Điều kiện của tham số để hàm số
nghịch biến trên từng khoảng xác định là:
Xét hàm số ta có:
Tập xác định
Ta có:
Hàm số nghịch biến trên từng khoảng xác định
Vậy đáp án cần tìm là .
Điều kiện của tham số để hàm số
nghịch biến trên từng khoảng xác định là:
Xét hàm số ta có:
Tập xác định
Ta có:
Hàm số nghịch biến trên từng khoảng xác định
Vậy đáp án cần tìm là .
Một con lắc lò xo dao động điều hòa theo phương ngang trên mặt phẳng không ma sát, có phương trình chuyển động , trong đó
tính bằng giây và
tính bằng centimet. Tìm thời điểm mà vận tốc của con lắc bẳng
.
Ta có:
Vận tốc của con lắc bẳng
=>
Hỏi đồ thị của hàm số có tất cả bao nhiêu đường tiệm cận (không xét tiệm cận xiên)?
Tập xác định
Ta có: nên đồ thị hàm số có tiệm cận ngang là
nên đồ thị hàm số có tiệm cận đứng là
Vậy đồ thị hàm số có 2 đường tiệm cận.
Giá trị lớn nhất của hàm số trên đoạn
bằng
Xét hàm số trên đoạn
Ta có:
.
Vậy giá trị lớn nhất của hàm số trên đoạn
bằng 15.
Cho hàm số là hàm đa thức có đạo hàm
. Số điểm cực trị của hàm số là:
Ta có:
Ta có bảng biến thiên như sau:
Vậy hàm số có hai điểm cực trị.
Tìm tất cả các giá trị của tham số để hàm số
có cực trị.
Nếu thì
: Hàm bậc hai luôn có cực trị.
Khi , ta có
.
Để hàm số có cực trị khi và chỉ khi phương trình có hai nghiệm phân biệt
Hợp hai trường hợp ta được .
Tìm giá trị tham số để đồ thị hàm số
có ba điểm cực trị
sao cho trục
chia tam giác
thành một tam giác và một hình thang biết rằng tỉ lệ diện tích tam giác nhỏ được chia ra và diện tích hình thang bằng
?
Ta có:
Hàm số có ba điểm cực trị khi và chỉ khi có ba nghiệm phân biệt
Khi đồ thị hàm số có ba điểm cực trị là
,
,
Ta có: , B và C đối xứng với nhau qua
suy ra tam giác
cân tại
Hình vẽ minh họa
Trục hoành chia tam giác thành một tam giác và một hình thang
Kết hợp với điều kiện ta được
Khi đó gọi D; E lần lượt là giao điểm của Ox và các cạnh AB; AC. Gọi K là giao điểm của BC và Oy
Ta có:
Mà
Vì
.
Cho hàm số (với
là tham số thực) thỏa mãn
. Mệnh đề nào sau đây đúng?
Ta có:
TH1: loại
TH2: khi đó
Suy ra đáp án cần tìm là .
Cho hàm số có bảng biến thiên như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây
Ta có ,
;
.
Vậy hàm số nghịch biến trên khoảng và đồng biến trên khoảng
.
Cho hàm số với
là tham số thực, có đồ thị là
. Tìm tất cả các giá trị của
để
có các điểm cực đại và cực tiểu nằm về hai phía đối với trục hoành.
Đạo hàm .
Ta có .
Hàm số có cực đại và cực tiểu khi
Ta có
Gọi là hoành độ của hai điểm cực trị khi đó
Theo định lí Viet, ta có
Hai điểm cực trị nằm về hai phía trục hoành khi
: thỏa mãn.
Gọi lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
trên đoạn
. Giá trị biểu thức
là:
Ta có: nên hàm số đồng biến trên
.
Một doanh nghiệp dự kiến lợi nhuận khi sản xuất sản phẩm (
) được cho bởi hàm số
và được minh họa bằng đồ thị ở hình bên dưới.

Cần sản xuất bao nhiêu sản phẩm để doanh nghiệp thu được lợi nhuận cao nhất?
Dựa vào đồ thị ta thấy hàm số có giá trị lớn nhất bằng khi
Do đó cần sản suất sản phẩm thì doanh nghiệp thu được lợi nhuận cao nhất.
Số dân của một thị trấn sau năm kể từ năm
được ước tính bởi công thức
được tính bằng nghìn người).

Hỏi trong khoảng thời gian từ năm đến năm
dân số của thị trấn đạt giá trị lớn nhất bằng bao nhiêu?
Xét hàm số với
suy ra
.
Suy ra hàm số đồng biến trên đoạn
.
Vậy dân số đạt giá trị lớn nhất bằng .
Tìm giá trị lớn nhất của hàm số
.
TXĐ:
Đặt
Khi đó, bài toán trở thành Tìm giá trị lớn nhất của hàm số
trên đoạn
.
Xét hàm số xác định và liên tục trên
Đạo hàm .
Suy ra hàm số đồng biến trên đoạn
Do đó

Giá trị nhỏ nhất của hàm số trên đoạn [0;2] là:
Cho hàm số liên tục trên
và có bảng xét dấu của
như sau:
Số điểm cực đại của hàm số là:
Dựa vào bảng biến thiên ta thấy, hàm số đạt cực đại tại
nên hàm số đã cho có 1 điểm cực đại.
Cho hàm số (với
). Hỏi đồ thị hàm số có tối đa bao nhiêu đường tiệm cận đứng và tiệm cận ngang?
Ta có:
Phương trình có tối đa 2 nghiệm
Nên đồ thị hàm số có nhiều nhất hai đường tiệm cận đứng.
nên
là đường tiệm cận ngang.
Vậy đồ thị hàm số có nhiều nhất 3 đường tiệm cận ngang và tiệm cận đứng.
Hàm số nghịch biến trên khoảng nào?
Ta có:
=> Hàm số nghịch biến trên khoảng (2; 3)
Có bao nhiêu giá trị nguyên của tham số thực thuộc đoạn
để hàm số
có hai tiệm cận đứng.
Để hàm số có hai tiệm cận đứng
có hai nghiệm phân biệt khác
Mà
.
Vậy có tất cả giá trị nguyên thỏa mãn.
Cho hàm số
Ta có: có hai nghiệm phân biệt là -2 và 3
=> f’(x) < 0 =>
Vậy hàm số nghịch biến trên khoảng (-2; 3)
Có tất cả bao nhiêu số nguyên để hàm số
đồng biến trên từng khoảng xác định của nó?
TXĐ:
.
Để hàm số đồng biến trên từng khoảng xác định của ta cần tìm để
trên
và
và dấu "= " chỉ xảy ra tại hữu hạn điểm trên các khoảng đó
ĐK:
Vì nên
.
Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số là:
Tập xác định suy ra đồ thị hàm số không có tiệm cận ngang.
Suy ra không là đường tiệm cận đứng của đồ thị hàm số.
Suy ra là đường tiệm cận đứng của đồ thị hàm số.
Vậy đồ thị hàm số có 1 đường tiệm cận.
Đồ thị hàm số có bao nhiêu đường tiệm cận?
Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Tập xác định:
Ta có: => y = 1 và y = -1 là hai tiệm cận ngang của đồ thị hàm số.
=> Đồ thị hàm số có hai tiệm cận đứng là x = 2 và x = =-2
Vậy đồ thị hàm số đã cho có 2 tiệm cận đứng là x = 2 và x = -2
Cho hàm số . Khẳng định nào sau đây sai?
Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Ta có:
=> y = 2 là tiệm cận ngang của đồ thị hàm số
Ta cũng có: => x = 1; x = 32 là tiệm cận đứng của đồ thị hàm số
Cho hàm số với
là tham số. Gọi
là tập hợp tất cả các giá trị của tham số
để hàm số có giá trị nhỏ nhất trên đoạn
bằng
. Tổng các phần tử của tập hợp
bằng:
Điều kiện
Ta có: . Vì
nên
Suy ra giá trị nhỏ nhất trên đoạn bằng
Kết hợp điều kiện
Vậy nên tổng các phần tử thuộc tập S bằng 1.
Cho x, y, z là ba số thực thuộc đoạn [1; 9] và . Giá trị nhỏ nhất của biểu thức
bằng:
Ta có:
(đúng do
)
Dấu bằng xảy ra khi và chỉ khi a = b hoặc ab = 1
Áp dụng bất đẳng thức trên ta có:
Đặt . Xét hàm số
trên đoạn [1; 3]
Do
Ta có bảng biến thiên

Suy ra khi và chỉ khi
Một công ty sản xuất một sản phẩm. Bộ phận tài chính của công ty đưa ra hàm giá bán là , trong đó
là giá bán của mỗi sản phẩm mà tại giá bán này có
sản phẩm được bán ra. Khi đó hàm doanh thu của công ty là
Ta có khi có sản phẩm được bán ra thì giá bán là
, do đó doanh thu của cửu hàng khi bán ra
sản phẩm là
.
Cho hàm số xác định trên
và có đồ thị của hàm số
như hình vẽ:
Hàm số đạt cực tiểu tại:
Đặt
Ta có bảng biến thiên
Ta xét bằng cách thay số
Với
Với
Với
Với
Vậy hàm số đạt cực tiểu tại
Cho hàm số có đạo hàm liên tục trên
. Biết đồ thị của hàm số
biểu diễn như hình vẽ:
Khi đó hàm số nghịch biến trên khoảng nào sau đây?
Ta có:
Vậy đáp án cần tìm là .
Một vật chuyển động có quãng đường được xác định bởi phương trình , trong đó
tính bằng mét và
là thời gian tính bằng giây. Tính vận tốc tức thời tại thời điểm
.
Ta có
Tìm tất cả các giá trị thực của tham số sao cho hàm số
đồng biến trên khoảng
Đặt , vì
Xét hàm số . Tập xác định:
Ta có .
Ta thấy hàm số đồng biến trên khoảng
.
Nên để hàm số đồng biến trên khoảng
khi và chỉ khi:
Giả sử chi phí để sản xuất sản phẩm của một nhà máy được cho bởi
(triệu đồng). Khi đó chi phí trung bình để sản xuất một đơn vị sản phẩm là
. Số lượng sản phẩm cần sản xuất là bao nhiêu để chi phí trung bình là thấp nhất?
Khảo sát sự biến thiên của hàm số .
Tập xác định: .
Sự biến thiên: Ta có .
- (do
).
- Hàm số đồng biến trên khoảng
, nghịch biến trên khoàng
.
- Hàm số đạt cực tiều tại
với
.
- Giới hạn tại vô cực: .
Bảng biến thiên:

Số lượng sản phẩm cần sản xuất là để chi phí trung bình là thấp nhất
Tồn tại bao nhiêu giá trị nguyên của tham số sao cho đồ thị hàm số
có ít nhất một tiệm cận đứng nằm bên phải trục tung?
Để đồ thị hàm số có ít nhất một tiệm cận đứng nằm bên phải trục tung thì phương trình có ít nhất 1 nghiệm dương.
Để đồ thị hàm số có ít nhất một tiệm cận đứng nằm bên phải trục tung thì phương trình có ít nhất 1 nghiệm dương.
Ta có:
Để (∗) có ít nhất 1 nghiệm dương thì:
TH1: (*) có 2 nghiệm trái dấu
Mà nên
.
TH2: (*) có 2 nghiệm phân biệt
Mà nên
.
TH3: (*) có nghiệm kép lớn hơn 0.
.
Mà nên
.
Vậy có 32 giá trị nguyên của
thỏa mãn yêu cầu bài toán.
Cho đồ thị của hàm số có điểm cực đại
và điểm cực tiểu
. Tính giá trị biểu thức
?
Đồ thị hàm số đi qua điểm và
nên
Đồ thị hàm số có điểm cực tiểu nên
Từ (*) và (**) ta có hệ phương trình
Với
suy ra
là điểm cực đại.
suy ra
là điểm cực tiểu
Vậy
Cho hàm số có:
Xét tính đúng sai của các khẳng định sau:
a) Đồ thị của hàm số có tiệm cận ngang là đường thẳng
. Đúng||Sai
b) Đồ thị của hàm số có tiệm cận đứng là đường thẳng
. Đúng||Sai
c) Đồ thị của hàm số không có tiệm cận ngang. Sai|| Đúng
d) Đồ thị của hàm số không có tiệm cận đứng. Sai|| Đúng
Cho hàm số có:
Xét tính đúng sai của các khẳng định sau:
a) Đồ thị của hàm số có tiệm cận ngang là đường thẳng
. Đúng||Sai
b) Đồ thị của hàm số có tiệm cận đứng là đường thẳng
. Đúng||Sai
c) Đồ thị của hàm số không có tiệm cận ngang. Sai|| Đúng
d) Đồ thị của hàm số không có tiệm cận đứng. Sai|| Đúng
a) Do nên
là đường tiệm cận ngang của đồ thị hàm số. (*)
b) Do nên
là đường tiệm cận đứng của đồ thị hàm số. (**)
c) Từ (*) suy ra khẳng định này sai.
d) Từ (**) suy ra khẳng định này sai.
Cho đồ thị hàm số (
) có đồ thị như hình vẽ bên dưới.

Xét tính đúng sai của các nhận định?
a) Hàm số nghịch biến trên từng khoảng xác định. Đúng||Sai
b) Giao điểm với trục tung là điểm có tung độ âm. Đúng||Sai
c) Giao điểm với trục hoành là điểm có hoành độ âm. Đúng||Sai
d) Trong các số có hai số âm. Sai||Đúng
Cho đồ thị hàm số (
) có đồ thị như hình vẽ bên dưới.

Xét tính đúng sai của các nhận định?
a) Hàm số nghịch biến trên từng khoảng xác định. Đúng||Sai
b) Giao điểm với trục tung là điểm có tung độ âm. Đúng||Sai
c) Giao điểm với trục hoành là điểm có hoành độ âm. Đúng||Sai
d) Trong các số có hai số âm. Sai||Đúng
|
a) Đúng |
b) Đúng |
c) Đúng |
d) Sai |
a) Đúng.
Hàm số nghịch biến trên từng khoảng xác định.
b) Đúng.
Giao điểm với trục tung là điểm có tung độ âm.
c) Đúng.
Giao điểm với trục hoành là điểm có hoành độ âm.
d) Sai.
Tiệm cận đứng .
Tiệm cận ngang .
Đồ thị hàm số cắt trục tung tại điểm có tung độ .
Tìm giá trị nhỏ nhất của hàm số trên đoạn
?
Ta có:
Ta có: .
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số . Giá trị của M – 2m2 bằng:
Điều kiện xác định
Xét hàm số trên [-1; 1] có:
Ta có:
Vậy
Cho hàm số biết hàm số
có đạo hàm
và hàm số
có đồ thị như hình vẽ. Đặt
. Kết luận nào sau đây đúng?
Ta có:
.
Ta có:
Hàm số đồng biến
.
Hàm số nghịch biến
.
Vậy hàm số đồng biến trên khoảng
;
và nghịch biến trên khoảng
;
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: