Chọn công thức đúng
Cho hai biến cố
và
là hai biến cố ngẫu nhiên mà
,
, công thức Bayes là:
Ta có: .
Trong chương trình Toán 12 Cánh Diều, Chương 6: Một số yếu tố xác suất là phần kiến thức quan trọng, thường xuyên xuất hiện trong các đề kiểm tra và đề thi. Đây là chuyên đề giúp học sinh rèn luyện khả năng tư duy xác suất, biết cách phân tích tình huống, xử lý dữ liệu và áp dụng công thức phù hợp. Bài viết này cung cấp đề kiểm tra 45 phút Toán 12 Chương 6 bám sát nội dung SGK, giúp học sinh hệ thống kiến thức, luyện tập kỹ năng giải toán và tự tin chuẩn bị cho các kỳ kiểm tra 1 tiết cũng như ôn tập thi tốt nghiệp.
Chọn công thức đúng
Cho hai biến cố
và
là hai biến cố ngẫu nhiên mà
,
, công thức Bayes là:
Ta có: .
Tính xác suất của biến cố
Cho hai biến cố
sao cho
;
và
. Tính
.
Ta có .
Tìm xác suất có điều kiện
Gieo đồng thời hai con xúc sắc cân đối. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc sắc là
, biết rằng có ít nhất một con xúc sắc xuất hiện mặt
chấm.
Gọi là biến cố “Tổng số chấm xuất hiện trên hai con xúc sắc là
” và
là biến cố “Có ít nhất một con xúc sắc xuất hiện mặt
chấm”.
Ta có
;
.
Suy ra .
Tính xác suất
Cho hai biến cố
với
. Tính
?
Ta có:
Chọn đáp án đúng
Theo thống kê ở các gia đình có hai con thì xác suất để con thứ nhất và con thứ hai là đều con trai là
và hai con đều là gái là
, còn xác suất con thứ nhất và con thứ hai có một trai và một gái là đồng khả năng. Biết khi xét một gia đình được chọn ngẫu nhiên có con thứ nhất là con gái, tìm xác suất để con thứ hai là trai.
Gọi là 'con thứ nhất là con trai' và
là 'con thứ hai là con trai' thì theo đề bài ta có:
,
và
Ta cần tìm .
Ta có
Tính xác suất
Cho hai biến cố
và
có
. Tính
.
Theo công thức tính xác suất có điều kiện ta có:
.
Vì và
là hai biến cố xung khắc và
nên theo tính chất của xác suất, ta có:
.
Xác định phần tử của biến cố
Một hộp chứa 5 quả bóng gồm 2 quả màu đỏ (đánh số 1 và 2), 2 quả màu xanh (đánh số 3 và 4) và 1 quả màu vàng (đánh số 5). Lấy ngẫu nhiên hai quả bóng liên tiếp không hoàn lại.
Xét các biến cố
: "Quả bóng lấy ra đầu tiên có màu đỏ"
: "Tổng số của hai quả bóng lấy ra là số lẻ"
Xác định
là biến cố
khi biết
đã xảy ra?
Khi A đã xảy ra, nghĩa là quả bóng đầu tiên lấy ra có màu đỏ (số 1 hoặc 2).
Do đó, không gian mẫu mới là
Biến cố khi biết
đã xảy ra là:
Chọn phát biểu đúng
Cho hai biến cố
,
với
. Phát biểu nào sau đây đúng?
Theo công thức xác suất toàn phần, ta có:
.
Ghi đáp án vào ô trống
Một bệnh truyền nhiễm có xác suất lây bệnh là 0,8 nếu tiếp xúc với người bệnh mà không đeo khẩu trang; là 0,1 nếu tiếp xúc với người bệnh mà có đeo khẩu trang. Chị Mai có tiếp xúc với người bệnh hai lần, một lần đeo khẩu trang và một lần không đeo khẩu trang. Tính xác suất để chị Mai bị lây bệnh từ người bệnh truyền nhiễm đó. (Kết quả ghi dưới dạng số thập phân).
Đáp án: 0,82
Một bệnh truyền nhiễm có xác suất lây bệnh là 0,8 nếu tiếp xúc với người bệnh mà không đeo khẩu trang; là 0,1 nếu tiếp xúc với người bệnh mà có đeo khẩu trang. Chị Mai có tiếp xúc với người bệnh hai lần, một lần đeo khẩu trang và một lần không đeo khẩu trang. Tính xác suất để chị Mai bị lây bệnh từ người bệnh truyền nhiễm đó. (Kết quả ghi dưới dạng số thập phân).
Đáp án: 0,82
Gọi là biến cố: "Chị Hoa bị nhiễm bệnh khi tiếp xúc người bệnh mà không đeo khẩu trang" và
: "Chị Hoa bị nhiễm bệnh khi tiếp xúc với người bệnh dù có đeo khẩu trang”.
Dễ thấy là hai biến cố độc lập.
Xác suất để chị Hoa không nhiễm bệnh trong cả hai lần tiếp xúc với người bệnh là
.
Gọi là xác suất để chị Hoa bị lây bệnh khi tiếp xúc người bệnh, ta có:
Chọn đáp án đúng
Để kiểm tra tính chính xác của một xét nghiệm nhằm chẩn đoán bệnh
, người ta chọn một mẫu gồm
người, trong đó có
người mắc bệnh
và
người không mắc bệnh
để làm xét nghiệm. Trong số
người mắc bệnh
có
người cho kết quả dương tính. Trong số
người không mắc bệnh có
người cho kết quả dương tính. Chọn ngẫu nhiên một người trong mẫu. Tính xác suất để người đó mắc bệnh
nếu biết rằng người đó có xét nghiệm âm tính.
Ta có bảng sau đây

Gọi là biến cố “Người đó mắc bệnh
”,
là biến cố “Người đó có xét nghiệm âm tính”.
Khi đó là biến cố “Người đó vừa mắc bệnh
, vừa có xét nghiệm âm tính”.
Từ bảng trên, ta có ;
.
Vậy xác suất cần tính là .
Ghi đáp án vào ô trống
Trong một đợt kiểm tra sức khoẻ, có một loại bệnh
mà tỉ lệ người mắc bệnh là
và một loại xét nghiệm
mà ai mắc bệnh
khi xét nghiệm
cũng có phản ứng dương tính. Tuy nhiên, có
những người không bị bệnh
lại có phản ứng dương tính với xét nghiệm Y. Chọn ngẫu nhiên 1 người trong đợt kiểm tra sức khoẻ đó. Giả uử người đó có phản ứng dương tính với xét nghiệm Y. Xác suất người đó bị mắc bệnh
là bao nhiêu (làm tròn kết quả đến hàng phần trăm)?
Đáp án : 0,03
Trong một đợt kiểm tra sức khoẻ, có một loại bệnh
mà tỉ lệ người mắc bệnh là
và một loại xét nghiệm
mà ai mắc bệnh
khi xét nghiệm
cũng có phản ứng dương tính. Tuy nhiên, có
những người không bị bệnh
lại có phản ứng dương tính với xét nghiệm Y. Chọn ngẫu nhiên 1 người trong đợt kiểm tra sức khoẻ đó. Giả uử người đó có phản ứng dương tính với xét nghiệm Y. Xác suất người đó bị mắc bệnh
là bao nhiêu (làm tròn kết quả đến hàng phần trăm)?
Đáp án : 0,03
Xét các biến cố:
: "Người được chọn mắc bệnh
";
: "Người được chọn có phản ứng dương tính với xét nghiệm Y".
Theo giả thiết ta có:
;
Theo công thức Bayes, ta có:
Vậy nếu người được chọn có phản ứng dương tính với xét nghiệm thì xác suất bị mắc bệnh
của người đó là khoảng 0,03.
Tính xác suất
Trong một trường học, tỉ lệ học sinh nữ là
. Tỉ lệ học sinh nữ và tỉ lệ học sinh nam tham gia câu lạc bộ M lần lượt là
và
. Chọn ngẫu nhiên 1 học sinh của trường. Tính xác suất học sinh đó có tham gia câu lạc bộ M.
Gọi A: “Học sinh được chọn là nữ” ⇒ : “Học sinh được chọn là nam”
B: “học sinh được chọn có tham gia câu lạc bộ M”.
Từ giả thiết ta có:
Theo công thức xác suất toàn phần, ta có xác suất học sinh được chọn có tham gia câu lạc bộ M là:
.
Xét tính đúng sai của các kết luận
Một lớp học có 40 học sinh, trong đó có 15 học sinh nam và 25 học sinh nữ. Khi tổng kết cuối năm, lớp có 20 học sinh giỏi, trong đó có 8 học sinh nam và 12 học sinh nữ. Chọn ngẫu nhiên 1 học sinh trong lớp.
a) Xác suất học sinh được chọn là học sinh giỏi bằng
.Đúng||Sai
b) Xác suất học sinh được chọn là học sinh nữ bằng
.Sai||Đúng
c) Xác suất học sinh được chọn vừa là học sinh giỏi và là học sinh nữ bằng
.Sai||Đúng
d) Biết rằng học sinh được chọn là nữ, xác suất học sinh đó là học sinh giỏi bằng
.Đúng||Sai
Một lớp học có 40 học sinh, trong đó có 15 học sinh nam và 25 học sinh nữ. Khi tổng kết cuối năm, lớp có 20 học sinh giỏi, trong đó có 8 học sinh nam và 12 học sinh nữ. Chọn ngẫu nhiên 1 học sinh trong lớp.
a) Xác suất học sinh được chọn là học sinh giỏi bằng
.Đúng||Sai
b) Xác suất học sinh được chọn là học sinh nữ bằng
.Sai||Đúng
c) Xác suất học sinh được chọn vừa là học sinh giỏi và là học sinh nữ bằng
.Sai||Đúng
d) Biết rằng học sinh được chọn là nữ, xác suất học sinh đó là học sinh giỏi bằng
.Đúng||Sai
Xét hai biến số sau:
: “Học sinh được chọn là học sinh giỏi”.
: “ Học sinh được chọn là học sinh nữ”.
a) Đ Xác suất học sinh được chọn là học sinh giỏi: .
b) s Xác suất học sinh được chọn là học sinh nữ: .
c) s Xác suất học sinh được chọn vừa là học sinh giỏi và là học sinh nữ:
.
d) Đ Biết rằng học sinh được chọn là nữ, xác suất học sinh đó là học sinh nữ:
.
Tính xác suất để chọn được phế phẩm
Hai máy tự động sản xuất cùng một loại chi tiết, trong đó máy I sản xuất
máy II sản xuất
tổng sản lượng. Tỉ lệ phế phẩm của các máy lần lượt là
và
Chọn ngẫu nhiên
sản phẩm từ kho. Tính xác suất để chọn được phế phẩm?
Gọi là biến cố “Sản phẩm được chọn do máy I sản xuất”
là biến cố “Sản phẩm được chọn do máy II sản xuất”
B là biến cố “Sản phẩm được chọn là phế phẩm”
Ta có:
,
,
,
Xác định tính đúng sai của từng phương án
Cho hai biến cố
và
, với
.
a)
Đúng||Sai
b)
Đúng||Sai
c)
Sai|| Đúng
d)
Sai|| Đúng
Cho hai biến cố
và
, với
.
a)
Đúng||Sai
b)
Đúng||Sai
c)
Sai|| Đúng
d)
Sai|| Đúng
a) Ta có:
b)
c)
d)
Ghi đáp án đúng vào chỗ trống
Trong thùng có các gói kẹo cùng loại khác vị, trong đó có 15 gói kẹo vị cam, còn lại là kẹo vị chuối. Hà lẫy ngẫu nhiên 1 gói kẹo trong thùng, không trả lại. Sau đó Hà lại lấy ngẫu nhiên thêm 1 gói kẹo khác từ thùng. Biết rằng xác suất Hà lấy được cả hai gói kẹo vị cam là
. Biết rằng mỗi gói kẹo có 28 chiếc kẹo. Hỏi tổng có bao nhiêu chiếc kẹo?
Đáp án: 1008
Trong thùng có các gói kẹo cùng loại khác vị, trong đó có 15 gói kẹo vị cam, còn lại là kẹo vị chuối. Hà lẫy ngẫu nhiên 1 gói kẹo trong thùng, không trả lại. Sau đó Hà lại lấy ngẫu nhiên thêm 1 gói kẹo khác từ thùng. Biết rằng xác suất Hà lấy được cả hai gói kẹo vị cam là
. Biết rằng mỗi gói kẹo có 28 chiếc kẹo. Hỏi tổng có bao nhiêu chiếc kẹo?
Đáp án: 1008
Gọi là biến cố "Hà lấy được gói kẹo vị cam ở lần thứ nhấtt".
Gọi là biến cố "Hà lấy được gói kẹo vị cam ở lần thứ hai".
Ta có: xác suất Hà lấy được cả hai gói kẹo vị cam là , suy ra
.
Gọi là số gói kẹo ban đầu trong thùng
.
.
Theo công thức nhân xác suất ta có:
Ta được (loại) hoặc
(nhận).
Vậy tổng số chiếc kẹo có là chiếc.
Tính xác suất có điều kiện
Trong một đội tuyển có ba vận động viên
và
thi đấu với xác suất chiến thắng lần lượt là
và
. Giả sử mỗi người thi đấu một trận độc lập với nhau. Tính xác suất để
thua trong trường hợp đội tuyển thắng hai trận.
Gọi là biến cố “vận động viên
chiến thắng”, ta có
;
là biến cố “vận động viên
chiến thắng” thì
;
là biến cố “vận động viên
chiến thắng” thì
.
Gọi là biến cố “đội tuyển thắng hai trận”. Ta có
.
Vậy xác suất cần tính là
.
Tìm giá trị xác suất
Một tập gồm 10 chứng từ, trong đó có 2 chứng từ không hợp lệ. Một cán bộ kế toán rút ngẫu nhiên 1 chứng từ và tiếp đó rút ngẫu nhiên 1 chứng từ khác để kiểm tra. Tính xác suất để cả 2 chứng từ rút ra đều hợp lệ?
Gọi A là biến cố cả 2 chứng từ rút ra đều hợp lệ
B là biến cố trong 3 chứng từ rút ra, chỉ có chứng từ thứ 3 không hợp lệ.
Theo yêu cầu của đầu bài ta phải tính xác xác suất
Nếu gọi Ai là biến cố chứng từ rút ra lần thứ i là hợp lệ} (i = 1,3).
Khi đó ta có: và
Vì vậy các xác suất cần tìm là:
Tính P(A)
Cho hai biến cố
với
,
và
. Khi đó
bằng
Ta có: .
Theo công thức xác suất toàn phần:
.
Tính xác suất người được chọn mắc bệnh A
Tỉ lệ người dân đã tiêm vắc xin phòng bệnh
ở một địa phương là
. Trong số những người đã tiêm phòng, tỉ lệ mắc bệnh
là
; trong số những người chưa tiêm, tỉ lệ mắc bệnh
là
. Chọn ngẫu nhiên một người ở địa phương đó. Tính xác suất người được chọn mắc bệnh
.
Gọi là biến cố “Người dân được tiêm phòng bệnh
”
là biến cố “Người dân mắc bệnh
”.
Ta có .
Tỉ lệ mắc bệnh khi tiêm phòng là: .
Tỉ lệ mắc bệnh khi chưa tiêm phòng là .
Xác suất người này mắc bệnh là:
Tính P(A)
Cho hai biến cố
thỏa mãn
. Khi đó,
bằng
Ta có: .
Theo công thức xác suất toàn phần, ta có:
.
Chọn đáp án đúng
Trong học kỳ I năm học 2024 - 2025, sinh viên phải thi 4 học phần. Xác suất để sinh viên thi đạt một học phần trong mỗi lần thi đều là 0,8. Nếu thi không đạt học phần nào phải thi lại học phần đó. Tính xác suất để một sinh viên thi đạt cả 4 học phần trong đó không có học phần nào thi quá 2 lần.
Gọi là "đạt
học phần ở lần thi đầu".
Khi đó, tạo thành hệ đầy đủ và
Gọi là "đạt cả 4 học phần trong đó không có học phần nào thi quá 2 lần".
Áp dụng công thức xác suất toàn phần ta có:
Tính xác suất có điều kiện
Một nhóm học sinh có 30 học sinh, trong đó có 16 em học khá môn Toán, 25 em học khá môn Hóa học, 12 em học khá cả hai môn Toán và Hóa học. Chọn ngẫu nhiên một học sinh trong số đó. Tính xác suất để học sinh đó học khá môn Toán biết rằng học sinh đó học khá môn Hóa học?
Gọi A: “Học sinh đó học khá môn Toán”
Và B: “Học sinh đó học khá môn Hóa học”
Theo bài ra ta có:
Chọn đáp án đúng
Cho hai biến cố
và
, với
,
,
. Tính
.
Ta có:
Chọn đáp án đúng
Một lớp có 60 học sinh, trong đó 40 học sinh mặc áo có màu xanh, 10 học sinh mặc áo có cả xanh lẫn trắng. Chọn ngẫu nhiên 1 học sinh. Tính xác suất để học sinh đó áo có màu trắng với điều kiện áo em đó đã có màu xanh?
Minh họa bài toán
Gọi A là biến cố “học sinh được chọn mặc áo trắng”
Gọi B là biến cố “học sinh được chọn mặc áo xanh”
A.B là biến cố “học sinh được chọn mặc áo trắng lẫn xanh” Xác suất để học sinh đó áo có màu trắng với điều kiện áo em đó đã có màu xanh:
Tính xác suất theo yêu cầu
Một loại linh kiện do hai nhà máy số I và số II cùng sản xuất. Tỉ lệ phế phẩm của các nhà máy I và II lần lượt là
và
. Trong một lô linh kiện để lẫn lộn
sản phẩm của nhà máy số I và 120 sản phẩm của nhà máy số II. Một khách hàng lấy ngẫu nhiên một linh kiện từ lô hàng đó. Giả sử linh kiện được lấy ra là linh kiện phế phẩm. Xác suất linh kiện đó do nhà máy nào sản xuất là cao hơn?
Xét hai biến cố sau: : ‘‘Linh kiện lấy ra do nhà máy I sản xuất”,
: ‘‘Linh kiện lấy ra là phế phẩm”
Trong lô linh kiện có tổng cộng linh kiện nên
;
.
Vì tỉ lệ phế phẩm của các nhà máy I và II lần lượt là và
nên
Khi đó: .
Ta có sơ đồ cây:

Khi linh kiện lấy ra là phế phẩm thì xác suất linh kiện đó do nhà máy I sản xuất là và xác suất linh kiện đó do nhà máy II sản xuất là
.
Áp dụng công thức Bayes, ta có:
.
Suy ra .
Vậy xác suất linh kiện đó do nhà máy II sản xuất là cao hơn.
Tìm kết quả đúng
Cho hai biến cố
và
, với
. Tính
?
Ta có:
.
Chọn kết quả đúng
Có 2 xạ thủ loại I và 8 xạ thủ loại II, xác suất bắn trúng đích của các loại xạ thủ loại I là 0,9 và loại II là 0,7. Chọn ngẫu nhiên ra một xạ thủ và xạ thủ đó bắn một viên đạn. Tìm xác suất để viên đạn đó trúng đích.
Gọi A là biến cố "Viên đạn trúng đích".
là biến cố "Chọn xạ thủ loại I bắn".
là biến cố "Chọn xạ thủ loại II bắn".
Ta có tạo thành họ đầy đủ các biến cố.
Áp dụng công thức ta có:
Tính xác suất
Trong một trường học, tỉ lệ học sinh nữ là
. Tỉ lệ học sinh nữ và tỉ lệ học sinh nam tham gia lớp học bổ trợ kiến thức lần lượt là
và
. Gặp ngẫu nhiên một học sinh của trường. Biết rằng học sinh có tham gia lớp học bổ trợ kiến thức. Tính xác suất học sinh đó là nam?
Gọi lần lượt là các biến cố gặp được một học sinh nữ, một học sinh nam
Nên 1 2 A A, là hệ biến cố đầy đủ.
Gọi B “Học sinh đó tham gia lớp học bổ trợ kiến thức”
Ta có:
Áp dụng công thức xác suất toàn phần ta có:
Xác suất để học sinh đó là nam, biết rằng học sinh đó tham gia câu lạc bộ nghệ thuật, ta áp dụng công thức Bayes:
Tính xác suất lấy bút theo yêu cầu
Một hộp bút bi Thiên Long có 15 chiếc bút trong đó có 9 chiếc bút mới. Người ta lấy ngẫu nhiên 1 chiếc bút để sử dụng sau đó trả lại vào hộp. Lần thứ hai lấy ngẫu nhiên 2 chiếc bút, tính xác suất cả hai chiếc bút lấy ra đều là chiếc mới.
Gọi A ”Hai chiếc bút lấy ra đều là chiếc mới”; B0 ” Lấy ra một chiếc bút cũ” và B1 ”Lấy ra một chiếc bút mới”
Nên B0; B0 là hệ biến cố đầy đủ.
Từ 15 chiếc bút có 9 chiếc bút mới và 6 chiếc bút cũ
Ta có:
Áp dụng công thức xác suất toàn phần
.
Ghi đáp án vào ô trống
Lớp 12A có 25 học sinh nam và 15 học sinh nữ. Trong số đó có 16 bạn nam và 6 bạn nữ thích chơi thể thao. Chọn một bạn bất kì của lớp 12A. Tính xác suất để bạn đó thích chơi thể thao biết rằng bạn học sinh đó là nữ (làm tròn đến hàng phần chục).
Đáp án: 0,4
Lớp 12A có 25 học sinh nam và 15 học sinh nữ. Trong số đó có 16 bạn nam và 6 bạn nữ thích chơi thể thao. Chọn một bạn bất kì của lớp 12A. Tính xác suất để bạn đó thích chơi thể thao biết rằng bạn học sinh đó là nữ (làm tròn đến hàng phần chục).
Đáp án: 0,4
Xét 2 biến cố sau:
A: “Học sinh được chọn là nữ”
B: “Học sinh được chọn thích chơi thể thao”
Khi đó, xác suất để bạn đó thích chơi thể thao biết rằng bạn học sinh đó là nữ là xác suất có điều kiện .
Ta có
Áp dụng công thức ta có:
Tính xác suất có điều kiện
Cho hai biến cố
và
là hai biến cố độc lập, với
,
. Tính
.
Theo bài ra ta có:
và
là hai biến cố độc lập nên:
Tính P(A)
Cho hai biến cố
và
với
. Tính
?
Ta có:
Áp dụng công thức xác suất toàn phần ta có:
Tính xác suất
Nếu hai biến cố
thỏa mãn
thì
bằng bao nhiêu?
Theo công thức Bayes ta có:
Tính xác suất
Cho hai biến cố
với
. Tính
?
Ta có:
Chọn đáp án đúng
Cho hai biến cố
và
, với
. Tính
?
Ta có: .
Tính xác suất P
Giả sử tỉ lệ người dân của tỉnh T nghiện thuốc lá là
; tỉ lệ người bị bệnh phổi trong số người nghiện thuốc lá là
, trong số người không nghiện thuốc lá là
. Tính xác suất mà người đó là nghiện thuốc lá khi biết bị bệnh phổi?
Gọi A là biến cố “người nghiện thuốc lá”, suy ra A là biến cố “người không nghiện thuốc lá”
Gọi B là biến cố “người bị bệnh phổi”
Để người mà ta gặp bị bệnh phổi thì người đó nghiện thuốc lá hoặc không nghiện thuốc lá.
Ta cần tính
Ta có:
Áp dụng công thức xác suất toàn phần ta có:
Xác suất mà người đó là nghiện thuốc lá khi biết bị bệnh phổi là
Theo công thức Bayes, ta có:
.
Như vậy trong số người bị bệnh phổi của tỉnh T có khoảng số người nghiện thuốc lá.
Tính P(A|B)
Cho
;
và
. Giá trị của
là
Vì nên
.
Theo công thức Bayes ta có:
.
Tính xác suất P
Cho hai biến cố
và
với
. Tính
?
Ta có:
Áp dụng công thức Bayes:
.
Tính xác suất của biến cố
Hai máy tự động sản xuất cùng một loại chi tiết, trong đó máy I sản xuất
máy II sản xuất
tổng sản lượng. Tỉ lệ phế phẩm của các máy lần lượt là
và
Chọn ngẫu nhiên 1 sản phẩm từ kho. Tính xác suất để chọn được phế phẩm do máy I sản xuất?
Gọi là biến cố “Sản phẩm được chọn do máy I sản xuất”
là biến cố “Sản phẩm được chọn do máy II sản xuất”
B là biến cố “Sản phẩm được chọn là phế phẩm”
Suy ra là biến cố “chọn được phế phẩm do máy I sản xuất”
Ta có ,
,
,
Theo công thức Bayes có:
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: