Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 40 câu
  • Điểm số bài kiểm tra: 40 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tính số điểm cực tiểu của hàm số

    Hàm số y = f(x) có đạo hàm f'(x) = (x - 1)(x - 2)....(x - 2019), với \forall x\mathbb{\in R}. Hỏi hàm số y = f(x) có bao nhiêu điểm cực tiểu?

    Hướng dẫn:

    Ta có: f'(x) = 0 \Leftrightarrow (x -
1)(x - 2)....(x - 2019) = 0\Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = 2 \\
.... \\
x = 2019 \\
\end{matrix} ight.

    Suy ra f'(x) = 02019 nghiệm bội lẻ và hệ số a > 0 nên có 1010 cực tiểu.

  • Câu 2: Vận dụng cao
    Xét tính đúng sai của các kết luận

    Cho hàm số f(x) = x^{3} - 3x^{2} +
3

    a) [NB] Hàm số y = f(x) đồng biến trong khoảng ( - 2;0). Đúng||Sai

    b) [TH] Hàm số y = f(x) đạt cực đại tại x = 3. Sai|||Đúng

    c) [TH] Phương trình f(x) = -
1có 2 nghiệm phân biệt. Đúng||Sai

    d) [VD, VDC] Hàm số y = \left| f(x)
\right|có 3 điểm cực trị. Sai|||Đúng

    Đáp án là:

    Cho hàm số f(x) = x^{3} - 3x^{2} +
3

    a) [NB] Hàm số y = f(x) đồng biến trong khoảng ( - 2;0). Đúng||Sai

    b) [TH] Hàm số y = f(x) đạt cực đại tại x = 3. Sai|||Đúng

    c) [TH] Phương trình f(x) = -
1có 2 nghiệm phân biệt. Đúng||Sai

    d) [VD, VDC] Hàm số y = \left| f(x)
\right|có 3 điểm cực trị. Sai|||Đúng

    Hàm số y = f(x) có đồ thị như hình vẽ dưới đây:

    a) Đúng. Hàm số y = f(x) đồng biến trong khoảng ( - 2;0)là mệnh đề đúng.

    b) Sai. Hàm số y = f(x) đạt cực đại tại x = 3là mệnh đề sai.

    c) Đúng. Phương trình f(x) = - 1
\Leftrightarrow x^{3} - 3x^{2} + 4 = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1 \\
x = 2 \\
\end{matrix} ight.

    d) Sai.

    Giữ nguyên phần đồ thị hàm số y =
f(x)nằm phía trên trục hoành, phần đồ thị nằm phía dưới trục hoành thay bằng phần đối xứng với nó qua trục hoành ta có đồ thị hàm số y = \left| f(x) ight|do đó hàm số y = \left| f(x) ight|có 5 điểm cực trị.

  • Câu 3: Nhận biết
    Cho bảng biến thiên sau:

    Trắc nghiệm Toán 12 Kết nối tri thức bài 1

    Khẳng định sai là:

  • Câu 4: Nhận biết
    Tìm số đường tiệm cận

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Đồ thị của hàm số đã cho có bao nhiêu tiệm cận?

    Hướng dẫn:

    Đồ thị của hàm số đã cho có 2 đường tiệm cận.

  • Câu 5: Nhận biết
    Tìm giá trị nhỏ nhất của hàm số

    Giá trị nhỏ nhất của hàm số f(x) =
\frac{x - 3}{x + 2} trên \lbrack
0;4brack là:

    Hướng dẫn:

    Ta có: f'(x) = \frac{5}{(x +
2)^{2}};\forall x \in \lbrack 0;4brack nên hàm đồng biến trên \lbrack 0;4brack

    Do đó \min_{\lbrack 0;4brack}f(x) =
f(0)

  • Câu 6: Vận dụng
    Xét tính đúng sai của các nhận định

    Một cơ sở sản xuất khăn mặt đang bán mỗi chiếc khăn với giá 30.000 đồng một chiếc và mỗi tháng cơ sở bán được trung bình 3000 chiếc khăn. Cơ sở sản xuất đang có kế hoạch tăng giá bán để có lợi nhận tốt hơn. Sau khi tham khảo thị trường, người quản lý thấy rằng nếu từ mức giá 30.000 đồng mà cứ tăng giá thêm 1000 đồng thì mỗi tháng sẽ bán ít hơn 100 chiếc. Biết vốn sản xuất một chiếc khăn không thay đổi là 18.000.

    a) Nếu cơ sở bán mỗi chiếc khăn với giá 37000 thì số tiền lãi sau 1 tháng là 44. Sai||Đúng

    b) Sau khi cơ sở tăng giá mỗi chiếc khăn thêm x thì tổng số lợi nhuận một tháng của cơ sở được tính theo công thứcf(x) = - 100x^{2}
+ 1800x + 36000. Đúng||Sai

    c) Để đạt lợi nhuận lớn nhất thì số khăn bán ra giảm 800 chiếc. Sai||Đúng

    d) Để đạt lợi nhuận lớn nhất thì mỗi chiếc khăn cần bán với giá 39000 đồng. Đúng||Sai

    Đáp án là:

    Một cơ sở sản xuất khăn mặt đang bán mỗi chiếc khăn với giá 30.000 đồng một chiếc và mỗi tháng cơ sở bán được trung bình 3000 chiếc khăn. Cơ sở sản xuất đang có kế hoạch tăng giá bán để có lợi nhận tốt hơn. Sau khi tham khảo thị trường, người quản lý thấy rằng nếu từ mức giá 30.000 đồng mà cứ tăng giá thêm 1000 đồng thì mỗi tháng sẽ bán ít hơn 100 chiếc. Biết vốn sản xuất một chiếc khăn không thay đổi là 18.000.

    a) Nếu cơ sở bán mỗi chiếc khăn với giá 37000 thì số tiền lãi sau 1 tháng là 44. Sai||Đúng

    b) Sau khi cơ sở tăng giá mỗi chiếc khăn thêm x thì tổng số lợi nhuận một tháng của cơ sở được tính theo công thứcf(x) = - 100x^{2}
+ 1800x + 36000. Đúng||Sai

    c) Để đạt lợi nhuận lớn nhất thì số khăn bán ra giảm 800 chiếc. Sai||Đúng

    d) Để đạt lợi nhuận lớn nhất thì mỗi chiếc khăn cần bán với giá 39000 đồng. Đúng||Sai

    a) Sai

    b) Đúng

    c) Sai

    d) Đúng

    Gọi số tiền cần tăng giá mỗi chiếc khăn là x .

    Vì cứ tăng giá thêm 1 thì số khăn bán ra giảm 100 chiếc nên tăng x thì số khăn bán ra giảm 100x chiếc.

    Do đó tổng số khăn bán ra mỗi tháng là: 3000 - 100x chiếc.

    Lúc đầu bán với giá 30, mỗi chiếc khăn có lãi 12. Sau khi tăng giá, mỗi chiếc khăn thu được số lãi là: 12 +
x.

    Do đó tổng số lợi nhuận một tháng thu được sau khi tăng giá là:

    f(x) = (3000 - 100x)(12 +
x).

    Xét hàm số f(x) = (3000 - 100x)(12 +
x) trên (0; + \infty).

    Ta có:f(x) = - 100x^{2} + 1800x +
36000.

    f'(x) = - 200x + 1800

    f'(x) = 0 \Leftrightarrow - 200x +
1800 = 0 \Leftrightarrow x = 9

    Lập bảng biến thiên của hàm số f(x) trên (0;\  + \infty) ta thấy hàm số đạt giá trị lớn nhất khix = 9

    hư vậy, để thu được lợi nhuận cao nhất thì cơ sở sản xuất cần tăng giá bán mỗi chiếc khăn là 9.000 đồng, tức là mỗi chiếc khăn bán với giá mới là39.000 đồng.

  • Câu 7: Thông hiểu
    Chọn hàm số thích hợp với yêu cầu

    Đồ thị hàm số nào trong các hàm số dưới đây có tiệm cận đứng?

    Hướng dẫn:

    Nhận thấy các đáp án y = \frac{1}{x^{4} +
1}.y = \frac{1}{x^{2} +
1}.;y = \frac{1}{x^{2} + x +
1}. là các hàm số có TXĐ: D\mathbb{= R} nên không có TCĐ.

    Dùng phương pháp loại trừ thì y =
\frac{1}{\sqrt{x}}. đúng.

    (Thật vậy; hàm số y =
\frac{1}{\sqrt{x}}\lim_{x
ightarrow 0^{+}}y = \lim_{x ightarrow 0^{+}}\frac{1}{\sqrt{x}} = +
\infty\ \ \overset{}{ightarrow}\ \ x = 0 là TCĐ)

  • Câu 8: Vận dụng
    Ghi đáp án đúng vào ô trống

    Cho hàm số y = f(x) có đạo hàm trên R và số y = f'(x) có đồ thị như hình vẽ sau. Tìm số điểm cực tiểu của hàm số g(x) = f(x)
+ \frac{1}{2}x^{2} - 2x.

    Đáp án: 2

    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm trên R và số y = f'(x) có đồ thị như hình vẽ sau. Tìm số điểm cực tiểu của hàm số g(x) = f(x)
+ \frac{1}{2}x^{2} - 2x.

    Đáp án: 2

    Ta có g'(x) = f'(x) + x - 2 =
0 \Leftrightarrow f'(x) = - x +
2 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = 2 \\
\end{matrix} ight.

    Ta có bảng biến thiên:

    Từ bảng biến thiên ta có hàm số g(x) đạt cực tiểu tại x = 0x =
2. Do đó hàm số g(x)2 điểm cực tiểu.

  • Câu 9: Nhận biết
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) có đạo hàm f'(x) = x^{2} + 1, \forall x\mathbb{\in R}. Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

    Do hàm số y = f(x) có đạo hàm f'(x) = x^{2} + 1 > 0 \forall x\mathbb{\in R} nên hàm số đồng biến trên khoảng ( - \infty; +
\infty).

  • Câu 10: Vận dụng cao
    Chọn đáp án đúng

    Cho hàm số  y = \frac{1}{3} x^{3} - \frac{1}{2} mx^{2} + 4x-2021, m là tham số; gọi x1, x2 là các điểm cực trị của hàm số đã cho. Tính giá trị lớn nhất của biểu thức P = (x_{1}^{2}-1) (x_{2}^{2} -1).

  • Câu 11: Thông hiểu
    Tìm khoảng nghịch biến của hàm số

    Hàm số y = \frac{2}{x^{2} + 1} nghịch biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Ta có y' = \frac{- 4x}{\left( x^{2} +
1 ight)^{2}} < 0 \Leftrightarrow x > 0

  • Câu 12: Thông hiểu
    Chọn đáp án thích hợp

    Độ giảm huyết áp của một bệnh nhân G(x) =
0,025x^{2}(30 - x) trong đó x là số miligam thuộc được tiêm cho bệnh nhân (0 < x < 30). Để bệnh nhân đó có huyết áp giảm nhiều nhất thì liều lượng thuốc cần tiêm vào là:

    Hướng dẫn:

    Ta có: G(x) = 0,025x^{2}(30 - x)
\Rightarrow G'(x) = 1,5x - 0,075x^{2}

    \Rightarrow G'(x) = 0
\Leftrightarrow 1,5x - 0,075x^{2} = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = 20 \\
\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    Vậy để bệnh nhân đó có huyết áp giảm nhiều nhất thì lượng thuốc cần tiêm vào là x = 20(mg).

  • Câu 13: Vận dụng
    Xác định số đường tiệm cận của đồ thị hàm số

    Cho hàm số y = \frac{x - 1}{\sqrt{x^{2} +
2(m - 1)x + m^{2}}} với m là tham số thực và m >
\frac{1}{2}. Hỏi đồ thị hàm số có bao nhiêu đường tiệm cận?

    Hướng dẫn:

    Khi m > \frac{1}{2} thì phương trình x^{2} + 2(m - 1)x + m^{2} =
0 vô nghiệm nên đồ thị hàm số không có tiệm cận đứng.

    Ta có \lim_{x ightarrow + \infty}y =
\lim_{x ightarrow + \infty}\frac{x - 1}{\sqrt{x^{2} + 2(m - 1)x +
m^{2}}} = 1 ightarrow y = 1 là TCN;

    \lim_{x ightarrow - \infty}y = \lim_{x
ightarrow - \infty}\frac{x - 1}{\sqrt{x^{2} + 2(m - 1)x + m^{2}}} = -
1 ightarrow y = - 1 là TCN.

    Vậy đồ thị hàm số có đúng hai tiệm cận.

  • Câu 14: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số y = x^{4} - 2x^{2} +
2. Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

    Xét y' = 0 \Leftrightarrow 4x^{3} -
4x = 0\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \Rightarrow y = 1 \\
x = 0 \Rightarrow y = 2 \\
x = - 1 \Rightarrow y = 1 \\
\end{matrix} ight..

    Bảng biến thiên:

    Dựa vào bảng biến thiên ta thấy, hàm số đồng biến trên khoảng (2; + \infty).

  • Câu 15: Nhận biết
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) xác định và liên tục trên các khoảng ( -
\infty;0)(0; + \infty) có bảng biến thiên như hình vẽ:

    Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    \lim_{x ightarrow - \infty}y =
2 nên y = 2 là tiệm cận ngang của đồ thị hàm số.

    {\left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) =  - \infty  \hfill \\ 
\end{gathered}  ight.} nên x = 0 là tiệm cận đứng của đồ thị hàm số.

  • Câu 16: Thông hiểu
    Chọn đáp án thích hợp

    Tìm tất cả các giá trị thực của tham số m sao cho hàm số y = \frac{\tan x - 2}{\tan x - m} đồng biến trên khoảng \left( 0;\frac{\pi}{4}
\right).

    Hướng dẫn:

    Đặt t = \tan x, vì x \in \left( 0;\frac{\pi}{4} ight) \Rightarrow t
\in (0;1)

    Xét hàm số f(t) = \frac{t - 2}{t -m}\forall t \in (0;1). Tập xác định:D = \mathbb{R}\backslash\left\{ m
ight\}

    Ta có f'(t) = \frac{2 - m}{(t -
m)^{2}}.

    Ta thấy hàm số t(x) = \tan x đồng biến trên khoảng \left( 0;\frac{\pi}{4}
ight).

    Nên để hàm số y =
\frac{\tan x - 2}{\tan x - m} đồng biến trên khoảng \left( 0;\frac{\pi}{4} ight) khi và chỉ khi: f'(t) > 0\forall t \in
(0;1)

    \Leftrightarrow \frac{2 - m}{(t -
m)^{2}} > 0\forall t \in (0;1) \Leftrightarrow \left\{ \begin{matrix}
2 - m > 0 \\
m otin (0;1) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{gathered}
  m < 2 \hfill \\
  \left[ \begin{gathered}
  m \leqslant 0 \hfill \\
  m \geqslant 1 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow m \in \left( { - \infty ;0} ight] \cup \left[ {1;2} ight)

  • Câu 17: Nhận biết
    Chọn đáp án đúng

    Giá trị nhỏ nhất của hàm số y =
\frac{x^{2} + x + 4}{x} trên đoạn \lbrack - 3; - 1brack bằng:

    Hướng dẫn:

    Tập xác định D\mathbb{=
R}\backslash\left\{ 0 ight\} nên hàm số xác định và liên tục trên \lbrack - 3; - 1brack

    Ta có: y' = \frac{x^{2} -
4}{x^{2}};\forall x eq 0

    y' = 0 \Leftrightarrow \frac{x^{2} -
4}{x^{2}} = 0 \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
x = - 2 \\
\end{matrix} ight.

    y( - 3) = - \frac{10}{3};y( - 1) = -
4;y( - 2) = - 3

    \Rightarrow \min_{\lbrack - 3; -
1brack}y = y( - 1) = - 4

  • Câu 18: Thông hiểu
    Chọn đáp án đúng

    Một viên đạn được bắn lên cao theo phương thẳng đứng có phương trình chuyển động s(t) = 2 + 196t -
4,9t^{2}, trong đó t \geq
0, t(s)là thời gian chuyển động, s(m)là độ cao so với mặt đất. Sau bao lâu kể từ khi bắn thì viên đạn đạt được độ cao 1962m?

    Hướng dẫn:

    Khi viên đạn đạt được độ cao1962m, ta có phương trình:

    1962 = 2 + 196t - 4,9t^{2} \Leftrightarrow t =
20

    Vậy sau 20s kể từ khi bắn thì viên đạn đạt được độ cao 1962m.

  • Câu 19: Vận dụng cao
    Số tiệm cận đứng của đồ thị hàm số

    Cho hàm số bậc ba f\left( x ight) = a{x^3} + b{x^2} + cx + d có bảng biến thiên như hình dưới đây.

    Số tiệm cận đứng của đồ thị hàm số

    Hỏi đồ thị hàm số g\left( x ight) = \frac{{\left( {{x^2} - 3x + 2} ight)\sqrt {2x + 1} }}{{\left( {{x^4} - 5{x^2} + 4} ight).f\left( x ight)}} có bao nhiêu tiệm cận đứng?

    Hướng dẫn:

    Ta có: f'\left( x ight) = 3a{x^2} + 2bx + c = 3a\left( {x - 1} ight)\left( {x - 2} ight) = 3x\left( {{x^2} - 3x + 2} ight)

    Đồng nhất hai vế ta có: \left\{ {\begin{array}{*{20}{c}}  {2b =  - 9a} \\   {c = 6a} \end{array}} ight. \Rightarrow f\left( x ight) = a{x^3} - \frac{{9a}}{2}{x^2} + 6ax + d

    Mặt khác \left\{ {\begin{array}{*{20}{c}}  {f\left( 1 ight) = 5} \\   {f\left( 2 ight) = 0} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {a + \dfrac{9}{2}a + 6a + d = 5} \\   {8a - 18a + 12a + d = 0} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {a = \dfrac{{10}}{{49}}} \\   {d = \dfrac{{ - 20}}{{19}}} \end{array}} ight.

    Giải phương trình f\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{1}{2}} \\   {x = 2} \end{array}} ight.

    Hàm số có tập xác định là D = \left[ { - \frac{1}{2}; + \infty } ight)\backslash \left\{ {\frac{1}{2};1;2} ight\}

    Khi đó

    g\left( x ight) = \frac{{\left( {{x^2} - 3x + 2} ight)\sqrt {2x + 1} }}{{\left( {{x^4} - 5{x^2} + 4} ight).f\left( x ight)}}

    = \frac{{\left( {x - 1} ight)\left( {x - 2} ight)\sqrt {2x + 1} }}{{\left( {{x^2} - 1} ight)\left( {{x^2} - 4} ight).f\left( x ight)}}

    = \frac{{\sqrt {2x + 1} }}{{\left( {x + 1} ight)\left( {x + 2} ight)f\left( x ight)}}

    => Đồ thị hàm số có 2 đường tiệm cận đứng là x = \frac{1}{2};x = 2

  • Câu 20: Thông hiểu
    Xác định điều kiện của m thỏa mãn yêu cầu

    Hàm số y = \frac{x - 2}{x - m} nghịch biến trên khoảng ( -
\infty;3) khi:

    Hướng dẫn:

    Tập xác định D\mathbb{=
R}\backslash\left\{ m ight\}

    Ta có: y' = \frac{- m + 2}{(x -
m)^{2}}

    Hàm số nghịch biến trên khoảng ( -
\infty;3) khi \left\{ \begin{matrix}
m otin ( - \infty;3) \\
- m + 2 < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m \geq 3 \\
m > 2 \\
\end{matrix} ight.\  \Leftrightarrow m \geq 3

    Vậy đáp án cần tìm là m \geq
3.

  • Câu 21: Nhận biết
    Chọn phương án thích hợp

    Mực nước biển trung bình tại trường sa từ năm 2013 đến năm 2019 được cho bởi biểu đồ trong hình bên dưới.

    Trong khoảng thời gian từ năm 2016 đến năm 2019, năm nào mực nước biển trung bình tại trường sa cao nhất ?

    Hướng dẫn:

    Nhìn vào biểu đồ ta thấy, tại năm 2018 mực nước biển trung bình tại trường sa cao nhất bằng 242\
mm.

  • Câu 22: Nhận biết
    Tìm khoảng nghịch biến của hàm số

    Cho hàm số y =
f(x) có đạo hàm f'(x) trên khoảng ( - \infty; + \infty). Đồ thị hàm số y = f'(x) như hình vẽ:

    Hàm số y = f(x) nghịch biến trên khoảng nào trong các khoảng sau?

    Hướng dẫn:

    Quan sát hình vẽ ta thấy:

    y = f'(x) \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = 3 \\
\end{matrix} ight.f'(x)
\leq 0 \Leftrightarrow 0 \leq x \leq 3

    Vậy hàm số y = f(x) nghịch biến trên khoảng (0;3).

  • Câu 23: Thông hiểu
    Chọn mệnh đề đúng

    Gọi y_{CT} là giá trị cực tiểu của hàm số f(x) = x^{2} +
\frac{2}{x} trên (0; +
\infty). Mệnh đề nào sau đây là đúng?

    Hướng dẫn:

    Ta có:

    f'(x) = 2x - \frac{2}{x^{2}} =
\frac{2x^{3} - 2}{x^{2}}

    \Rightarrow f'(x) = 0
\Leftrightarrow x = 1 \in (0; + \infty)

    Qua điểm x = 1 thì hàm số đổi dấu từ '' - '' sang '' + '' trong khoảng (0; + \infty).

    Suy ra trên khoảng (0; + \infty) hàm số chỉ có một cực trị và là giá trị cực tiểu nên đó cũng chính là giá trị nhỏ nhất của hàm số.

    Vậy y_{CT} = \min_{(0; +
\infty)}y.

  • Câu 24: Thông hiểu
    Xác định các đường tiệm cận của đồ thị hàm số

    Số đường tiệm cận của đồ thị hàm số y = \frac{x}{{{x^2} - 3x - 4}} + x

    Gợi ý:

    Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x ight) =  \pm \infty ;\mathop {\lim }\limits_{x \to {x_0}^ - } f\left( x ight) =  \pm \infty

    Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = {y_0};\mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = {y_0}

    Hướng dẫn:

    Quy đồng biến đổi hàm số đã cho trở thành y = \frac{{{x^3} - 3{x^2} - 3x}}{{{x^2} - 3x - 4}}

    Tìm được tiệm cận đứng là x = -1 và x = 4 và không có tiệm cận ngang

    => Số tiệm cận là 2 đường

  • Câu 25: Thông hiểu
    Xác định số đường tiệm cận của đồ thị hàm số

    Đồ thị hàm số y = \frac{\sqrt{1 -
x^{2}}}{x^{2} + 2x} có tất cả bao nhiêu đường tiệm cận?

    Hướng dẫn:

    TXĐ: D = \lbrack - 1\ ;\ 0) \cup (0\ ;\
1brack\ \ \overset{}{ightarrow} không tồn tại \lim_{x ightarrow - \infty}y\lim_{x ightarrow + \infty}y. Suy ra đồ thị hàm số không có tiệm cận ngang.

    Ta có \left\{ \begin{matrix}
\lim_{x ightarrow \ 0^{+}}\frac{\sqrt{1 - x^{2}}}{x^{2} + 2x} = +
\infty \\
\lim_{x ightarrow \ 0^{-}}\frac{\sqrt{1 - x^{2}}}{x^{2} + 2x} = -
\infty \\
\end{matrix} ight.\ \overset{}{ightarrow}\ \ x = 0 là TCĐ.

    Vậy đồ thị hàm số có đúng một tiệm cận.

  • Câu 26: Thông hiểu
    Tính tốc độ tăng trưởng của dân số

    Dân số P (tính theo nghìn người) của một thành phố nhỏ được cho bởi công thức P(t) = \frac{500t}{t^{2} + 9}, trong đó t là thời gian được tính bằng năm. Tìm tốc độ tăng dân số tại thời điểm t =
12.

    Hướng dẫn:

    Tốc độ tăng trưởng dân số là:

    P'(t) = \frac{(500t)^{'}\left(
t^{2} + 9 \right) - 500t\left( t^{2} + 9 \right)^{'}}{\left( t^{2} +
9 \right)^{2}}

    P'(t) = \frac{500.\left( t^{2} + 9
\right) - 500t.2t}{\left( t^{2} + 9 \right)^{2}}

    P'(t) = \frac{4500 -
500t^{2}}{\left( t^{2} + 9 \right)^{2}}

    Khi t\  = 12 thì

    P'(12) = \frac{4500 -
500.12^{2}}{\left( 12^{2} + 9 \right)^{2}} = - 2,88

  • Câu 27: Vận dụng
    Tìm m nguyên thỏa mãn điều kiện

    Số giá trị nguyên của tham số m \in \left[ { - 20;20} ight] để hàm số y = \frac{1}{3}{x^3} + 2{x^2} + \left( {m + 3} ight)x + 2 đồng biến trên \mathbb{R} là:

    Hướng dẫn:

    Ta có: y' = {x^2} + 4x + m + 3

    Hàm số đồng biến trên \mathbb{R} khi và chỉ khi

    \begin{matrix}  y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 1 > 0} \\   {\left( {{\Delta _{y'}}} ight)' = 4 - \left( {m + 3} ight) < 0} \end{array}} ight. \Leftrightarrow m \geqslant 1 \hfill \\ \end{matrix}

    Kết hợp với điều kiện \left\{ {\begin{array}{*{20}{c}}  {m \in \left[ { - 20;20} ight]} \\   {m \in \mathbb{Z}} \end{array}} ight.

    => Có 20 giá trị của tham số m thỏa mãn điều kiện đề bài.

  • Câu 28: Nhận biết
    Tính vận tốc tức thời của chất điểm

    Một chất điểm chuyển động của phương trình s(t) = \frac{1}{3}t^{3} - 2t^{2} + 4t + 1 trong đó t > 0, ttính bằng giây, s(t)tính bằng mét. Tính vận tốc tức thời của chất điểm tại thời điểm t =
3(s).

    Hướng dẫn:

    Vận tốc tức thời của chất điểm tại thời điểm t(s)là: v(t)
= s'(t) = t^{2} - 4t + 4.

    Vậy vận tốc tức thời của chất điểm tại thời điểm t = 3(s)là: v(3) = 3^{2} - 4.3 + 4 = 1(m/s)

  • Câu 29: Thông hiểu
    Xác định hàm số v(t)

    Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250\
km so với bể mặt của Mặt Trăng. Trong khoảng 50 giây đầu tiên kể từ khi đốt cháy các tên lửa hãm, độ cao h của con tàu so với bề mặt của Mặt Trăng được tính (gẩn đúng) bởi hàm h(t) = - 0,01t^{3} + 1,1t^{2} - 30t +
250, trong đó t là thời gian tính bằng giây và h là độ cao tính bằng kilômét. Gọi v(t) là vận tốc tức thời của con tàu ở thời điểm t (giây) kể từ khi đốt cháy các tên lửa hãm với 0 \leq t \leq
50. Xác định hàm số v(t).

    Hướng dẫn:

    Vận tốc tức thời của con tàu ở thời điểm t, v(t), là đạo hàm của hàm số h(t) theo thời gian t. Hàm số h(t) đã cho là: h(t) = - 0,01t^{3} + 1,1t^{2} - 30t +
250

    Để tìm v(t), ta lấy đạo hàm của h(t): v(t) = h^{'}(t) = - 0,03t^{2} + 2,2t -
30

    Vậy hàm số v(t)biểu diễn vận tốc tức thời của con tàu ở thời điểm t là:

    v(t) = - 0,03t^{2} + 2,2t -
30

  • Câu 30: Vận dụng
    Xét tính đúng sai của các nhận định

    Cho hàm số y = x - \frac{1}{x +
1} có đồ thị là (C). Em hãy xét tính đúng sai của các khẳng định dưới đây?

    a) Đồ thị hàm số có tiệm cận đứng là x =
1. Sai||Đúng

    b) Phương trình tiếp tuyến của đồ thị (C) tại điểm điểm có hoành độ M(0; - 1)y = 2x - 1. Đúng||Sai

    c) Tồn tại tiếp tuyến của đồ thị vuông góc với nhau. Sai||Đúng

    d) Để đường thẳng y = k cắt (C) tại hai điểm phân biệt A,B sao cho OA\bot OB thì k là nghiệm của phương trình k^{2} - k - 1 =0. Đúng||Sai

    Đáp án là:

    Cho hàm số y = x - \frac{1}{x +
1} có đồ thị là (C). Em hãy xét tính đúng sai của các khẳng định dưới đây?

    a) Đồ thị hàm số có tiệm cận đứng là x =
1. Sai||Đúng

    b) Phương trình tiếp tuyến của đồ thị (C) tại điểm điểm có hoành độ M(0; - 1)y = 2x - 1. Đúng||Sai

    c) Tồn tại tiếp tuyến của đồ thị vuông góc với nhau. Sai||Đúng

    d) Để đường thẳng y = k cắt (C) tại hai điểm phân biệt A,B sao cho OA\bot OB thì k là nghiệm của phương trình k^{2} - k - 1 =0. Đúng||Sai

    a) Sai

    b) Đúng

    c) Sai

    d) Đúng

    a) Sai.

    Đồ thị (C) có tiệm cận đứng là x = - 1.

    b) Đúng.

    Đồ thị (C) cắt trục Oy tại M(0; -
1).

    Ta có y' = 1 + \frac{1}{(x + 1)^{2}}
\Rightarrow y'(0) = 2.

    Phương trình tiếp tuyến của (C) tại My = 2x - 1.

    c) Sai.

    Tiếp tuyến của đồ thị (C) tại tiếp điểm M_{1}\left( x_{1};y_{1}
\right) có hệ số góc k_{1} =
y'\left( x_{1} \right) = 1 + \frac{1}{\left( x_{1} + 1 \right)^{2}}
> 0.

    Tiếp tuyến của đồ thị (C) tại tiếp điểm M_{2}\left( x_{2};y_{2}
\right) có hệ số góc k_{2} =
y'\left( x_{2} \right) = 1 + \frac{1}{\left( x_{2} + 1 \right)^{2}}
> 0.

    Khi đó k_{1}k_{2} > 0 nên không tồn tại hai tiếp tuyến của đồ thị vuông góc với nhau.

    d) Đúng.

    Phương trình hoành độ giao điểm giữa đồ thị (C) và đường thẳng y = k

    x - \frac{1}{x + 1} = k \Leftrightarrow
\left\{ \begin{matrix}
x \neq - 1 \\
x^{2} + x - 1 = k(x + 1).\ \ \ (1)
\end{matrix} \right.\ \ (I)

    Nhận thấy x = - 1 không thỏa mãn nên (I) \Leftrightarrow x^{2} + (1 - k)x - 1
- k = 0.\ \ (2)

    Phương trình có \Delta = (1 - k)^{2} +
4(1 + k) = k^{2} + 2k + 5 = (k + 1)^{2} + 4 > 0,\forall
k.

    Do đó, đường thẳng y = k luôn cắt đồ thị (C) tại hai điểm phân biệt A\left( x_{A};k \right),B\left( x_{B};k
\right) với x_{A},x_{B} là nghiệm của phương trình.

    Theo Vi-et thì x_{A}x_{B} = - 1 -
k.

    Ta có OA\bot OB \Leftrightarrow
\overrightarrow{OA} \cdot \overrightarrow{OB} = 0 \Leftrightarrow
x_{A}x_{B} + k^{2} = 0 \Leftrightarrow - 1 - k + k^{2} = 0.

    Vậy OA\bot OB thì k là nghiệm của phương trình k^{2} - k - 1= 0.

  • Câu 31: Nhận biết
    Tính số cực trị của hàm số

    Cho hàm số f(x) có đạo hàm f'(x) = x\left( x^{2} - x ight)(x -
2). Số điểm cực trị của hàm số đã cho là:

    Hướng dẫn:

    Ta có: f'(x) = x\left( x^{2} - x
ight)(x - 2) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = 2 \\
\end{matrix} ight.

    x = 1;x = 2 là nghiệm bội lẻ và x = 0 là nghiệm bội chẵn nên hàm số có hai điểm cực trị.

  • Câu 32: Thông hiểu
    Tìm số đường tiệm cận của đồ thị hàm số

    Đồ thị hàm số y = \frac{x^{2} + 2x +
3}{\sqrt{x^{4} - 3x^{2} + 2}} có tất cả bao nhiêu đường tiệm cận?

    Hướng dẫn:

    TXĐ: D = \left( - \infty; - \sqrt{2}
ight) \cup ( - 1;1) \cup \left( \sqrt{2}; + \infty ight). Ta có:

    \lim_{x ightarrow \pm \infty}y = 1
ightarrow y = 1 là TCN;

    \lim_{x ightarrow \ \left( - \sqrt{2}
ight)^{-}}y = + \infty ightarrow x = - \sqrt{2} là TCĐ;

    \lim_{x ightarrow \ ( - 1)^{+}}y = +
\infty ightarrow x = - 1 là TCĐ;

    \lim_{x ightarrow \ 1^{-}}y = + \infty
ightarrow x = 1 là TCĐ;

    \lim_{x ightarrow \ {\sqrt{2}}^{+}}y =
+ \infty ightarrow x = \sqrt{2} là TCĐ.

    Vậy hàm số đã cho có tất cả năm đường tiệm cận.

  • Câu 33: Nhận biết
    Xác định GTLN của hàm số y = f(x)

    Tìm giá trị lớn nhất của hàm số y = 3\sin x - 4{\sin ^3}x trên khoảng \left( { - \frac{\pi }{2};\frac{\pi }{2}} ight) bằng:

    Hướng dẫn:

    Đặt \sin x = t \Rightarrow t \in \left( { - 1;1} ight)

    Khi đó:

    \begin{matrix}  f'\left( t ight) =  - 12{t^2} + 3 \hfill \\  f'\left( t ight) = 0 \Leftrightarrow t =  \pm \dfrac{1}{2} \hfill \\ \end{matrix}

    So sánh f\left( {\frac{1}{2}} ight)f\left( { - \frac{1}{2}} ight) ta thấy GTLN là f\left( {\frac{1}{2}} ight) = 1

  • Câu 34: Thông hiểu
    Tìm giá trị lớn nhất của hàm số

    Tìm giá trị lớn nhất M của hàm số f(x) = sin^{3}x + cos2x + \sin x +
3.

    Hướng dẫn:

    Ta có f(x) = sin^{3}x + cos2x + \sin x +
3 = sin^{3}x - 2sin^{2}x + \sin x + 4.

    Đặt t = \sin x\ ;( - 1 \leq t \leq1).

    Khi đó, bài toán trở thành ''Tìm giá trị lớn nhất của hàm số g(t) = t^{3} - 2t^{2} + t + 4 trên đoạn \lbrack -
1;1brack''.

    Đạo hàm g'(t) = 3t^{2} - 4t +
1

    \Rightarrow g'(t) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
t = 1 \in \lbrack - 1;1brack \\
t = \frac{1}{3} \in \lbrack - 1;1brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
g( - 1) = 0 \\
g\left( \dfrac{1}{3} ight) = \dfrac{112}{27} \\
g(1) = 4 \\
\end{matrix} ight. \Rightarrow
\max_{\lbrack - 1;1brack}g(t) = g\left( \dfrac{1}{3} ight) =
\frac{112}{27}

    \Rightarrow \max_{x\mathbb{\in R}}f(x) =
\frac{112}{27}

  • Câu 35: Thông hiểu
    Chọn đáp án đúng

    Giá trị thực của tham số m để hàm số y = - x^{3} + mx^{2} + \left( m^{2} -
12 ight)x + 2 đạt cực tiểu tại điểm x = - 1 thuộc khoảng nào sau đây?

    Hướng dẫn:

    Tập xác định D\mathbb{= R}

    Ta có: \left\{ \begin{matrix}
y' = - 3x^{2} + 2mx + m^{2} - 12 \\
y'' = - 6x + 2m \\
\end{matrix} ight.

    Để hàm số đạt cực tiểu tại x = -
1 thì

    \left\{ \begin{matrix}
y'(1) = 0 \\
y''(1) > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m^{2} - 2m - 15 = 0 \\
m > - 3 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
m = 5(tm) \\
m = - 3(ktm) \\
\end{matrix} ight.\  \\
m > - 3 \\
\end{matrix} ight.\  \Leftrightarrow m = 5

    Vậy m = 5 \in (3;6).

  • Câu 36: Nhận biết
    Tìm số điểm cực trị của hàm số

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Số điểm cực trị của đồ thị hàm số là:

    Hướng dẫn:

    Dựa vào bảng biến thiên ta thấy hàm số có 3 điểm cực trị.

  • Câu 37: Nhận biết
    Tính lợi nhuận cao nhất của doanh nghiệp

    Một doanh nghiệp dự kiến lợi nhuận khi sản xuất x sản phẩm (0
\leq x \leq 300) được cho bởi hàm số y = - x^{3} + 300x^{2} và được minh họa bằng đồ thị ở hình bên dưới.

    Cần sản xuất bao nhiêu sản phẩm để doanh nghiệp thu được lợi nhuận cao nhất?

    Hướng dẫn:

    Dựa vào đồ thị ta thấy hàm số có giá trị lớn nhất bằng 4000000 khi x
= 200

    Do đó cần sản suất 200 sản phẩm thì doanh nghiệp thu được lợi nhuận cao nhất.

  • Câu 38: Vận dụng
    Ghi đáp án vào ô trống

    Một chủ trang trại nuôi gia cầm muốn rào thành 2 chuồng hình chữ nhật sát nhau và sát một con sông, một chuồng nuôi gà và một chuồng nuôi vịt. Biết rằng đã có sẵn 240 m hàng rào. Hỏi diện tích lớn nhất có thể bao quanh chuồng là bao nhiêu?

    Đáp án: 2400 m2

    Đáp án là:

    Một chủ trang trại nuôi gia cầm muốn rào thành 2 chuồng hình chữ nhật sát nhau và sát một con sông, một chuồng nuôi gà và một chuồng nuôi vịt. Biết rằng đã có sẵn 240 m hàng rào. Hỏi diện tích lớn nhất có thể bao quanh chuồng là bao nhiêu?

    Đáp án: 2400 m2

    Xét hình chữ nhật ABCD như hình vẽ, và đặtv AB = x (x > 0)

    Khi đó BC = 240 – 3x > 0 ⇒ x < 80.

    Diện tích của hình chữ nhật ABCD là S = x.(240 – 3x ) = 240x – 3x2

    Bài toán trở thành tìm giá trị lớn nhất của hàm số f(x) với 0 < x < 80.

    Xét f(x) = 240x – 3x2 ⇒ f’(x) = 240 – 6x , f’(x) = 0 ⟺ x = 40.

    Do f’’(x) = - 6 < 0, ∀ x∈ (0; 80)

    Do đó maxS = \max_{x \in (0;80)}f(x) =
f(40) = 4800 \Leftrightarrow x = 40

    Vậy diện tích lớn nhất có thể bao quanh là 4800m2 .

  • Câu 39: Vận dụng cao
    Xét tính đúng sai của các nhận định

    Đường dây điện 110KV kéo từ trạm phát trong đất liền ra Côn Đảo. Biết BC =
60km, AB = 100km, góc \widehat{ABC} = 90{^\circ}, như hình vẽ. Mỗi km dây điện dưới nước chi phí là 5000\ USD, chi phí cho mỗi km dây điện trên bờ là 3000\ USD. Đặt x = AG.

    a) Khi x = 20\ km thì đường dây điện nối từ C về G dài 100km. Đúng||Sai

    b) Khi x = 20\ km thì tổng chi phí mắc điện là 560.000USD. Đúng||Sai

    c) Tổng chi phí mắc điện nhỏ nhất khi x =
50km. Sai||Đúng

    d) Tổng chi phí mắc điện nhỏ nhất là 540.000USD.Đúng||Sai

    Đáp án là:

    Đường dây điện 110KV kéo từ trạm phát trong đất liền ra Côn Đảo. Biết BC =
60km, AB = 100km, góc \widehat{ABC} = 90{^\circ}, như hình vẽ. Mỗi km dây điện dưới nước chi phí là 5000\ USD, chi phí cho mỗi km dây điện trên bờ là 3000\ USD. Đặt x = AG.

    a) Khi x = 20\ km thì đường dây điện nối từ C về G dài 100km. Đúng||Sai

    b) Khi x = 20\ km thì tổng chi phí mắc điện là 560.000USD. Đúng||Sai

    c) Tổng chi phí mắc điện nhỏ nhất khi x =
50km. Sai||Đúng

    d) Tổng chi phí mắc điện nhỏ nhất là 540.000USD.Đúng||Sai

    Tổng quan đáp án bài tập:

    a) Đúng

    b) Đúng

    c) Sai

    d) Đúng

    a) Có AG = x \Rightarrow BG = 100 -
x với 0 \leq x \leq
100.

    Xét tam giác CBG vuông tại BCG =
\sqrt{CB^{2} + BG^{2}} = \sqrt{3600 + (100 - x)^{2}}.

    Khi x = 20\ km \Rightarrow CG = 100\
km.

    b) Chi phí tiền mắc điện là f(x) = 3000x
+ 5000.\sqrt{3600 + (100 - x)^{2}}

    Khi x = 20\ km \Rightarrow CG = 100\
km và tổng chi phí mắc điện là T =
f(20) = 560.000\ USD.

    c) Để chi phí mắc điện ít nhất thì f(x) đạt giá trị nhỏ nhất.

    Ta có f'(x) = 3000 - 5000\frac{(100 -
x)}{\sqrt{3600 + (100 - x)^{2}}}

    \Rightarrow f'(x) = 0 \Rightarrow f'(x) = 0

    \Leftrightarrow 3000 = 5000\frac{(100 - x)}{\sqrt{3600 +(100 - x)^{2}}}\Leftrightarrow \left\lbrack \begin{matrix}x = 55 \\x = 145(l)\end{matrix} \right..

    Ta có

    \begin{matrix}
f(0) = 583095,1895USD \\
f(55) = 540.000USD \\
f(100) = 600.000USD
\end{matrix}

    Vậy chi phí mắc điện nhỏ nhất khi x =
55km.

    d) chi phí mắc điện nhỏ nhất là 540.000USD

  • Câu 40: Thông hiểu
    Tính giá trị của hàm số

    Cho hàm số y = ax^{3} + bx^{2} + cx +
d. Biết M(0;2), N(2; - 2) là các điểm cực trị của đồ thị hàm số. Tính giá trị của hàm số tại x = -
2.

    Hướng dẫn:

    Ta có y' = 3ax^{2} + 2bx +
c.

    M(0;2),\ N(2; - 2) là các điểm cực trị của đồ thị hàm số nên

    \left\{ \begin{matrix}
y'(0) = 0 \\
y'(2) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
c = 0 \\
12a + 4b + c = 0 \\
\end{matrix} ight.\ ; (1)

    \left\{ \begin{matrix}
y(0) = 2 \\
y(2) = - 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
d = 2 \\
8a + 4b + 2c + d = - 2 \\
\end{matrix} ight.\ . (2)

    Giải hệ (1)(2), ta được

    \left\{ \begin{matrix}
a = 1 \\
b = - 3 \\
c = 0 \\
d = 2 \\
\end{matrix} ight.\ \overset{}{ightarrow}y = x^{3} - 3x^{2} +
2\overset{}{ightarrow}y( - 2) = - 18.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (32%):
    2/3
  • Thông hiểu (42%):
    2/3
  • Vận dụng (15%):
    2/3
  • Vận dụng cao (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo