người được phỏng vấn trả lời sẽ mua sản phẩm".

    a) Xác suất P(B) = \frac{21}{40}P\left( \overline{B} \right) =
\frac{19}{40}. Đúng||Sai

    b) Xác suất có điều kiện P(A \mid B) =
0,3. Sai||Đúng

    c) Xác suất P(A) = 0,51. Đúng||Sai

    d) Trong số những người được phỏng vấn thực sự sẽ mua sản phẩm có 70\% người đã trả lời "sẽ mua" khi được phỏng vấn (kết quả tính theo phần trăm được làm tròn đến hàng đơn vị). Sai||Đúng

    a) Xác suất của biến cố B là P(B) =
\frac{105}{200} = \frac{21}{40}

    Xác suất của biến cố \overline{B}P\left( \overline{B} ight) = \frac{95}{200} =
\frac{19}{40}

    Do đó, a đúng

    b) Biến cố A|B là biến cố: “Người được phỏng vấn thực sự sẽ mua sản phẩm nếu người đó được phỏng vấn trả lời sẽ mua sản phẩm”.

    Theo giả thiết: Tỉ lệ khách hàng thực sự sẽ mua sản phẩm tương ứng với những cách trả lời “sẽ mua” là 70% nên ta có P(A \mid B) = \frac{7}{10} = 0,7.

    Do đó, b sai

    c) Ta có A|\overline{B} là biến cố: “Người được phỏng vấn thực sự sẽ mua sản phẩm nếu người đó được phỏng vấn trả lời không mua”.

    Theo giả thiết ta có P\left( A \mid
\overline{B} ight) = 0,3

    Theo công thức xác suất  toàn phần:

    P(A) = P(A \mid B).P(B) + P\left( A \mid
\overline{B} ight).P\left( \overline{B} ight)

    = 0,7.\frac{21}{40} + 0,3 \cdot
\frac{19}{40} = \frac{51}{100} = 0,51

    Do đó, c đúng

    d) Ta có B|A là biến cố: “Người đó đã trả lời sẽ mua sản phẩm khi được phỏng vấn và người được phỏng vấn thực sự sẽ mua sản phẩm “.

    Theo công thức BAYES ta có:

    P(B \mid A) = \frac{P(AB)}{P(A)} =
\frac{P(A \mid B).P(B)}{P(A)} = \frac{0,7.\frac{21}{40}}{0,51} \approx
72\%

    Do đó, c sai

  • Câu 2: Thông hiểu

    Chọn đáp án đúng

    Một hộp chứa 8 bi trắng, 2 bi đỏ. Lần lượt lấy từng bi. Giả sử lần đầu tiên lấy được bi trắng. Xác định xác suất lần thứ hai lấy được bi đỏ.

    Gọi A là biến cố lần một lấy được bi trắng.

    Gọi B là biến cố lần hai lấy được bi đỏ.

    Xác suất lần 2 lấy được bi đỏ khi lần 1 đã lấy được bi trắng làP\left( B|A ight).

    Ta có: \left\{ \begin{matrix}P(A) = \dfrac{8.9}{10.9} = \dfrac{4}{5} \\P(A \cap B) = \dfrac{8.2}{10.9} = \dfrac{8}{45} \\\end{matrix} ight. khi đó:

    P\left( B|A ight) = \dfrac{P(A \cap B)}{P(A)} = \dfrac{\dfrac{8}{45}}{\dfrac{4}{5}} = \dfrac{2}{9}.

  • Câu 3: Nhận biết

    Tính xác suất

    Cho hai biến cố A;B với P(A) = \frac{1}{3};P(B) = \frac{1}{2};P(A + B) =
\frac{3}{4}. Tính P\left(
\overline{A}B ight)?

    Ta có:

    P(A.B) = P(A) + P(B) - P(A + B) =
\frac{1}{12}

    \Rightarrow P\left( \overline{A}B
ight) = P(B) - P(AB) = \frac{5}{12}

  • Câu 4: Vận dụng

    Chọn đáp án đúng

    Tan giờ học buổi chiều một sinh viên có 60\% về nhà ngay, nhưng do giờ cao điểm nên có 30% ngày bị tắc đường nên bị về nhà muộn (từ 30 phút trở lên) còn 20\% số ngày sinh viên đó vào quán Internet cạnh trường để chơi Games, những ngày này xác suất về nhà muộn là 80\%. Còn lại những ngày khác sinh viên đó đi chơi với bạn bè có xác suất về muộn là 90\%. Hôm nay sinh viên đó về muộn. Tính xác suất để để sinh viên đó đi chơi với bạn bè.

    Gọi B là biến cố sinh viên đó đi học về muộn

    E1 là biến cố tan học về nhà ngay = > P\left( E_{1} ight) = 0,6,P\left( B|E_{1}
ight) = 0,3

    E2 là biến cố tan học đi chơi game = > P\left( E_{2} ight) = 0,2,P\left( B|E_{2}
ight) = 0,8

    E3 là biến cố tan học về đi chơi với bạn = > P\left( E_{3} ight) = 0,2,P\left( B|E_{3}
ight) = 0,9

    B có thể xảy ra một trong 3 biến cố

    P(B) = P\left( E_{1} ight).P\left(
B|E_{1} ight) + P\left( E_{2} ight).P\left( B|E_{2} ight) +
P\left( E_{3} ight).P\left( B|E_{3} ight)

    = > P(B) = 0,52

    Xác suất để sinh viên đó đi chơi với bạn là:

    P\left( E_{3}|B ight) = \frac{P\left(
E_{3} ight).P\left( B|E_{3} ight)}{P(B)} = 0,375 =
37,5\%

  • Câu 5: Thông hiểu

    Chọn đáp án đúng

    Trong một trường học, tỉ lệ học sinh nữ là 52\%. Tỉ lệ học sinh nữ và tỉ lệ học sinh nam tham gia câu lạc bộ nghệ thuật lần lượt là 18\%15\%. Chọn ngẫu nhiên một học sinh của trường. Tính xác suất học sinh được chọn có tham gia câu lạc bộ nghệ thuật.

    Gọi A là biến cố “học sinh được chọn là học sinh nữ “ và B là biến cố “Học sinh được chọn tham gia câu lạc bộ nghệ thuật”

    Khi đó ta có P(A) = 0,52, P\left( B|A \right) = 0, 18, P\left( B|\overline{A} \right) = 0,15

    Suy ra P\left( \overline{A} \right) = 1 -
P(A) = 0,48.

    Áp dụng công thức xác suất toàn phần ta có

    P(B) = P(A)P\left( B|A \right) + P\left(
\overline{A} \right)P\left( B|\overline{A} \right)

    = 0,52.0,18 + 0,48.0,15 =
0,1656.

  • Câu 6: Thông hiểu

    Xác định P(B)

    Cho P(A) = 0,4; P\left( B|A \right) = 0,2P\left( B|\overline{A} \right) = 0,3. Giá trị của P(B)

    P(A) = 0,4 nên P\left( \overline{A} \right) = 1 - 0,4 =
0,6.

    Theo công thức xác suất toàn phần ta có:

    P(B) = P(A).P\left( B|A \right) + P\left(\overline{A} \right).P\left( B|\overline{A} \right)= 0,4.0,2 + 0,6.0,3= 0,26.

  • Câu 7: Vận dụng

    Xét tính đúng sai của các khẳng định

    Bạn Bình đang làm đề ôn tập theo ba mức độ dễ, trung bình và khó. Xác suất để Bình hoàn thành câu dễ là 0,8; hoàn thành câu trung bình là 0,6 và hoàn thành câu khó là 0,15. Làm đúng mỗi một câu dễ bạn được 0,1 điểm, làm đúng mỗi câu trung bình bạn được 0,25 điểm và làm đúng mỗi câu khó bạn được 0,5điểm. Hãy cho biết các khẳng định sau đây đúng hay sai?

    a) Xác suất để Bình làm ba câu thuộc ba loại và đúng cả ba câu là 72\%. Sai||Đúng

    b) Khi Bình làm 3 câu thuộc 3 loại khác nhau. Xác suất để bạn làm đúng 2 trong số 3 câu là 0,45. Sai||Đúng

    c) Khi Bình làm 3 câu thì xác suất để bạn làm đúng 3 câu đủ ba loại cao hơn xác suất Bình làm sai 3 câu ở mức độ trung bình. Đúng||Sai

    d) Xác suất để Bình làm 5 câu và đạt đúng 2 điểm lớn hơn 0,2\%. Sai||Đúng

    Đáp án là:

    Bạn Bình đang làm đề ôn tập theo ba mức độ dễ, trung bình và khó. Xác suất để Bình hoàn thành câu dễ là 0,8; hoàn thành câu trung bình là 0,6 và hoàn thành câu khó là 0,15. Làm đúng mỗi một câu dễ bạn được 0,1 điểm, làm đúng mỗi câu trung bình bạn được 0,25 điểm và làm đúng mỗi câu khó bạn được 0,5điểm. Hãy cho biết các khẳng định sau đây đúng hay sai?

    a) Xác suất để Bình làm ba câu thuộc ba loại và đúng cả ba câu là 72\%. Sai||Đúng

    b) Khi Bình làm 3 câu thuộc 3 loại khác nhau. Xác suất để bạn làm đúng 2 trong số 3 câu là 0,45. Sai||Đúng

    c) Khi Bình làm 3 câu thì xác suất để bạn làm đúng 3 câu đủ ba loại cao hơn xác suất Bình làm sai 3 câu ở mức độ trung bình. Đúng||Sai

    d) Xác suất để Bình làm 5 câu và đạt đúng 2 điểm lớn hơn 0,2\%. Sai||Đúng

    Gọi A là biến cố Bình làm đúng câu dễ

    B là biến cố Bình làm đúng câu trung bình

    C là biến cố Bình làm đúng câu khó.

    Khi đó A, B, C độc lập với nhau.

    a) Xác suất để Bình làm ba câu thuộc ba loại trên và đúng cả ba câu là

    P = P(A).P(B).P(C) = 0,072 =
7,2\%.

    Khẳng định sai.

    b) Xác suất để Bình làm đúng 2 trong số 3 câu là

    P\left( \overline{A} ight).P(B).P(C) +
P(A).P\left( \overline{B} ight).P(C) + P(A).P(B).P\left( \overline{C}
ight)

    = 0,2.0,6.0,15 + 0,8.0,4.0,15 + 0,8.0,6.0,85 = 0,474

    Khẳng định sai.

    c) Xác suất để Bình làm đúng 3 câu đủ ba loại là:

    P = P(A).P(B).P(C) = 0,072 =
7,2\%

    Xác suất Bình làm sai 3 câu mức độ trung bình. (0,4)^{3} = 0,064.

    Khẳng định đúng.

    d) Để Bình làm 5 câu và đạt đúng 2 điểm có các trường hợp sau:

    TH1: Đúng 4 câu khó và câu còn lại sai

    (0,15)^{4}(0,2 + 0,4 + 0,85) =
7,34.10^{- 4}

    TH2: Đúng 3 câu khó và đúng 2 câu trung bình

    (0,15)^{3}.(0,6)^{2} = 1,215.10^{-
3}

    Vậy xác suất cần tìm là 0,1949\%

    Khẳng định sai.

  • Câu 8: Nhận biết

    Tính P(B)

    Xét một phép thử có biến cố AB. Biết xác suất xảy ra các biến cố P(A), P\left( B|A \right), P\left( B|\overline{A} \right) được thể hiện trong sơ đồ sau:

    Tính P(B).

    Ta có

    P(B) = P(A)P\left( B|A \right) + P\left(
\overline{A} \right)P\left( B|\overline{A} \right)

    = 0,1 \cdot 0,9 + (1 - 0,1) \cdot 0,8 =
0,81.

  • Câu 9: Nhận biết

    Tính xác suất

    Cho hai biến cố A;B với P(A) = \frac{1}{3};P(B) = \frac{1}{2};P(A + B) =
\frac{3}{4}. Tính P\left(
\overline{A} + \overline{B} ight)?

    Ta có:

    P(A.B) = P(A) + P(B) - P(A + B) =
\frac{1}{12}

    P\left( \overline{A} + \overline{B}
ight) = P\left( \overline{A}\overline{B} ight) = 1 - P(AB) =
\frac{11}{12}

  • Câu 10: Nhận biết

    Chọn đáp án đúng

    Cho AB là các biến cố của phép thử T. Biết rằng P(A) > 0;0 < P(B) <
1. Xác suất của biến cố B với điều kiện biến cố A đã xảy ra được tính theo công thức nào sau đây?

    Theo công thức Bayes ta có:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(B).P\left( A|B ight) + P\left( \overline{B}
ight).P\left( A|\overline{B} ight)}

  • Câu 11: Thông hiểu

    Tìm xác suất của biến cố

    Một lớp học có 40 học sinh, mỗi học sinh giỏi ít nhất một trong hai môn Văn hoặc môn Toán. Biết rằng có 30 học sinh giỏi môn Toán và 15 học sinh giỏi môn Văn. Chọn ngẫu nhiên một học sinh. Tính xác suất để học sinh đó học giỏi môn Toán, biết rằng học sinh đó giỏi môn Văn.

    Gọi A là biến cố: “Học sinh được chọn giỏi môn Toán”, B là biến cố: “Học sinh được chọn giỏi môn Văn”.

    Số học sinh giỏi cả hai môn là 30 + 15 -
40 = 5

    Trong 30 học sinh đó có đúng 5 học sinh giỏi môn Văn.

    Vậy xác suất để học sinh được chọn giỏi môn Toán với điều kiện học sinh đó giỏi môn Văn là P\left( A|B \right)
= \frac{5}{15} = \frac{1}{3}.

  • Câu 12: Nhận biết

    Chọn kết quả đúng

    Cho hai biến cố A,B có xác suất Ρ(A) = 0,4;Ρ(B) = 0,3;Ρ\left( A|B \right) =
0,25. Tính xác suất Ρ\left( B|A
\right).

    Theo định nghĩa xác suất có điều kiện, ta có Ρ\left( A|B \right) =
\frac{Ρ(AB)}{Ρ(B)}.

    Do đó Ρ(AB) = Ρ\left( A|B \right).Ρ(B) =
0,3.0,25 = 0,075.

    Từ đó suy ra Ρ\left( B|A \right) =
\frac{Ρ(AB)}{Ρ(A)} = \frac{0,075}{0,4} = 0,1875.

  • Câu 13: Nhận biết

    Tính P(B|A)

    Cho hai biến cố AB, với P(B) =
0,8, P\left( A|B \right) =
0,7, P\left( A|\overline{B} \right)
= 0,45. Tính P\left( B|A
\right).

    Ta có: P\left( \overline{B} \right) = 1
- 0,8 = 0,2.

    Công thức Bayes:

    P\left( B|A \right) =
\frac{P(B)P\left( A|B \right)}{P(B)P\left( A|B \right) + P\left(
\overline{B} \right)P\left( A|\overline{B} \right)}

    \Rightarrow P\left( B|A \right) =
\frac{0,8.0,7}{0,8.0,7 + 0,2.0,45} = \frac{56}{65}.

  • Câu 14: Thông hiểu

    Tính xác suất chọn học sinh biết chơi bóng đá

    Một nhóm 50 học sinh có 23 bạn biết chơi cầu lông mà không biết chơi bóng đá và 21 bạn biết chơi bóng đá mà không biết chơi cầu lông. Biết rằng mỗi học sinh trong nhóm này biết chơi bóng đá hoặc cầu lông. Chọn ngẫu nhiên một học sinh trong nhóm. Tính xác suất học sinh này biết chơi bóng đá, biết rằng bạn ấy biết chơi cầu lông.

    Gọi A là biến cố “học sinh được chọn biết chơi bóng đá”, B là biến cố “học sinh được chọn biết chơi cầu lông”.

    Ta có n(AB) = 50 - (23 + 21) = 6n(B) = 23 + 6 = 29.

    Do đó Ρ\left( A|B \right) =
\frac{Ρ(AB)}{Ρ(B)} = \frac{6}{29}.

  • Câu 15: Thông hiểu

    Tính xác suất để chọn được phế phẩm

    Hai máy tự động sản xuất cùng một loại chi tiết, trong đó máy I sản xuất 35\%, máy II sản xuất 65\% tổng sản lượng. Tỉ lệ phế phẩm của các máy lần lượt là 0,3\% 0,7\%. Chọn ngẫu nhiên 1 sản phẩm từ kho. Tính xác suất để chọn được phế phẩm?

    Gọi A_{1}là biến cố “Sản phẩm được chọn do máy I sản xuất”

    A_{2} là biến cố “Sản phẩm được chọn do máy II sản xuất”

    B là biến cố “Sản phẩm được chọn là phế phẩm”

    Ta có:

    P\left( A_{1} \right) =
0,35, P\left( A_{2} \right) =
0,65, P\left( B|A_{1} \right) =
0,003, P\left( B|A_{2} \right) =
0,007

    P(B) = P\left( B|A_{1} \right).P\left(
A_{1} \right) + P\left( B|A_{2} \right).P\left( A_{2} \right) =
0,0056

  • Câu 16: Vận dụng

    Chọn kết quả đúng

    Một học sinh làm 2 bài tập kế tiếp. Xác suất làm đúng bài thứ nhất là 0,7. Nếu làm đúng bài thứ nhất thì khả năng làm đúng bài thứ hai là 0,8. Nhưng nếu làm sai bài thứ nhất thì khả năng làm đúng bài thứ hai là 0,2. Tính xác suất học sinh đó làm đúng cả hai bài?

    Gọi A: “Làm đúng bài thứ nhất”.

    Và B: “Làm đúng bài thứ hai”

    Khi đó biến cố: “làm đúng cả hai bài” là AB

    Theo bài ta có: P(A) = 0,7;P\left( B|A
ight) = 0,8;P\left( B|\overline{A} ight) = 0,2

    Do đó:

    P\left( \overline{A} ight) = 1 - P(A)
= 0,3

    P\left( \overline{B}|A ight) = 1 -
P\left( B|A ight) = 1 - 0,8 = 0,2

    P\left( \overline{B}|\overline{A}
ight) = 1 - P\left( B|\overline{A} ight) = 1 - 0,2 =
0,8

    Ta có sơ đồ hình cây như sau:

    Vậy P(AB) = 0,8.0,7 = 0,56

  • Câu 17: Vận dụng

    Tính xác suất để viên bi lấy ra màu đỏ

    Hộp thứ nhất có 3 viên bi xanh và 6 viên bi đỏ. Hộp thứ hai có 3 viên bi xanh và 7 viên bi đỏ. Các viên bi có cùng kích thước và khối lượng. Lấy ra ngẫu nhiên 1 viên bi từ hộp thứ nhất chuyển sang hộp thứ hai. Sau đó lại lấy ra ngẫu nhiên đồng thời 2 viên bi từ hộp thứ hai. Tính xác suất để hai viên bi lấy ra từ hộp thứ hai là bi đỏ.

    Gọi A là biến cố “lấy được một viên bi màu xanh ở hộp thứ nhất“ và B là biến cố “lấy được hai viên bi màu đỏ ở hộp thứ hai”

    Khi đó ta có P(A) = \frac{1}{3}, P\left( B|A \right) =
\frac{C_{7}^{2}}{C_{11}^{2}} = \frac{21}{55}.

    Suy ra P\left( \overline{A} \right) = 1 -
P(A) = \frac{2}{3}; P\left(
B|\overline{A} \right) = \frac{C_{8}^{2}}{C_{11}^{2}} =
\frac{28}{55}.

    Áp dụng công thức xác suất toàn phần ta có

    P(B) = P(A)P\left( B|A \right) + P\left(\overline{A} \right)P\left( B|\overline{A} \right)=\frac{1}{3}.\frac{21}{55} + \frac{2}{3}.\frac{28}{55} =\frac{7}{15}.

  • Câu 18: Vận dụng cao

    Tính xác suất của biến cố

    Một bài trắc nghiệm có 10 câu hỏi, mỗi câu hỏi có 4 phương án lựa chọn trong đó có 1 đáp án đúng được 5 điểm và mỗi câu trả lời sai bị trừ đi 2 điểm. Một học sinh không học bài nên đánh hàng loạt một câu trả lời. Tìm xác suất để học sinh này nhận điểm dưới 1.

    Xác suất để học sinh trả lời đúng 1 câu là \frac{1}{4} và trả lời sai 1 câu là \frac{3}{4}.

    Gọi x là số câu trả lời đúng \Rightarrow 10 - x là số câu trả lời sai.

    Số điểm học sinh đạt được là: 5x - 2.(10
- x) = 7x - 20

    Học sinh nhận được điểm dưới 1 khi 7x -
20 < 1 \Leftrightarrow x < 3

    x\mathbb{\in Z \Rightarrow}x \in \{
0;1;2\}

    Gọi A_{i}(i = 0,1,2) là biến cố: "Học sinh trả lời đúng i câu"

    A là biến cố "Học sinh nhận điểm dưới 1"

    Suy ra A = A_{0} \cup A_{1} \cup
A_{2}P(A) = P\left( A_{0}ight) + P\left( A_{1} ight) + P\left( A_{2} ight)

    P\left( A_{i} ight) =
C_{10}^{i}.\left( \frac{1}{4} ight)^{i}.\left( \frac{3}{4} ight)^{10
- i} nên P(A) = \sum_{i =
0,}^{2}C_{10}^{i}.\left( \frac{1}{4} ight)^{i}.\left( \frac{3}{4}
ight)^{10 - i} = 0,5256

  • Câu 19: Thông hiểu

    Xác định tính đúng sai của từng phương án

    Cho hai biến cố AB là hai biến cố độc lập, với P(A) = 0,7;P\left( \overline{B} ight) =
0,6.

    a) P\left( A|B ight) = 0,6 Sai|| Đúng

    b) P\left( B|\overline{A} ight) =
0,4 Đúng||Sai

    c) P\left( \overline{A}|B ight) =
0,4 Sai|| Đúng

    d) P\left( \overline{B}|\overline{A}
ight) = 0,6 Đúng||Sai

    Đáp án là:

    Cho hai biến cố AB là hai biến cố độc lập, với P(A) = 0,7;P\left( \overline{B} ight) =
0,6.

    a) P\left( A|B ight) = 0,6 Sai|| Đúng

    b) P\left( B|\overline{A} ight) =
0,4 Đúng||Sai

    c) P\left( \overline{A}|B ight) =
0,4 Sai|| Đúng

    d) P\left( \overline{B}|\overline{A}
ight) = 0,6 Đúng||Sai

    Ta có: \left\{ \begin{matrix}
P(A) = 0,7 \Rightarrow P\left( \overline{A} ight) = 0,3 \\
P\left( \overline{B} ight) = 0,6 \Rightarrow P(B) = 1 - 0,6 = 0,4 \\
\end{matrix} ight.

    Do hai biến cố AB là hai biến cố độc lập nên \overline{B}A;\overline{A}B; \overline{B}\overline{A} độc lập với nhau.

    a) AB là hai biến cố độc lập nên: P\left( A|B ight) = P(A) = 0,7 eq
0,6

    b) \overline{A}B là hai biến cố độc lập nên: P\left( B|\overline{A} ight) = P(B) =
0,4

    c) \overline{A}Blà hai biến cố độc lập nên: P\left( \overline{A}|B ight) = P\left(
\overline{A} ight) = 0,3 eq 0,4

    d) \overline{B}\overline{A} là hai biến cố độc lập nên: P\left( \overline{B}|\overline{A} ight) =
P\left( \overline{B} ight) = 0,6

  • Câu 20: Nhận biết

    Tính xác suất

    Cho hai biến cố A;B với P(A) = \frac{1}{3};P(B) = \frac{1}{2};P(A + B) =
\frac{3}{4}. Tính P\left(
A\overline{B} ight)?

    Ta có:

    P(A.B) = P(A) + P(B) - P(A + B) =
\frac{1}{12}

    \Rightarrow P\left( A\overline{B}
ight) = P(A) - P(AB) = \frac{1}{4}

  • Câu 21: Vận dụng cao

    Xét tính đúng sai của các kết luận

    Ở cửa ra vào của nhà sách Nguyễn Văn Cừ có một thiết bị cảnh báo hàng hóa chưa được thanh toán khi qua cửa. Thiết bị phát chuông cảnh báo với 99\% các hàng hóa ra cửa mà chưa thanh toán và 0,1\% các hàng hóa đã thanh toán. Tỷ lệ hàng hóa qua cửa không được thanh toán là 0,1\%. Chọn ngẫu nhiên một hàng hóa khi đi qua cửa. Xét tính đúng sai của các mệnh đề sau?

    a) Xác suất để hàng qua cửa đã thanh toán là 99,9\%. Đúng||Sai

    b) Xác suất để hàng qua cửa chưa thanh toán và thiết bị phát chuông cảnh báo là 1\%.Sai||Đúng

    c) Xác suất để hàng qua cửa đã thanh toán và thiết bị phát chuông cảnh báo là 0,1\%. Đúng||Sai

    d) Xác suất để hàng qua cửa chưa thanh toán và thiết bị không phát chuông cảnh báo là 0,001\%. Đúng||Sai

    Đáp án là:

    Ở cửa ra vào của nhà sách Nguyễn Văn Cừ có một thiết bị cảnh báo hàng hóa chưa được thanh toán khi qua cửa. Thiết bị phát chuông cảnh báo với 99\% các hàng hóa ra cửa mà chưa thanh toán và 0,1\% các hàng hóa đã thanh toán. Tỷ lệ hàng hóa qua cửa không được thanh toán là 0,1\%. Chọn ngẫu nhiên một hàng hóa khi đi qua cửa. Xét tính đúng sai của các mệnh đề sau?

    a) Xác suất để hàng qua cửa đã thanh toán là 99,9\%. Đúng||Sai

    b) Xác suất để hàng qua cửa chưa thanh toán và thiết bị phát chuông cảnh báo là 1\%.Sai||Đúng

    c) Xác suất để hàng qua cửa đã thanh toán và thiết bị phát chuông cảnh báo là 0,1\%. Đúng||Sai

    d) Xác suất để hàng qua cửa chưa thanh toán và thiết bị không phát chuông cảnh báo là 0,001\%. Đúng||Sai

    a) Đúngb) Saic) Đúngd) Đúng

    Gọi A là biến cố “Hàng qua cửa đã được thanh toán” và B là biến cố “Thiết bị phát chuông cảnh báo”.

    Tỷ lệ hàng qua cửa không được thanh toán là 0,1\% tức là P\left( \overline{A} \right) = 0,1\% suy ra P(A) = 100\% - 0,1\% =
99,9\%.

    Ta có P\left( B|A \right) =
0,1\%P\left( B|\overline{A}
\right) = 99\%;

    P\left( \overline{B}|A \right) = 100\% -
P\left( B|A \right) = 99,9\%; P\left( \overline{B}|\overline{A} \right) = 100\%
- P\left( B|\overline{A} \right) = 1\%.

    Ta có sơ đồ hình cây như sau:

    A diagram of a number of numbersDescription automatically generated with medium confidence

    Từ đây ta có:

    Xác suất để hàng qua cửa đã thanh toán là 99,9\%.

    Xác suất để hàng qua cửa chưa thanh toán và thiết bị phát chuông cảnh báo là P\left( \overline{A}B \right) =
0,099\%

    Xác suất để hàng hóa qua cửa đã thanh toán và thiết bị phát chuông cảnh báo là P\left( \overline{A}B \right) =
0,1\%

    Xác suất để hàng qua cửa chưa thanh toán và thiết bị không phát chuông cảnh báo là P\left(
\overline{A}\overline{B} \right) = 0,001\%.

  • Câu 22: Vận dụng cao

    Chọn đáp án đúng

    Một loại linh kiện do 3 nhà máy số I, số II, số III cùng sản xuất. Tỷ lệ phế phẩm của các nhà máy lần lượt là: I; 0,04; II: 0,03 và III: 0,05. Trong 1 lô linh kiện để lẫn lộn 80 sản phẩm của nhà máy số I, 120 của nhà máy số II và 100 của nhà máy số III. Khách hàng lấy phải một linh kiện loại phế phẩm từ lô hàng đó. Khả năng linh kiện đó do nhà máy nào sản xuất là cao nhất?

    Gọi E1 là biến cố phế phẩm máy số I

    \Rightarrow P\left( E_{1} ight) = 0,04
\Rightarrow P\left( \overline{E_{1}} ight) = 1 - 0,04 =
0,96

    E2 là biến cố phế phẩm máy số II

    \Rightarrow P\left( E_{2} ight) = 0,03
\Rightarrow P\left( \overline{E_{2}} ight) = 1 - 0,03 =
0,97

    E3 là biến cố phế phẩm máy số III

    \Rightarrow P\left( E_{3} ight) = 0,05
\Rightarrow P\left( \overline{E_{3}} ight) = 1 - 0,05 =
0,95

    Gọi B là biến cố khách hàng lấy được 1 linh kiện tốt

    Xác suất để khách hàng lấy được linh kiện tốt là:

    P(B) =
\frac{C_{80}^{1}}{C_{300}^{1}}.0,96 +
\frac{C_{120}^{1}}{C_{300}^{1}}.0,97 +
\frac{C_{100}^{1}}{C_{300}^{1}}.0,95 = 0,96

    Gọi \overline{B} là biến cố khách hàng lấy 1 linh kiện loại không tốt

    Ta xác định được:

    P\left( \overline{B} ight) = 1 - P(B)
= 0,04

    P\left( E_{1}|\overline{B} ight) =
\frac{P\left( E_{1} ight).P\left( \overline{B}|E_{1} ight)}{P\left(
\overline{B} ight)} = \frac{C_{80}^{1}.0,04}{0,04} = 0,26

    P\left( E_{2}|\overline{B} ight) =
\frac{P\left( E_{2} ight).P\left( \overline{B}|E_{2} ight)}{P\left(
\overline{B} ight)} = \frac{C_{120}^{1}.0,03}{0,04} = 0,3

    P\left( E_{3}|\overline{B} ight) =
\frac{P\left( E_{3} ight).P\left( \overline{B}|E_{3} ight)}{P\left(
\overline{B} ight)} = \frac{C_{100}^{1}.0,05}{0,04} =
0,41

    Vậy linh kiện đó do máy III là cao nhất.

  • Câu 23: Thông hiểu

    Tính xác suất để chứng từ hợp lệ

    Một tập gồm 10 chứng từ, trong đó có 2 chứng từ không hợp lệ. Một cán bộ kế toán rút ngẫu nhiên 1 chứng từ và tiếp đó rút ngẫu nhiên 1 chứng từ khác để kiểm tra. Tính xác suất để cả 2 chứng từ rút ra đều hợp lệ?

    Gọi A là biến cố cả 2 chứng từ rút ra đều hợp lệ

    Theo yêu cầu của đầu bài ta phải tính xác xác suất P(A)

    Nếu gọi Ai là biến cố chứng từ rút ra lần thứ i là hợp lệ} (i = 1,3).

    Khi đó ta có: A = A_1 . A_2

    Vì vậy các xác suất cần tìm là:

    P(A) = P\left( A_{1}.\ A_{2} ight) =
P\left( A_{1} ight).P\left( A_{2}|A_{1} ight) =
\frac{8}{10}.\frac{7}{9} = \frac{28}{45}

  • Câu 24: Thông hiểu

    Chọn kết quả đúng

    Một trạm chỉ phát hai tín hiệu A và B với xác suất tương ứng 0,840,16. do có nhiễu trên đường truyền nên \frac{1}{6} tín hiệu A bị méo và thu được như tín hiệu B còn \frac{1}{8} tín hiệu B bị méo và thu được như A. Tìm xác suất thu được tín hiệu A?

    Gọi A, B lần lượt là "phát ra tín hiệu A, B".

    Khi đó A, B tạo thành hệ đầy đủ.

    P(A) = 0,84;P(B) = 0,16

    Gọi C là "thu được tín hiệu A". Khi đó: P\left( C|A ight) = \frac{5}{6};P\left( C|B
ight) = \frac{1}{8}

    Áp dụng công thức xác suất toàn phần ta có:

    P(C) = P(A).P\left( C|A ight) +
P(B).P\left( C|B ight)

    \Rightarrow P(C) = 0,84.\frac{5}{6} +
0,16.\frac{1}{8} = 0,72.

    Ta cần tính P(A|C). Áp dụng công thức Bayes ta có:

    P\left( A|C ight) = \frac{P(A)P\left(C|A ight)}{P(C)} = \dfrac{0,84.\dfrac{5}{6}}{0,72} =\dfrac{35}{36}

  • Câu 25: Thông hiểu

    Chọn đáp án chính xác

    Trong một kỳ thi, có 60% học sinh đã làm đúng bài toán đầu tiên và 40% học sinh đã làm đúng bài toán thứ hai. Biết rằng có 20% học sinh làm đúng cả hai bài toán. Xác suất để một học sinh làm đúng bài toán thứ hai biết rằng học sinh đó đã làm đúng bài toán đầu tiên là bao nhiêu? (Làm tròn đến hàng phần trăm).

    A: "học sinh đã làm đúng bài toán đầu tiên"

    \Rightarrow P(A) = 60\% =
0,6.

    B: "học sinh đã làm đúng bài toán thứ hai"

    \Rightarrow P(B) = 40\% =
0,4.

    A \cap B: "học sinh làm đúng cả hai bài toán"

    \Rightarrow P(A \cap B) = 20\%
= 0,2.

    Xác suất để một học sinh làm đúng bài toán thứ hai biết rằng học sinh đó đã làm đúng bài toán đầu tiên là

    P\left(
B|A \right) = \frac{P(A \cap B)}{P(A)} = \frac{0,2}{0,6} = \frac{1}{3}
\approx 0.33.

  • Câu 26: Nhận biết

    Xét tính đúng sai của các kết luận

    Một két nước ngọt đựng 24 chai nước có khối lượng và hình thức bề ngoài như nhau, trong đó

    có 16 chai loại I và 8 chai loại II. Bác Tùng lần lượt lấy ra ngẫu nhiên hai chai (lấy không hoàn lại). Xét

    các biến cố: A:” lần thứ nhất lấy ra chai nước loại I”; B:”Lần thứ hai lấy ra chai nước loại I”.

    a)P\left( B|A \right) =
\frac{16}{23}. Sai||Đúng

    b)P\left( B|A \right) =
\frac{15}{23}. Sai||Đúng

    c)P\left( B|A \right) =
\frac{8}{23}. Đúng||Sai

    d) P\left( B|A \right) =
\frac{7}{23}. Đúng||Sai

    Đáp án là:

    Một két nước ngọt đựng 24 chai nước có khối lượng và hình thức bề ngoài như nhau, trong đó

    có 16 chai loại I và 8 chai loại II. Bác Tùng lần lượt lấy ra ngẫu nhiên hai chai (lấy không hoàn lại). Xét

    các biến cố: A:” lần thứ nhất lấy ra chai nước loại I”; B:”Lần thứ hai lấy ra chai nước loại I”.

    a)P\left( B|A \right) =
\frac{16}{23}. Sai||Đúng

    b)P\left( B|A \right) =
\frac{15}{23}. Sai||Đúng

    c)P\left( B|A \right) =
\frac{8}{23}. Đúng||Sai

    d) P\left( B|A \right) =
\frac{7}{23}. Đúng||Sai

    Ta có: P(A) = \frac{16}{24} =
\frac{2}{3};P(\overline{A}) = \frac{8}{24} = \frac{1}{3}.

    Nếu lần thứ nhất lấy ra chai loại I thì két còn 23 chai nước, trong đó có 15 chai loại I, 8 chai loại II. Suy ra P(B
\mid A) = \frac{15}{23}.

    Nếu lần thứ nhất lấy ra chai loại II thì két còn 23 chai nước, trong đó có 16 chai loại I, 7 chai loại II. Suy ra P(B \mid \overline{A}) =
\frac{16}{23}.

    Theo công thức xác suất toàn phần, ta có:

    P(B) = P(A).P(B \mid A) +
P(\overline{A}).P(B \mid \overline{A}) = \frac{2}{3} \cdot \frac{15}{23}
+ \frac{1}{3} \cdot \frac{16}{23} = \frac{2}{3}.

    Ta có: P(\overline{B} \mid A) = 1 - P(B
\mid A) = 1 - \frac{15}{23} = \frac{8}{23};

    P(\overline{B} \mid \overline{A}) = 1 -
P(B \mid \overline{A}) = 1 - \frac{16}{23} = \frac{7}{23}.

    Đáp án: a) S, b) S, c) Đ, d) Đ.

  • Câu 27: Nhận biết

    Chọn đáp án đúng

    Cho hai biến cố A;B với P(B) = 0,6;P\left( A|B ight) = 0,7;P\left(
A|\overline{B} ight) = 0,4. Giá trị P(A) bằng:

    Ta có: P\left( \overline{B} ight) = 1 -
P(B) = 1 - 0,6 = 0,4

    Theo công thức xác suất toàn phần, ta có:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    \Rightarrow P(A) = 0,6.0,7 + 0,4.0,4 =
0,58

  • Câu 28: Vận dụng

    Tính xác suất để hai đứa trẻ là con gái

    Một gia đình có 2 đứa trẻ. Biết rằng có ít nhất 1 đứa trẻ là con gái. Hỏi xác suất 2 đứa trẻ đều là con gái là bao nhiêu? Cho biết xác suất để một đứa trẻ là trai hoặc gái là bằng nhau.

    Giới tính cả 2 đứa trẻ là ngẫu nhiên và không liên quan đến nhau.

    Do gia đình có 2 đứa trẻ nên sẽ có thể xảy ra 4 khả năng:

    (trai, trai), (gái, gái), (gái, trai), (trai, gái).

    Gọi A là biến cố “Cả hai đứa trẻ đều là con gái”

    Gọi B là biến cố “Có ít nhất một đứa trẻ là con gái”

    Ta có P(A) = \frac{1}{4};P(B) =
\frac{3}{4}

    Do nếu xảy ra A thì đương nhiên sẽ xảy ra B nên ta có:

    P(A \cap B) = P(A) =
\frac{1}{4}

    Suy ra, xác suất để cả hai đứa trẻ đều là con gái khi biết ít nhất có một đứa trẻ là gái là

    P\left( A|B \right) = \frac{P(A \cap
B)}{P(B)} = \frac{\frac{1}{4}}{\frac{3}{4}} = \frac{1}{3}

  • Câu 29: Nhận biết

    Tính P(A)

    Cho hai biến cố AB với P(B) =
0,8;P\left( A|B ight) = 0,7,P\left( A|\overline{B} ight) =
0,45. Tính P(A)?

    Ta có:

    P\left( \overline{B} ight) = 1 - P(B)
= 1 - 0,8 = 0,2

    Áp dụng công thức xác suất toàn phần ta có:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    \Rightarrow P(A) = 0,8.0,7 + 0,2.0,45 =
0,65

  • Câu 30: Nhận biết

    Chọn phương án đúng

    Cho hai biến cố A,\ BP(B) = 0,8;P(A \cap B) = 0,1. Kết quả của xác suất sau P(A \mid B) bằng bao nhiêu?

    Ta có: P(A \cap B) = P(B).P(A \mid
B)

    \Leftrightarrow P(A \mid B) = \frac{P(A
\cap B)}{P(B)} = \frac{0,1}{0,8} = \frac{1}{8}.

  • Câu 31: Thông hiểu

    Chọn đáp án đúng

    Một phân xưởng có 3 máy tự động: máy I sản xuất 25%, máy II sản xuất 30%, máy III sản xuất 45% số sản phẩm. Tỷ lệ phế phẩm tương ứng của các máy lần lượt là 0,1%, 0,2% và 0,3%. Chọn ngẫu nhiên ra một sản phẩm của phân xưởng. 1. Tìm xác suất nó là phế phẩm.

    Gọi Ai là "lấy ra sản phẩm từ lô i" thì A1, A2, A3 tạo thành hệ đầy đủ.

    Gọi A là "lấy ra sản phẩm là phế phẩm".

    Áp dụng công thức xác suất toàn phần, ta có

    P(A) = P\left( A_{1} ight)P\left(
A|A_{1} ight) + P\left( A_{2} ight)P\left( A|A_{2} ight) + P\left(
A_{3} ight)P\left( A|A_{3} ight)

    \Rightarrow P(A) = 0,25.0,1\% +
0,3.0,2\% + 0,45.0,3\% = 0,22\%

  • Câu 32: Thông hiểu

    Tính xác suất P

    Có hai hộp thuốc:

    Hộp I có 2 vỉ thuốc ngoại và 5 vỉ thuốc nội.

    Hộp II có 3 vỉ thuốc ngoại và 6 vỉ thuốc nội.

    Từ hộp I và hộp II lần lượt lấy ra 2 vỉ thuốc và 1 vỉ thuốc. Từ 3 vỉ thuốc đó lại lấy ra một vỉ. Biết vỉ lấy ra sau cùng là thuốc ngoại. Tính xác suất để vỉ thuốc này thuộc hộp số II?

    Gọi A1 là biến cố “vỉ thuốc lấy ra sau cùng là của hộp I”

    A1 là biến cố “vỉ thuốc lấy ra sau cùng là của hộp II”

    Ta có A1, A2 lập thành hệ đầy đủ các biến cố khi đó ta xác định được:

    P\left( A_{1} ight) =
\frac{2}{3};P\left( A_{2} ight) = \frac{1}{3}

    P\left( B|A_{1} ight) =
\frac{2}{7};P\left( B|A_{2} ight) = \frac{3}{9}

    Gọi B là biến cố “vỉ thuốc lấy ra sau cùng là thuốc ngoại”.

    Theo công thức xác suất toàn phần ta có:

    P(B) = P\left( A_{1} ight).P\left(
B|A_{1} ight) + P\left( A_{2} ight).P\left( B|A_{2}
ight)

    \Rightarrow P(B) =
\frac{2}{3}.\frac{2}{7} + \frac{1}{3}.\frac{3}{9} =
\frac{19}{63}.

    Áp dụng công thức Bayes ta có:

    P\left( A_{2}|B ight) = \dfrac{P\left(A_{2} ight).P\left( B|A_{2} ight)}{P(B)} =\dfrac{\dfrac{1}{3}.\dfrac{3}{9}}{\dfrac{19}{63}} =\dfrac{7}{19}.

  • Câu 33: Thông hiểu

    Chọn đáp án đúng

    Cho hai biến cố AB, với P(A) =
0,6, P(B) = 0,7, P(A \cap B) = 0,3. Tính P\left( \overline{A} \cap B \right).

    Cách 1:

    Ta có: P\left( \overline{A} \cap B
\right) = P\left( \overline{A}|B \right).P(B).

    P\left( \overline{A}|B \right) = 1 -
P\left( A|B \right) = 1 - \frac{P(A \cap B)}{P(B)} = 1 - \frac{0,3}{0,7}
= \frac{4}{7}

    Do đó P\left( \overline{A} \cap B \right)
= P\left( \overline{A}|B \right).P(B) = \frac{4}{7}.0,7 = 0,4 =
\frac{2}{5}

    Cách 2:

    P\left( \overline{A} \cap B \right) +
P(A \cap B) = P(B)

    \Rightarrow P\left( \overline{A} \cap B
\right) = P(B) - P(A \cap B) = 0,7 - 0,3 = \frac{2}{5}

  • Câu 34: Nhận biết

    Tính xác suất

    Cho hai biến cố A;B với P(A + B) = \frac{3}{4}. Tính P\left( \overline{A}.\overline{B}
ight)?

    Ta có: P\left( \overline{A}.\overline{B}
ight) = P\left( \overline{A + B} ight) = 1 - P(A + B) =
\frac{1}{4}

  • Câu 35: Nhận biết

    Chọn đáp án đúng

    Cho hai biến cố AB. Biết P(B)
= 0,01; P\left( A|B \right) =
0,7; P\left( A|\overline{B} \right)
= 0,09. Khi đó P(A) bằng

    Ta có: P(B) = 0,01 \Rightarrow P\left(
\overline{B} \right) = 1 - 0,01 = 0,99.

    Theo công thức xác suất toàn phần, ta có:

    P(A) = P(B)P\left( A|B \right) + P\left(
\overline{B} \right)P\left( A|\overline{B} \right)

    = 0,01.0,7 + 0,99.0,09 =
0,0961.

  • Câu 36: Vận dụng cao

    Xác định giá trị gần nhất của a

    Giả sử có một loại bệnh mà tỉ lệ người mắc bệnh là 0,1\%. Giả sử có một loại xét nghiệm, mà ai mắc bệnh khi xét nghiệm thì có 95\% phản ứng dương tính, nhưng tỉ lệ phản ứng dương tính giả là 8\% (tức là trong số những người không bị bệnh có 8\% số người xét nghiệm lại có phản ứng dương tính). Biết khi một người xét nghiệm có phản ứng dương tính thì khả năng mắc bệnh của người đó là a\
\%. Hỏi a gần số nào nhất trong các số sau?

    Gọi A là biến cố “Người được chọn ra không mắc bệnh”, khi đó P(A) = 1 -
0,1\% = 0,999, P\left( \overline{A}
\right) = 0,001.

    B là biến cố “Người được chọn ra có phản ứng dương tính”, khi đó P\left( B|A
\right) = 8\% = 0,08P\left(
B|\overline{A} \right) = 0,95

    Khả năng mắc bệnh của một người xét nghiệm có phản ứng dương tính là P\left( \overline{A}|B \right)

    Theo công thức Bayes, ta có

    P\left( \overline{A}|B \right) =
\frac{P\left( \overline{A} \right).P\left( B|\overline{A}
\right)}{P\left( \overline{A} \right).P\left( B|\overline{A} \right) +
P(A).P\left( B|A \right)}

    = \frac{0,001.0,95}{0,001.0,95 +
0,999.0,08} = \frac{95}{8087} \approx 1,17\%

    Vậy khả năng mắc bệnh của một người xét nghiệm có phản ứng dương tính là 1,17\%.

  • Câu 37: Nhận biết

    Tìm kết luận đúng nhất

    Cho hai biến cố ABP(B)
> 0P\left( A|B \right) =
0,7. Tính P\left( \overline{A}|B
\right) có kết quả là

    Với mọi biến cố AB, P(B) >
0 ta có P\left( \overline{A}|B
\right) = 1 - P\left( A|B \right) = 1 - 0,7 = 0,3.

  • Câu 38: Vận dụng

    Xét tính đúng sai của các phương án

    Một công ty truyền thông đấu thầu 2 dự án. Khả năng thắng thầu của dự án 1 là 0,5 và dự án 2 là 0,6. Khả năng thắng thầu của 2 dự án là 0,4. Gọi A;B lần lượt là biến cố thắng thầu dự án 1 và dự án 2.

    a) A;B là hai biến độc lập. Đúng||Sai

    b) Xác suất công ty thắng thầu đúng 1 dự án là 0,3. Đúng||Sai

    c) Biết công ty thắng thầu dự án 1, xác suất công ty thắng thầu dự án 2 là 0,4. Sai|| Đúng

    d) Biết công ty không thắng thầu dự án 1, xác suất công ty thắng thầu dự án 0,8. Sai|| Đúng

    Đáp án là:

    Một công ty truyền thông đấu thầu 2 dự án. Khả năng thắng thầu của dự án 1 là 0,5 và dự án 2 là 0,6. Khả năng thắng thầu của 2 dự án là 0,4. Gọi A;B lần lượt là biến cố thắng thầu dự án 1 và dự án 2.

    a) A;B là hai biến độc lập. Đúng||Sai

    b) Xác suất công ty thắng thầu đúng 1 dự án là 0,3. Đúng||Sai

    c) Biết công ty thắng thầu dự án 1, xác suất công ty thắng thầu dự án 2 là 0,4. Sai|| Đúng

    d) Biết công ty không thắng thầu dự án 1, xác suất công ty thắng thầu dự án 0,8. Sai|| Đúng

    Ta có:\left\{ \begin{matrix}
P(A) = 0,5 \Rightarrow P\left( \overline{A} ight) = 1 - 0,5 = 0,5 \\
P(B) = 0,6 \Rightarrow P\left( \overline{B} ight) = 1 - 0,6 = 0,4 \\
P(A \cap B) = 0,4 \\
\end{matrix} ight.

    a) A;B là hai biến cố độc lập khi và chỉ khi P(A \cap B) =
P(A).P(B)

    0,4 eq 0,5.0,6 nên A;B không độc lập.

    b) Gọi C là biến cố thắng thầu đúng 1 dự án

    P(C) = P\left( A \cap \overline{B}
ight) + P\left( \overline{A} \cap B ight)

    = P(A) - P(A \cap B) + P(B) - P(A \cap
B)

    = P(A) + P(B) - 2P(A \cap
B)

    = 0,5 + 0.6 - 2.0,4 = 0,3.

    c) Gọi D là biến cố thắng dự 2 biết thắng dự án 1

    P(D) = P\left( B|A ight) = \frac{P(B
\cap A)}{P(A)} = \frac{0,4}{0,5} = 0,8.

    d) Gọi E là biến cố “thắng dự án 2 biết không thắng dự án 1”

    P(E) = P\left( B|\overline{A} ight) =
\frac{P(B) - P(A \cap B)}{P\left( \overline{A} ight)} = \frac{0,6 -
0,4}{0,5} = 0,4.

  • Câu 39: Vận dụng

    Chọn đáp án đúng

    Có hai hộp đựng phiếu thi, mỗi phiếu ghi một câu hỏi. Hộp thứ nhất có 15 phiếu và hộp thứ hai có 9 phiếu. Học sinh A đi thi chỉ thuộc 10 câu ở hộp thứ nhất và 8 câu ở hộp thứ hai. Giáo viên rút ngẫu nhiên ra 2 phiếu từ hộp thứ nhất bỏ vào hộp thứ hai, sau đó cho học sinh A rút ngẫu nhiên ra 2 phiếu từ hộp thứ hai.

    Gọi E1 là biến cố thầy giáo rút 2 câu thuộc từ hộp 1 bỏ sang hộp 2

    Gọi E2 là biến cố thầy giáo rút 1 câu thuộc và 1 câu không thuộc từ hộp 1 bỏ sang hộp 2

    Gọi E3 là biến cố thầy giáo rút 2 câu không thuộc từ hộp 1 bỏ sang hộp 2

    Gọi C là biến cố sinh viên rút ra 2 câu thuộc từ hộp 2

    P(C) = P\left( E_{1} ight)P\left(
C|E_{1} ight) + P\left( E_{2} ight)P\left( C|E_{2} ight) + P\left(
E_{3} ight)P\left( C|E_{3} ight)

    Ta xác định được:

    P\left( E_{1} ight) =
\frac{C_{10}^{2}}{C_{15}^{2}} = \frac{3}{7};P\left( E_{2} ight) =
\frac{C_{10}^{1}.C_{5}^{1}}{C_{15}^{2}} = \frac{10}{21}

    P\left( E_{3} ight) =
\frac{C_{5}^{2}}{C_{15}^{2}} = \frac{2}{21};P\left( C|E_{1} ight) =
\frac{C_{10}^{2}}{C_{11}^{2}} = \frac{9}{11}

    P\left( C|E_{2} ight) =
\frac{C_{9}^{2}}{C_{11}^{2}} = \frac{12}{35};P\left( C|E_{3} ight) =
\frac{C_{8}^{2}}{C_{11}^{2}} = \frac{3}{35}

    Thay vào công thức ta suy ra kết quả P(C)
\approx 0,522

  • Câu 40: Thông hiểu

    Xác định tính đúng sai của từng phương án

    Cho hai biến cố AB, với P\left( \overline{A} ight) = 0,4;P(B) = 0,8;P(A
\cap B) = 0,4.

    a) P(A) = 0,6;P\left( \overline{B}
ight) = 0,2 Đúng||Sai

    b) P\left( A|B ight) =
\frac{1}{2} Đúng||Sai

    c) P\left( \overline{B}|A ight) =
\frac{2}{3} Sai|| Đúng

    d) P\left( \overline{A} \cap B ight) =
\frac{3}{5} Sai|| Đúng

    Đáp án là:

    Cho hai biến cố AB, với P\left( \overline{A} ight) = 0,4;P(B) = 0,8;P(A
\cap B) = 0,4.

    a) P(A) = 0,6;P\left( \overline{B}
ight) = 0,2 Đúng||Sai

    b) P\left( A|B ight) =
\frac{1}{2} Đúng||Sai

    c) P\left( \overline{B}|A ight) =
\frac{2}{3} Sai|| Đúng

    d) P\left( \overline{A} \cap B ight) =
\frac{3}{5} Sai|| Đúng

    a) Ta có: \left\{ \begin{matrix}
P\left( \overline{A} ight) = 0,4 \Rightarrow P(A) = 1 - 0,4 = 0,6 \\
P(B) = 0,8 \Rightarrow P\left( \overline{B} ight) = 1 - 0,8 = 0,2 \\
P(A \cap B) = 0,4 \\
\end{matrix} ight.

    b) P\left( A|B ight) = \frac{P(A \cap
B)}{P(B)} = \frac{0,4}{0,8} = \frac{1}{2}

    c) P\left( \overline{B}|A ight) = 1 -
P\left( B|A ight) = 1 - \frac{P(A \cap B)}{P(A)} = 1 - \frac{0,4}{0,6}
= \frac{1}{3}

    d) P\left( \overline{A} \cap B ight) +
P(A \cap B) = P(B)

    \Rightarrow P\left( \overline{A} \cap B
ight) = P(B) - P(A \cap B) = 0,8 - 0,4 = 0,4

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 6 Một số yếu tố xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo