Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 6 Một số yếu tố xác suất

Mô tả thêm:

Trong chương trình Toán 12 Cánh Diều, Chương 6: Một số yếu tố xác suất là phần kiến thức quan trọng, thường xuyên xuất hiện trong các đề kiểm tra và đề thi. Đây là chuyên đề giúp học sinh rèn luyện khả năng tư duy xác suất, biết cách phân tích tình huống, xử lý dữ liệu và áp dụng công thức phù hợp. Bài viết này cung cấp đề kiểm tra 45 phút Toán 12 Chương 6 bám sát nội dung SGK, giúp học sinh hệ thống kiến thức, luyện tập kỹ năng giải toán và tự tin chuẩn bị cho các kỳ kiểm tra 1 tiết cũng như ôn tập thi tốt nghiệp.

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Chọn công thức đúng

    Cho hai biến cố AB là hai biến cố ngẫu nhiên màP(A) > 0,P(B) > 0, công thức Bayes là:

    Ta có: P\left( B|A \right) =
\frac{P(B).P\left( A|B \right)}{P(A)}.

  • Câu 2: Nhận biết

    Tính xác suất của biến cố

    Cho hai biến cố A,B sao cho P(A) = 0,3; P(B) = 0,6P(A|B) = 0,2. Tính P(B|A).

    Ta có P(B|A) = \frac{P(B).P(A|B)}{P(A)} =
\frac{0,6.0,2}{0,3} = \frac{2}{5}.

  • Câu 3: Thông hiểu

    Tìm xác suất có điều kiện

    Gieo đồng thời hai con xúc sắc cân đối. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc sắc là 7, biết rằng có ít nhất một con xúc sắc xuất hiện mặt 5 chấm.

    Gọi A là biến cố “Tổng số chấm xuất hiện trên hai con xúc sắc là 7” và B là biến cố “Có ít nhất một con xúc sắc xuất hiện mặt 5 chấm”.

    Ta có

    P(B) = 1 - P\left( \overline{B} \right) =
1 - \frac{25}{36} = \frac{11}{36};

    A \cap B = \left\{ (2;5),\ \ (5;2)
\right\} \Rightarrow P(A \cap B) = \frac{2}{36}.

    Suy ra P\left( A\left| B
\right.\  \right) = \frac{P(A \cap B)}{P(B)} =
\frac{2}{11}.

  • Câu 4: Nhận biết

    Tính xác suất

    Cho hai biến cố A;B với P(A + B) = \frac{3}{4}. Tính P\left( \overline{A}.\overline{B}
ight)?

    Ta có: P\left( \overline{A}.\overline{B}
ight) = P\left( \overline{A + B} ight) = 1 - P(A + B) =
\frac{1}{4}

  • Câu 5: Vận dụng

    Chọn đáp án đúng

    Theo thống kê ở các gia đình có hai con thì xác suất để con thứ nhất và con thứ hai là đều con trai là 0,27 và hai con đều là gái là 0,23, còn xác suất con thứ nhất và con thứ hai có một trai và một gái là đồng khả năng. Biết khi xét một gia đình được chọn ngẫu nhiên có con thứ nhất là con gái, tìm xác suất để con thứ hai là trai.

    Gọi A là 'con thứ nhất là con trai' và B là 'con thứ hai là con trai' thì theo đề bài ta có:

    P(AB) = 0,27, P(\bar{A}\bar{B}) = 0,23P(A\bar{B}) = P(\bar{A}B) = 0,25

    Ta cần tìm B \mid \bar{A}.

    Ta có

    P\left( B\mid\bar{A} ight) =
\frac{P\left( B\bar{A} ight)}{P\left( \bar{A} ight)} = \frac{P\left(
B\bar{A} ight)}{P\left( \bar{A}B ight) + P\left( \bar{A}\bar{B}
ight)}= \frac{0,25}{0,25 + 0,23} \simeq
0,5208

  • Câu 6: Thông hiểu

    Tính xác suất

    Cho hai biến cố AB\ P(A) =
0,2;\ P(B) = 0,6;P\left( A|B \right) = 0,3. Tính \ P\left( \overline{A}B \right).

    Theo công thức tính xác suất có điều kiện ta có:

    \ P\left( A|B \right) =
\frac{P(AB)}{P(B)}

    \Rightarrow
P(AB) = P\left( A|B \right).P(B) = 0,3.0,6 = 0,18.

    \ \overline{A}B\ AB là hai biến cố xung khắc và \ \overline{A}B \cup AB = B nên theo tính chất của xác suất, ta có:

    \ P\left( \overline{A}B \right) + P(AB)
= P(B)

    \Rightarrow P\left( \overline{A}B \right)
= P(B) - P(AB) = 0,6 - 0,18 = 0,42.

  • Câu 7: Nhận biết

    Xác định phần tử của biến cố

    Một hộp chứa 5 quả bóng gồm 2 quả màu đỏ (đánh số 1 và 2), 2 quả màu xanh (đánh số 3 và 4) và 1 quả màu vàng (đánh số 5). Lấy ngẫu nhiên hai quả bóng liên tiếp không hoàn lại.

    Xét các biến cố A: "Quả bóng lấy ra đầu tiên có màu đỏ"

    B: "Tổng số của hai quả bóng lấy ra là số lẻ"

    Xác định B|A là biến cố B khi biết A đã xảy ra?

    Khi A đã xảy ra, nghĩa là quả bóng đầu tiên lấy ra có màu đỏ (số 1 hoặc 2).

    Do đó, không gian mẫu mới là

    \Omega' = A = \left\{
(1;2),(1;3),(1;4),(1;5),(2;1),(2;3),(2;4),(2;5) ight\}

    Biến cố B khi biết A đã xảy ra là:

    B|A = A \cap B = \left\{
(1;2),(1;4),(2;1),(2;3),(2;5) ight\}

  • Câu 8: Nhận biết

    Chọn phát biểu đúng

    Cho hai biến cố A, B với 0 <
P(B) < 1. Phát biểu nào sau đây đúng?

    Theo công thức xác suất toàn phần, ta có:

    P(A) = P(B).P\left( A|B ight) + P\left(
\overline{B} ight).P\left( A|\overline{B} ight).

  • Câu 9: Vận dụng

    Ghi đáp án vào ô trống

    Một bệnh truyền nhiễm có xác suất lây bệnh là 0,8 nếu tiếp xúc với người bệnh mà không đeo khẩu trang; là 0,1 nếu tiếp xúc với người bệnh mà có đeo khẩu trang. Chị Mai có tiếp xúc với người bệnh hai lần, một lần đeo khẩu trang và một lần không đeo khẩu trang. Tính xác suất để chị Mai bị lây bệnh từ người bệnh truyền nhiễm đó. (Kết quả ghi dưới dạng số thập phân).

    Đáp án: 0,82

    Đáp án là:

    Một bệnh truyền nhiễm có xác suất lây bệnh là 0,8 nếu tiếp xúc với người bệnh mà không đeo khẩu trang; là 0,1 nếu tiếp xúc với người bệnh mà có đeo khẩu trang. Chị Mai có tiếp xúc với người bệnh hai lần, một lần đeo khẩu trang và một lần không đeo khẩu trang. Tính xác suất để chị Mai bị lây bệnh từ người bệnh truyền nhiễm đó. (Kết quả ghi dưới dạng số thập phân).

    Đáp án: 0,82

    Gọi A là biến cố: "Chị Hoa bị nhiễm bệnh khi tiếp xúc người bệnh mà không đeo khẩu trang" và B : "Chị Hoa bị nhiễm bệnh khi tiếp xúc với người bệnh dù có đeo khẩu trang”.

    Dễ thấy \overline{A},\overline{B} là hai biến cố độc lập.

    Xác suất để chị Hoa không nhiễm bệnh trong cả hai lần tiếp xúc với người bệnh là

    P(\overline{A}\overline{B}) =
P(\overline{A}) \cdot P(\overline{B}) = 0,2 \cdot 0,9 =
0,18.

    Gọi P là xác suất để chị Hoa bị lây bệnh khi tiếp xúc người bệnh, ta có:

    P = 1 - P(\overline{A}\overline{B}) = 1
- 0,18 = 0,82.

  • Câu 10: Vận dụng

    Chọn đáp án đúng

    Để kiểm tra tính chính xác của một xét nghiệm nhằm chẩn đoán bệnh X, người ta chọn một mẫu gồm 5282 người, trong đó có 54 người mắc bệnh X5228 người không mắc bệnh X để làm xét nghiệm. Trong số 54 người mắc bệnh X48 người cho kết quả dương tính. Trong số 5228 người không mắc bệnh có 1307 người cho kết quả dương tính. Chọn ngẫu nhiên một người trong mẫu. Tính xác suất để người đó mắc bệnh X nếu biết rằng người đó có xét nghiệm âm tính.

    Ta có bảng sau đây

    A table with numbers and textDescription automatically generated

    Gọi A là biến cố “Người đó mắc bệnh X”, B là biến cố “Người đó có xét nghiệm âm tính”.

    Khi đó A \cap B là biến cố “Người đó vừa mắc bệnh X, vừa có xét nghiệm âm tính”.

    Từ bảng trên, ta có P(A \cap B) =
\frac{6}{5282}; P(B) =
\frac{3927}{5282}.

    Vậy xác suất cần tính là P\left( A\left|
B \right.\  \right) = \frac{P(A \cap B)}{P(B)} =
\frac{6}{3927}.

  • Câu 11: Vận dụng

    Ghi đáp án vào ô trống

    Trong một đợt kiểm tra sức khoẻ, có một loại bệnh X mà tỉ lệ người mắc bệnh là 0,2\% và một loại xét nghiệm Y mà ai mắc bệnh X khi xét nghiệm Y cũng có phản ứng dương tính. Tuy nhiên, có 6\% những người không bị bệnh X lại có phản ứng dương tính với xét nghiệm Y. Chọn ngẫu nhiên 1 người trong đợt kiểm tra sức khoẻ đó. Giả uử người đó có phản ứng dương tính với xét nghiệm Y. Xác suất người đó bị mắc bệnh X là bao nhiêu (làm tròn kết quả đến hàng phần trăm)?

    Đáp án : 0,03

    Đáp án là:

    Trong một đợt kiểm tra sức khoẻ, có một loại bệnh X mà tỉ lệ người mắc bệnh là 0,2\% và một loại xét nghiệm Y mà ai mắc bệnh X khi xét nghiệm Y cũng có phản ứng dương tính. Tuy nhiên, có 6\% những người không bị bệnh X lại có phản ứng dương tính với xét nghiệm Y. Chọn ngẫu nhiên 1 người trong đợt kiểm tra sức khoẻ đó. Giả uử người đó có phản ứng dương tính với xét nghiệm Y. Xác suất người đó bị mắc bệnh X là bao nhiêu (làm tròn kết quả đến hàng phần trăm)?

    Đáp án : 0,03

    Xét các biến cố:

    A : "Người được chọn mắc bệnh X ";

    B : "Người được chọn có phản ứng dương tính với xét nghiệm Y".

    Theo giả thiết ta có:

    P(A) = 0,002;P\left( \overline{A} ight)
= 1 - 0,002 = 0,998;

    P(B \mid A) = 1;P\left( B \mid
\overline{A} ight) = 0,06

    Theo công thức Bayes, ta có:

    P(A \mid B) = \frac{P(A) \cdot P(B \mid
A)}{P(A) \cdot P(B \mid A) + P\left( \overline{A} ight).P\left( B \mid
\overline{A} ight)}

    = \frac{0,002 \cdot 1}{0,002 \cdot 1 +
0,998 \cdot 0,06} \approx 0,03

    Vậy nếu người được chọn có phản ứng dương tính với xét nghiệm Y thì xác suất bị mắc bệnh X của người đó là khoảng 0,03.

  • Câu 12: Thông hiểu

    Tính xác suất

    Trong một trường học, tỉ lệ học sinh nữ là 53\%. Tỉ lệ học sinh nữ và tỉ lệ học sinh nam tham gia câu lạc bộ M lần lượt là 21\%17\%. Chọn ngẫu nhiên 1 học sinh của trường. Tính xác suất học sinh đó có tham gia câu lạc bộ M.

    Gọi A: “Học sinh được chọn là nữ” ⇒\overline{A} : “Học sinh được chọn là nam”

    B: “học sinh được chọn có tham gia câu lạc bộ M”.

    Từ giả thiết ta có:

    \left\{ \begin{matrix}
P(A) = 0,53 \Rightarrow P\left( \overline{A} ight) = 1 - 0,53 = 0,47
\\
P\left( B|A ight) = 0,21 \\
P\left( B|\overline{A} ight) = 0,17 \\
\end{matrix} ight.

    Theo công thức xác suất toàn phần, ta có xác suất học sinh được chọn có tham gia câu lạc bộ M là:

    P(B) = P(A).P\left( B|A ight) +
P\left( \overline{A} ight).P\left( B|\overline{A} ight)

    \Rightarrow P(B) = 0,53.0,21 + 0,47.0,17
= \frac{239}{1250}.

  • Câu 13: Thông hiểu

    Xét tính đúng sai của các kết luận

    Một lớp học có 40 học sinh, trong đó có 15 học sinh nam và 25 học sinh nữ. Khi tổng kết cuối năm, lớp có 20 học sinh giỏi, trong đó có 8 học sinh nam và 12 học sinh nữ. Chọn ngẫu nhiên 1 học sinh trong lớp.

    a) Xác suất học sinh được chọn là học sinh giỏi bằng 0,5.Đúng||Sai

    b) Xác suất học sinh được chọn là học sinh nữ bằng 0,6.Sai||Đúng

    c) Xác suất học sinh được chọn vừa là học sinh giỏi và là học sinh nữ bằng 0,625.Sai||Đúng

    d) Biết rằng học sinh được chọn là nữ, xác suất học sinh đó là học sinh giỏi bằng 0,48.Đúng||Sai

    Đáp án là:

    Một lớp học có 40 học sinh, trong đó có 15 học sinh nam và 25 học sinh nữ. Khi tổng kết cuối năm, lớp có 20 học sinh giỏi, trong đó có 8 học sinh nam và 12 học sinh nữ. Chọn ngẫu nhiên 1 học sinh trong lớp.

    a) Xác suất học sinh được chọn là học sinh giỏi bằng 0,5.Đúng||Sai

    b) Xác suất học sinh được chọn là học sinh nữ bằng 0,6.Sai||Đúng

    c) Xác suất học sinh được chọn vừa là học sinh giỏi và là học sinh nữ bằng 0,625.Sai||Đúng

    d) Biết rằng học sinh được chọn là nữ, xác suất học sinh đó là học sinh giỏi bằng 0,48.Đúng||Sai

    Xét hai biến số sau:

    A: “Học sinh được chọn là học sinh giỏi”.

    B: “ Học sinh được chọn là học sinh nữ”.

    a) Đ Xác suất học sinh được chọn là học sinh giỏi: P(A) = \frac{20}{40} = 0,5.

    b) s Xác suất học sinh được chọn là học sinh nữ: P(B) = \frac{25}{40} = 0,625 \neq
0,6.

    c) s Xác suất học sinh được chọn vừa là học sinh giỏi và là học sinh nữ:

    P(AB) = \frac{12}{40} = 0,3 \neq
0,625.

    d) Đ Biết rằng học sinh được chọn là nữ, xác suất học sinh đó là học sinh nữ:

    P\left( A|B \right) = \frac{P(AB)}{P(B)}
= \frac{n(A \cap B)}{n(B)} = \frac{12}{25} = 0,48.

  • Câu 14: Thông hiểu

    Tính xác suất để chọn được phế phẩm

    Hai máy tự động sản xuất cùng một loại chi tiết, trong đó máy I sản xuất 35\%, máy II sản xuất 65\% tổng sản lượng. Tỉ lệ phế phẩm của các máy lần lượt là 0,3\% 0,7\%. Chọn ngẫu nhiên 1 sản phẩm từ kho. Tính xác suất để chọn được phế phẩm?

    Gọi A_{1}là biến cố “Sản phẩm được chọn do máy I sản xuất”

    A_{2} là biến cố “Sản phẩm được chọn do máy II sản xuất”

    B là biến cố “Sản phẩm được chọn là phế phẩm”

    Ta có:

    P\left( A_{1} \right) =
0,35, P\left( A_{2} \right) =
0,65, P\left( B|A_{1} \right) =
0,003, P\left( B|A_{2} \right) =
0,007

    P(B) = P\left( B|A_{1} \right).P\left(
A_{1} \right) + P\left( B|A_{2} \right).P\left( A_{2} \right) =
0,0056

  • Câu 15: Thông hiểu

    Xác định tính đúng sai của từng phương án

    Cho hai biến cố AB, với P\left( \overline{A} ight) = 0,4;P(B) = 0,8;P(A
\cap B) = 0,4.

    a) P(A) = 0,6;P\left( \overline{B}
ight) = 0,2 Đúng||Sai

    b) P\left( A|B ight) =
\frac{1}{2} Đúng||Sai

    c) P\left( \overline{B}|A ight) =
\frac{2}{3} Sai|| Đúng

    d) P\left( \overline{A} \cap B ight) =
\frac{3}{5} Sai|| Đúng

    Đáp án là:

    Cho hai biến cố AB, với P\left( \overline{A} ight) = 0,4;P(B) = 0,8;P(A
\cap B) = 0,4.

    a) P(A) = 0,6;P\left( \overline{B}
ight) = 0,2 Đúng||Sai

    b) P\left( A|B ight) =
\frac{1}{2} Đúng||Sai

    c) P\left( \overline{B}|A ight) =
\frac{2}{3} Sai|| Đúng

    d) P\left( \overline{A} \cap B ight) =
\frac{3}{5} Sai|| Đúng

    a) Ta có: \left\{ \begin{matrix}
P\left( \overline{A} ight) = 0,4 \Rightarrow P(A) = 1 - 0,4 = 0,6 \\
P(B) = 0,8 \Rightarrow P\left( \overline{B} ight) = 1 - 0,8 = 0,2 \\
P(A \cap B) = 0,4 \\
\end{matrix} ight.

    b) P\left( A|B ight) = \frac{P(A \cap
B)}{P(B)} = \frac{0,4}{0,8} = \frac{1}{2}

    c) P\left( \overline{B}|A ight) = 1 -
P\left( B|A ight) = 1 - \frac{P(A \cap B)}{P(A)} = 1 - \frac{0,4}{0,6}
= \frac{1}{3}

    d) P\left( \overline{A} \cap B ight) +
P(A \cap B) = P(B)

    \Rightarrow P\left( \overline{A} \cap B
ight) = P(B) - P(A \cap B) = 0,8 - 0,4 = 0,4

  • Câu 16: Vận dụng

    Ghi đáp án đúng vào chỗ trống

    Trong thùng có các gói kẹo cùng loại khác vị, trong đó có 15 gói kẹo vị cam, còn lại là kẹo vị chuối. Hà lẫy ngẫu nhiên 1 gói kẹo trong thùng, không trả lại. Sau đó Hà lại lấy ngẫu nhiên thêm 1 gói kẹo khác từ thùng. Biết rằng xác suất Hà lấy được cả hai gói kẹo vị cam là \frac{1}{6}. Biết rằng mỗi gói kẹo có 28 chiếc kẹo. Hỏi tổng có bao nhiêu chiếc kẹo?

    Đáp án: 1008

    Đáp án là:

    Trong thùng có các gói kẹo cùng loại khác vị, trong đó có 15 gói kẹo vị cam, còn lại là kẹo vị chuối. Hà lẫy ngẫu nhiên 1 gói kẹo trong thùng, không trả lại. Sau đó Hà lại lấy ngẫu nhiên thêm 1 gói kẹo khác từ thùng. Biết rằng xác suất Hà lấy được cả hai gói kẹo vị cam là \frac{1}{6}. Biết rằng mỗi gói kẹo có 28 chiếc kẹo. Hỏi tổng có bao nhiêu chiếc kẹo?

    Đáp án: 1008

    Gọi A là biến cố "Hà lấy được gói kẹo vị cam ở lần thứ nhấtt".

    Gọi Blà biến cố "Hà lấy được gói kẹo vị cam ở lần thứ hai".

    Ta có: xác suất Hà lấy được cả hai gói kẹo vị cam là \frac{1}{6}, suy ra P(AB) = \frac{1}{3}.

    Gọi n là số gói kẹo ban đầu trong thùng \left( n \in \mathbb{N}^{*},\ n
\geq 1 ight).

    P(A) = \frac{15}{n}\ ;\ P\left( B|A
ight) = \frac{14}{n - 1}.

    Theo công thức nhân xác suất ta có:

    P(AB) = P(A).\ P\left( B|A ight) =
\frac{15}{n}.\frac{14}{n - 1} = \frac{1}{6}

    \Leftrightarrow n^{2} - n - 6.14.15 =
0

    Ta được n = - 35 (loại) hoặc n = 36 (nhận).

    Vậy tổng số chiếc kẹo có là 36.28 =
1008 chiếc.

  • Câu 17: Vận dụng cao

    Tính xác suất có điều kiện

    Trong một đội tuyển có ba vận động viên A,\ \ BC thi đấu với xác suất chiến thắng lần lượt là 0,6;\ \ 0,70,8. Giả sử mỗi người thi đấu một trận độc lập với nhau. Tính xác suất để A thua trong trường hợp đội tuyển thắng hai trận.

    Gọi A là biến cố “vận động viên A chiến thắng”, ta có P(A) = 0,6;

    B là biến cố “vận động viên B chiến thắng” thì P(B) = 0,7;

    C là biến cố “vận động viên C chiến thắng” thì P(C) = 0,8.

    Gọi D là biến cố “đội tuyển thắng hai trận”. Ta có

    P(D) = P\left( AB\overline{C} \right) +
P\left( A\overline{B}C \right) + P\left( \overline{A}BC \right) =
0,452.

    Vậy xác suất cần tính là

    P\left(\overline{A}\left| D \right.\  \right) = \frac{P\left( \overline{A}D\right)}{P(D)} = \frac{P\left( \overline{A}BC \right)}{P(D)}=\frac{0,4.0,7.0,8}{0,452} = \frac{56}{113}.

  • Câu 18: Vận dụng

    Tìm giá trị xác suất

    Một tập gồm 10 chứng từ, trong đó có 2 chứng từ không hợp lệ. Một cán bộ kế toán rút ngẫu nhiên 1 chứng từ và tiếp đó rút ngẫu nhiên 1 chứng từ khác để kiểm tra. Tính xác suất để cả 2 chứng từ rút ra đều hợp lệ?

    Gọi A là biến cố cả 2 chứng từ rút ra đều hợp lệ

    B là biến cố trong 3 chứng từ rút ra, chỉ có chứng từ thứ 3 không hợp lệ.

    Theo yêu cầu của đầu bài ta phải tính xác xác suất P(A), P(B).

    Nếu gọi Ai là biến cố chứng từ rút ra lần thứ i là hợp lệ} (i = 1,3).

    Khi đó ta có: A = A_1 . A_2B = A_1 . A_2 . A_3

    Vì vậy các xác suất cần tìm là:

    P(A) = P\left( A_{1}.\ A_{2} ight) =
P\left( A_{1} ight).P\left( A_{2}|A_{1} ight) =
\frac{8}{10}.\frac{7}{9} = \frac{28}{45}

    P(B) = P\left( A_{1}.\
A_{2}.\overline{A_{3}} ight)

    = P\left( A_{1} ight).P\left(
A_{2}|A_{1} ight).P\left( \overline{A_{3}}|A_{1}.\ A_{2}
ight)

    = \frac{8}{10}.\frac{7}{9}.\frac{2}{8} =
\frac{7}{45}

  • Câu 19: Nhận biết

    Tính P(A)

    Cho hai biến cố A,B với P(B) = 0,6, P(A|B) = 0,7P(A|\overline{B}) = 0,4. Khi đó P(A) bằng

    Ta có: P(\overline{B}) = 1 - P(B) = 1 -
0,6 = 0,4.

    Theo công thức xác suất toàn phần:

    P(A) = P(B).P\left( A \middle| B \right)
+ P\left( \overline{B} \right).P\left( A \middle| \overline{B}
\right)

    = 0,6.0,7 + 0,4.0,4 = 0,58.

  • Câu 20: Vận dụng

    Tính xác suất người được chọn mắc bệnh A

    Tỉ lệ người dân đã tiêm vắc xin phòng bệnh A ở một địa phương là 65\%. Trong số những người đã tiêm phòng, tỉ lệ mắc bệnh A5\%; trong số những người chưa tiêm, tỉ lệ mắc bệnh A17\%. Chọn ngẫu nhiên một người ở địa phương đó. Tính xác suất người được chọn mắc bệnh A.

    Gọi X là biến cố “Người dân được tiêm phòng bệnh A

    Y là biến cố “Người dân mắc bệnh A”.

    Ta có P(X) = 0,65 \Rightarrow P\left( \overline{X}
\right) = 0,35.

    Tỉ lệ mắc bệnh khi tiêm phòng là: P\left(
Y|X \right) = 0,05.

    Tỉ lệ mắc bệnh khi chưa tiêm phòng là P\left( Y|\overline{X} \right) =
0,17.

    Xác suất người này mắc bệnh A là:

    P(Y) = P(X).P\left( Y|X \right) +
P\left( \overline{X} \right).P\left( Y|\overline{X} \right)

    = 0,65.0,05 + 0,35.0,17 =
0,092

  • Câu 21: Nhận biết

    Tính P(A)

    Cho hai biến cố A,\ B thỏa mãn P\left( \overline{B} \right) = 0,2;\ P\left(
A|B \right) = 0,5;\ P\left( \left. \ A \right|\overline{B} \right) =
0,3. Khi đó, P(A) bằng

    Ta có: P(B) = 1 - P\left( \overline{B}
\right) = 0,8.

    Theo công thức xác suất toàn phần, ta có:

    P(A) = P(B).P\left( A|B \right) +
P\left( \overline{B} \right).P\left( A|\overline{B} \right)

    = 0,8.0,5 + 0,2.0,3 = 0,46.

  • Câu 22: Vận dụng cao

    Chọn đáp án đúng

    Trong học kỳ I năm học 2024 - 2025, sinh viên phải thi 4 học phần. Xác suất để sinh viên thi đạt một học phần trong mỗi lần thi đều là 0,8. Nếu thi không đạt học phần nào phải thi lại học phần đó. Tính xác suất để một sinh viên thi đạt cả 4 học phần trong đó không có học phần nào thi quá 2 lần.

    Gọi A_{i} là "đạt i học phần ở lần thi đầu".

    Khi đó, A_{0},A_{1},A_{2},A_{3},A_{4} tạo thành hệ đầy đủ và P\left( A_{i} ight) =
C_{4}^{i}.0,8^{i}.0,2^{4 - i}

    Gọi A là "đạt cả 4 học phần trong đó không có học phần nào thi quá 2 lần".

    Áp dụng công thức xác suất toàn phần ta có:

    P(A) = \sum_{i = 0}^{4}P\left( A_{i}
ight)P\left( A \mid A_{i} ight)

    = C_{4}^{0}.0,8^{0}.0,2^{4}.\left(
0,8^{4} ight) + C_{4}^{2}.0,8^{1}.0,2^{3}.\left( 0,8^{3} ight) +
C_{4}^{2}.0,8^{2}.0,2^{2}.\left( 0,8^{2} ight)

    + C_{4}^{3}.0,8^{3}.0,2^{1}.(0,8) +
C_{4}^{4}.0,8^{4}.0,2^{0}.\left( 0,8^{0} ight)

    \approx 0,8493 = 84,93\%

  • Câu 23: Thông hiểu

    Tính xác suất có điều kiện

    Một nhóm học sinh có 30 học sinh, trong đó có 16 em học khá môn Toán, 25 em học khá môn Hóa học, 12 em học khá cả hai môn Toán và Hóa học. Chọn ngẫu nhiên một học sinh trong số đó. Tính xác suất để học sinh đó học khá môn Toán biết rằng học sinh đó học khá môn Hóa học?

    Gọi A: “Học sinh đó học khá môn Toán”

    Và B: “Học sinh đó học khá môn Hóa học”

    Theo bài ra ta có:

    P(A) = \frac{16}{30};P(B) =
\frac{25}{30};P(AB) = \frac{12}{30}

    \Rightarrow P\left( A|B ight) =
\frac{P(AB)}{P(B)} = \frac{12}{25} = 0,48

  • Câu 24: Thông hiểu

    Chọn đáp án đúng

    Cho hai biến cố AB, với P(A) =
0,8, P(B) = 0,65, P\left( A \cap \overline{B} \right) =
0,55. Tính P(A \cap
B).

    Ta có: P\left( A \cap \overline{B}
\right) + P(A \cap B) = P(A)

    \Rightarrow P(A \cap B) = P(A) - P\left(
A \cap \overline{B} \right) = 0,8 - 0,55 = 0,25

  • Câu 25: Thông hiểu

    Chọn đáp án đúng

    Một lớp có 60 học sinh, trong đó 40 học sinh mặc áo có màu xanh, 10 học sinh mặc áo có cả xanh lẫn trắng. Chọn ngẫu nhiên 1 học sinh. Tính xác suất để học sinh đó áo có màu trắng với điều kiện áo em đó đã có màu xanh?

    Minh họa bài toán

    Gọi A là biến cố “học sinh được chọn mặc áo trắng”

    Gọi B là biến cố “học sinh được chọn mặc áo xanh”

    A.B là biến cố “học sinh được chọn mặc áo trắng lẫn xanh” Xác suất để học sinh đó áo có màu trắng với điều kiện áo em đó đã có màu xanh:

    P\left( {A|B} ight) = \dfrac{{P\left( {AB} ight)}}{{P\left( B ight)}} = \dfrac{{\dfrac{{10}}{{60}}}}{{\dfrac{{40}}{{60}}}} = 0,25 = 25\%

  • Câu 26: Vận dụng cao

    Tính xác suất theo yêu cầu

    Một loại linh kiện do hai nhà máy số I và số II cùng sản xuất. Tỉ lệ phế phẩm của các nhà máy I và II lần lượt là 4\%3\%. Trong một lô linh kiện để lẫn lộn 80 sản phẩm của nhà máy số I và 120 sản phẩm của nhà máy số II. Một khách hàng lấy ngẫu nhiên một linh kiện từ lô hàng đó. Giả sử linh kiện được lấy ra là linh kiện phế phẩm. Xác suất linh kiện đó do nhà máy nào sản xuất là cao hơn?

    Xét hai biến cố sau: A: ‘‘Linh kiện lấy ra do nhà máy I sản xuất”,

    B: ‘‘Linh kiện lấy ra là phế phẩm”

    Trong lô linh kiện có tổng cộng 80 + 120
= 200 linh kiện nên P(A) =
\frac{80}{200} = 0,4;P\left(
\overline{A} \right) = 0,6.

    Vì tỉ lệ phế phẩm của các nhà máy I và II lần lượt là 4\%3\% nên P\left( B|A \right) = 4\% = 0,04

    Khi đó: P\left( B|\overline{A} \right) =
3\% = 0,03.

    Ta có sơ đồ cây:

    A diagram of a triangle with Great Pyramid of Giza in the backgroundDescription automatically generated

    Khi linh kiện lấy ra là phế phẩm thì xác suất linh kiện đó do nhà máy I sản xuất là P\left( A|B \right) và xác suất linh kiện đó do nhà máy II sản xuất là P\left( \overline{A}|B \right).

    Áp dụng công thức Bayes, ta có:

    P\left( A|B \right) = \frac{P(A).P\left(B|A \right)}{P(A).P\left( B|A \right) + P\left( \overline{A}\right).P\left( B|\overline{A} \right)}= \frac{0,4.0,04}{0,4.0,04 +0,6.0,03} \approx 47\%.

    Suy ra P\left( \overline{A}|B \right) = 1
- P\left( A|B \right) \approx 53\%.

    Vậy xác suất linh kiện đó do nhà máy II sản xuất là cao hơn.

  • Câu 27: Nhận biết

    Tìm kết quả đúng

    Cho hai biến cố AB, với P(A) =
0,8;P(B) = 0,65;P\left( A \cap \overline{B} ight) = 0,55. Tính P\left( \overline{A} \cap B
ight)?

    Ta có:

    P\left( \overline{A} \cap B ight) +
P(A \cap B) = P(B)

    \Rightarrow P\left( \overline{A} \cap B
ight) = P(B) - P(A \cap B) = 0,65 - 0,25 = 0,4.

  • Câu 28: Thông hiểu

    Chọn kết quả đúng

    Có 2 xạ thủ loại I và 8 xạ thủ loại II, xác suất bắn trúng đích của các loại xạ thủ loại I là 0,9 và loại II là 0,7. Chọn ngẫu nhiên ra một xạ thủ và xạ thủ đó bắn một viên đạn. Tìm xác suất để viên đạn đó trúng đích.

    Gọi A là biến cố "Viên đạn trúng đích".

    B_{1} là biến cố "Chọn xạ thủ loại I bắn".

    B_{2} là biến cố "Chọn xạ thủ loại II bắn".

    P\left( {B}_{2} ight) =\frac{8}{10} = 0,8,P\left( A \mid B_{2} ight) =0,7

    P\left( {B}_{1} ight) =\frac{2}{10} = 0,2,P\left( A \mid B_{1} ight) =0,9

    Ta có B_{1},{B}_{2} tạo thành họ đầy đủ các biến cố.

    Áp dụng công thức ta có:

    P\left( \text{ }A ight) = P\left({\text{ }B}_{1} ight)P\left( \text{ }A \mid B_{1} ight) + P\left({\text{ }B}_{2} ight)P\left( \text{ }A \mid B_{2}ight)

    = 0,2 \cdot 0,9 + 0,8 \cdot 0,7 =
0,74

  • Câu 29: Thông hiểu

    Tính xác suất

    Trong một trường học, tỉ lệ học sinh nữ là 52\%. Tỉ lệ học sinh nữ và tỉ lệ học sinh nam tham gia lớp học bổ trợ kiến thức lần lượt là 18\%15\%. Gặp ngẫu nhiên một học sinh của trường. Biết rằng học sinh có tham gia lớp học bổ trợ kiến thức. Tính xác suất học sinh đó là nam?

    Gọi A_{1};A_{2} lần lượt là các biến cố gặp được một học sinh nữ, một học sinh nam

    Nên 1 2 A A, là hệ biến cố đầy đủ.

    Gọi B “Học sinh đó tham gia lớp học bổ trợ kiến thức”

    Ta có: \left\{ \begin{matrix}
P\left( A_{1} ight) = 52\% = 0,52 \\
P\left( A_{2} ight) = 1 - 0,52 = 0,48 \\
P\left( B|A_{1} ight) = 18\% = 0,18 \\
P\left( B|A_{2} ight) = 15\% = 0,15 \\
\end{matrix} ight.

    Áp dụng công thức xác suất toàn phần ta có:

    P(B) = P\left( B|A_{1} ight).P\left(
A_{1} ight) + P\left( B|A_{2} ight).P\left( A_{2}
ight)

    \Rightarrow P(B) = 0,18.0,52 + 0,15.0,48
= \frac{207}{1250} = 0,1656

    Xác suất để học sinh đó là nam, biết rằng học sinh đó tham gia câu lạc bộ nghệ thuật, ta áp dụng công thức Bayes:

    P\left( A_{2}|B ight) = \frac{P\left(
B|A_{2} ight).P\left( A_{2} ight)}{P(B)} = \frac{0,15.0,48}{0,1656}
= \frac{10}{23}

  • Câu 30: Thông hiểu

    Tính xác suất lấy bút theo yêu cầu

    Một hộp bút bi Thiên Long có 15 chiếc bút trong đó có 9 chiếc bút mới. Người ta lấy ngẫu nhiên 1 chiếc bút để sử dụng sau đó trả lại vào hộp. Lần thứ hai lấy ngẫu nhiên 2 chiếc bút, tính xác suất cả hai chiếc bút lấy ra đều là chiếc mới.

    Gọi A ”Hai chiếc bút lấy ra đều là chiếc mới”; B0 ” Lấy ra một chiếc bút cũ” và B1 ”Lấy ra một chiếc bút mới”

    Nên B0; B0 là hệ biến cố đầy đủ.

    Từ 15 chiếc bút có 9 chiếc bút mới và 6 chiếc bút cũ

    Ta có:

    P\left( B_{0} ight) =
\frac{C_{6}^{1}}{C_{15}^{1}} = \frac{2}{5};P\left( B_{1} ight) =
\frac{C_{9}^{1}}{C_{15}^{1}} = \frac{3}{5}

    P\left( A|B_{0} ight) =
\frac{C_{9}^{2}}{C_{15}^{2}} = \frac{12}{35};P\left( A|B_{1} ight) =
\frac{C_{8}^{2}}{C_{15}^{2}} = \frac{4}{15}

    Áp dụng công thức xác suất toàn phần

    P(A) = P\left( A|B_{0} ight).P\left(
B_{0} ight) + P\left( A|B_{1} ight)P\left( B_{1}
ight)

    \Rightarrow P(A) =
\frac{12}{35}.\frac{2}{5} + \frac{4}{15}.\frac{3}{5} =
\frac{52}{175}.

  • Câu 31: Thông hiểu

    Ghi đáp án vào ô trống

    Lớp 12A có 25 học sinh nam và 15 học sinh nữ. Trong số đó có 16 bạn nam và 6 bạn nữ thích chơi thể thao. Chọn một bạn bất kì của lớp 12A. Tính xác suất để bạn đó thích chơi thể thao biết rằng bạn học sinh đó là nữ (làm tròn đến hàng phần chục).

    Đáp án: 0,4

    Đáp án là:

    Lớp 12A có 25 học sinh nam và 15 học sinh nữ. Trong số đó có 16 bạn nam và 6 bạn nữ thích chơi thể thao. Chọn một bạn bất kì của lớp 12A. Tính xác suất để bạn đó thích chơi thể thao biết rằng bạn học sinh đó là nữ (làm tròn đến hàng phần chục).

    Đáp án: 0,4

    Xét 2 biến cố sau:

    A: “Học sinh được chọn là nữ”

    B: “Học sinh được chọn thích chơi thể thao”

    Khi đó, xác suất để bạn đó thích chơi thể thao biết rằng bạn học sinh đó là nữ là xác suất có điều kiện P(B|A).

    Ta có n(\Omega) = 40;n(A) = 15;n(B) = 16
+ 6 = 22

    Áp dụng công thức ta có: P(B|A) =
\dfrac{P(AB)}{P(A)} = \dfrac{\dfrac{6}{40}}{\dfrac{15}{40}} = \dfrac{2}{5} =
0,4

  • Câu 32: Nhận biết

    Tính xác suất có điều kiện

    Cho hai biến cố AB là hai biến cố độc lập, với P(A) = 0,2024, P(B) = 0,2025. Tính P\left( A|B \right).

    Theo bài ra ta có:

    AB là hai biến cố độc lập nên: P\left( A|B \right) = P(A) = 0,2024

  • Câu 33: Nhận biết

    Tính P(A)

    Cho hai biến cố AB với P(B) =
0,8;P\left( A|B ight) = 0,7,P\left( A|\overline{B} ight) =
0,45. Tính P(A)?

    Ta có:

    P\left( \overline{B} ight) = 1 - P(B)
= 1 - 0,8 = 0,2

    Áp dụng công thức xác suất toàn phần ta có:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    \Rightarrow P(A) = 0,8.0,7 + 0,2.0,45 =
0,65

  • Câu 34: Nhận biết

    Tính xác suất

    Nếu hai biến cố A;B thỏa mãn P(A) = 0,4;P(B) = 0,3;P\left( A|B ight) =
0,25 thì P\left( B|A
ight) bằng bao nhiêu?

    Theo công thức Bayes ta có:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(A)}

    \Rightarrow P\left( B|A ight) =
\frac{0,3.0,25}{0,4} = \frac{3}{16}

  • Câu 35: Nhận biết

    Tính xác suất

    Cho hai biến cố A;B với P(A) = \frac{1}{3};P(B) = \frac{1}{2};P(A + B) =
\frac{3}{4}. Tính P\left(
\overline{A} + \overline{B} ight)?

    Ta có:

    P(A.B) = P(A) + P(B) - P(A + B) =
\frac{1}{12}

    P\left( \overline{A} + \overline{B}
ight) = P\left( \overline{A}\overline{B} ight) = 1 - P(AB) =
\frac{11}{12}

  • Câu 36: Nhận biết

    Chọn đáp án đúng

    Cho hai biến cố AB, với P(A) =
0,6;P(B) = 0,7;P(A \cap B) = 0,3. Tính P\left( A|B ight)?

    Ta có: P\left( A|B ight) = \frac{P(A
\cap B)}{P(B)} = \frac{0,3}{0,7} = \frac{3}{7}.

  • Câu 37: Thông hiểu

    Tính xác suất P

    Giả sử tỉ lệ người dân của tỉnh T nghiện thuốc lá là 20\%; tỉ lệ người bị bệnh phổi trong số người nghiện thuốc lá là 70\%, trong số người không nghiện thuốc lá là 15\%. Tính xác suất mà người đó là nghiện thuốc lá khi biết bị bệnh phổi?

    Gọi A là biến cố “người nghiện thuốc lá”, suy ra A là biến cố “người không nghiện thuốc lá”

    Gọi B là biến cố “người bị bệnh phổi”

    Để người mà ta gặp bị bệnh phổi thì người đó nghiện thuốc lá hoặc không nghiện thuốc lá.

    Ta cần tính P(B)

    Ta có: \left\{ \begin{matrix}
P(A) = 0,2 \Rightarrow P\left( \overline{A} ight) = 1 - P(A) = 0,8 \\
P\left( B|A ight) = 0,7 \\
P\left( B|\overline{A} ight) = 0,15 \\
\end{matrix} ight.

    Áp dụng công thức xác suất toàn phần ta có:

    P(B) = P(A).P\left( B|A ight) +
P\left( \overline{A} ight).P\left( B|\overline{A} ight)

    \Rightarrow P(B) = 0,2..0,7 + 0,8.0,15 =
0,26

    Xác suất mà người đó là nghiện thuốc lá khi biết bị bệnh phổi là P\left( A|B ight)

    Theo công thức Bayes, ta có:

    P\left( A|B ight) = \frac{P(A).)P\left(
B|A ight)}{P(B)} = \frac{0,2.0,7}{0,26} = \frac{7}{13}.

    Như vậy trong số người bị bệnh phổi của tỉnh T có khoảng \frac{7}{13} số người nghiện thuốc lá.

  • Câu 38: Thông hiểu

    Tính P(A|B)

    Cho P(A) = 0,35; P\left( B|A \right) = 0,4P\left( B|\overline{A} \right) = 0,3. Giá trị của P\left( A|B \right)

    P(A) = 0,35 nên P\left( \overline{A} \right) = 1 - 0,35 =
0,65.

    Theo công thức Bayes ta có:

    P\left( A|B \right) = \frac{P(A).P\left(
B|A \right)}{P(A).P\left( B|A \right) + P\left( \overline{A}
\right).P\left( B|\overline{A} \right)}= \frac{0,35.0,4}{0,35.0,4 + 0,65.0,3} =
\frac{28}{67}.

  • Câu 39: Nhận biết

    Tính xác suất P

    Cho hai biến cố AB với P(B) =
0,2;P\left( A|B ight) = 0,5;P\left( A|\overline{B} ight) =
0,4. Tính P\left( B|A
ight)?

    Ta có: P(B) = 0,2 \Rightarrow P\left(
\overline{B} ight) = 1 - P(B) = 1 - 0,2 = 0,8

    Áp dụng công thức Bayes:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(B).P\left( A|B ight) + P\left( \overline{B}
ight).P\left( A|\overline{B} ight)}

    \Rightarrow P\left( B|A ight) =
\frac{0,2.0,5}{0,2.0,5 + 0,8.0,4} = \frac{5}{21} \approx 0,238 .

  • Câu 40: Vận dụng cao

    Tính xác suất của biến cố

    Hai máy tự động sản xuất cùng một loại chi tiết, trong đó máy I sản xuất 35\%, máy II sản xuất 65\% tổng sản lượng. Tỉ lệ phế phẩm của các máy lần lượt là 0,3\% 0,7\%. Chọn ngẫu nhiên 1 sản phẩm từ kho. Tính xác suất để chọn được phế phẩm do máy I sản xuất?

    Gọi A_{1}là biến cố “Sản phẩm được chọn do máy I sản xuất”

    A_{2} là biến cố “Sản phẩm được chọn do máy II sản xuất”

    B là biến cố “Sản phẩm được chọn là phế phẩm”

    Suy ra A_{1}|B là biến cố “chọn được phế phẩm do máy I sản xuất”

    Ta có P\left( A_{1} \right) =
0,35, P\left( A_{2} \right) =
0,65, P\left( B|A_{1} \right) =
0,003, P\left( B|A_{2} \right) =
0,007

    P(B) = P\left( B|A_{1} \right).P\left(
A_{1} \right) + P\left( B|A_{2} \right).P\left( A_{2} \right) =
0,0056

    Theo công thức Bayes có:

    P\left( A_{1}|B \right) = \frac{P\left(
B|A_{1} \right).P\left( A_{1} \right)}{P(B)} = 0,1875.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 6 Một số yếu tố xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo