Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 40 câu
  • Điểm số bài kiểm tra: 40 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Tìm giá trị lớn nhất của hàm số chứa căn

    Tìm giá trị lớn nhất M của hàm số f(x) = \sqrt{x} + \sqrt{2 - x} +
2\sqrt{2x - x^{2}}.

    Hướng dẫn:

    TXĐ: D = \lbrack 0;2brack.

    Đặt t = \sqrt{x} + \sqrt{2 - x}\ \left(
\sqrt{2} \leq t \leq 2 ight).

    \Rightarrow t^{2} = x + 2\sqrt{x}\sqrt{2
- x} + 2 - x

    \Rightarrow 2\sqrt{2x - x^2} = t^2 -2

    Khi đó, bài toán trở thành ''Tìm giá trị lớn nhất của hàm số g(t) = t^{2} + t - 2 trên đoạn \left\lbrack \sqrt{2};2
ightbrack''.

    Xét hàm số g(t) = t^2 + t - 2 xác định và liên tục trên \left\lbrack
\sqrt{2};2 ightbrack.

    Đạo hàm g'(t) = 2t + 1 > 0,\
\forall t \in \left( \sqrt{2};2 ight).

    Suy ra hàm số g(t) đồng biến trên đoạn \left\lbrack \sqrt{2};2
ightbrack.

    Do đó \max_{\left\lbrack \sqrt{2};2
ightbrack}g(t) = g(2) = 4 \Rightarrow \max_{\lbrack 0;2brack}f(x)
= 4.

  • Câu 2: Thông hiểu
    Chọn đáp án đúng

    Số điểm cực trị của hàm số y = (x + 1)(x
- 2)(3 - x) là:

    Hướng dẫn:

    Tập xác định D\mathbb{= R}

    Ta có:

    y' = (x - 2)(3 - x) + (x + 1)(3 - x)
- (x + 1)(x - 2)

    = - 3x^{2} + 8x - 1

    \Rightarrow y' = 0 \Leftrightarrow x
= \frac{4 \pm \sqrt{13}}{3}

    Ta có bảng xét dấu:

    Vậy hàm số có hai điểm cực trị.

  • Câu 3: Nhận biết
    Chọn mệnh đề đúng

    Cho hàm số y =
f(x) xác định và liên tục trên khoảng ( - \infty; + \infty), có bảng biến thiên như hình sau:

    Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Dựa vào bảng biến thiên ta thấy:

    Hàm số nghịch biến trên khoảng ( -
1;1)

    Hàm số đồng biến trên khoảng ( - \infty;
- 1) \cup (1; + \infty)

    Vậy đáp án cần tìm là: “Hàm số đồng biến trên khoảng ( - \infty; - 2)”.

  • Câu 4: Vận dụng
    Tìm số đường tiệm cận của hàm số

    Cho hàm số y = f\left( x ight) có bảng biến thiên như hình vẽ dưới đây.

    Tìm số đường tiệm cận của hàm số

    Số đường tiệm cận của đồ thị hàm số y = \frac{2}{{f\left( x ight) - 2018}} là:

    Gợi ý:

    Đường thẳng x = {x_0} là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f\left( x ight) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x ight) =  \pm \infty ;\mathop {\lim }\limits_{x \to {x_0}^ - } f\left( x ight) =  \pm \infty

    Đường thẳng y = {y_0} là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f\left( x ight) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = {y_0};\mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = {y_0}

    Hướng dẫn:

    Phương trình f\left( x ight) = 2018 có 2 nghiệm phân biệt

    => Đồ thị hàm số y = \frac{2}{{f\left( x ight) - 2018}} có 2 đường tiệm cận đứng.

    Khi x \to  - \infty thì y \to 5 \Rightarrow y = \frac{2}{{f\left( x ight) - 2018}} \to \frac{2}{{ - 2013}}

    Khi x \to  + \infty thì y \to 5 \Rightarrow y = \frac{2}{{f\left( x ight) - 2018}} \to \frac{2}{{ - 2013}}

    Vậy đồ thị hàm số y = \frac{2}{{f\left( x ight) - 2018}} có 1 tiệm cận ngang.

     

  • Câu 5: Vận dụng
    Tìm tham số m để hàm số nghịch biến trên khoảng

    Giá trị của tham số m sao cho hàm số y = {x^3} - 2m{x^2} - \left( {m + 1} ight)x + 1 nghịch biến trên khoảng (0; 2)?

    Hướng dẫn:

    Ta có: y' = 3{x^2} - 4mx - m - 1

    Hàm số nghịch biến trên khoảng (0; 2)

    => 3{x^2} - 4mx - m - 1 \leqslant 0,x \in \left[ {0;2} ight]

    => 3{x^2} - 1 \leqslant 3\left( {4x + 1} ight) \Leftrightarrow \frac{{3{x^2} - 1}}{{4x + 1}} \leqslant m,\left( {\forall x \in \left[ {0;2} ight]} ight)

    Xét hàm số g\left( x ight) = \frac{{3{x^2} - 1}}{{4x + 1}};\forall x \in \left[ {0;2} ight]

    Ta có: g'\left( x ight) = \frac{{6x\left( {4x + 1} ight) - 4\left( {3{x^2} - 1} ight)}}{{{{\left( {4x + 1} ight)}^2}}} = \frac{{12{x^2} + 6x + 4}}{{{{\left( {4x + 1} ight)}^2}}};\forall x \in \left[ {0;2} ight]

    => g(x) đồng biến trên đoạn [0; 2]

    Ta có:

    \begin{matrix}  g\left( x ight) = \dfrac{{3{x^2} - 1}}{{4x + 1}} \leqslant m;\forall x \in \left[ {0;2} ight] \hfill \\   \Rightarrow m \geqslant g\left( 2 ight) = \dfrac{{11}}{9} \hfill \\ \end{matrix}

  • Câu 6: Thông hiểu
    Tính tổng tất cả các phần tử thuộc tập S

    Cho hàm số y = \frac{2mx + m^{2} + m -
2}{x + m}với m là tham số. Gọi S là tập hợp tất cả các giá trị của tham số m để hàm số có giá trị nhỏ nhất trên đoạn \lbrack
1;4brack bằng 1. Tổng các phần tử của tập hợp S bằng:

    Hướng dẫn:

    Điều kiện x eq - m

    Ta có: y' = \frac{m^{2} - m + 2}{(x +
m)^{2}}. Vì \left\{ \begin{matrix}
a = 1 \\
\Delta_{m} = ( - 1)^{2} - 4.1.2 < 0 \\
\end{matrix} ight. nên m^{2} -
m + 2 > 0;\forall \in m

    \Rightarrow y' > 0;\forall x \in
\lbrack 1;4brack

    Suy ra giá trị nhỏ nhất trên đoạn \lbrack
1;4brack bằng y(1) = 1
\Leftrightarrow \frac{m^{2} + 3m - 2}{1 + m} = 1

    \Leftrightarrow \left\{ \begin{matrix}
m eq - 1 \\
m^{2} + 2m - 3 = 0 \\
\end{matrix} ight.\  \Leftrightarrow m \in \left\{ 1; - 3
ight\}

    Kết hợp điều kiện \left\{ \begin{matrix}
x eq - m \\
x \in \lbrack 1;4brack \\
\end{matrix} ight.\  \Rightarrow m = - 3(ktm)

    Vậy S = \left\{ 1 ight\} nên tổng các phần tử thuộc tập S bằng 1.

  • Câu 7: Nhận biết
    Tính vận tốc tức thời của chuyển động

    Một chuyển động thẳng xác định bởi phương trình s(t) = 4t^{3} + 6t + 2, trong đó s tính bằng mét và t là thời gian tính bằng giây. Tính vận tốc tức thời của chuyển động tại t =
2.

    Hướng dẫn:

    Vận tốc tức thời của chuyển động là:v(t)
= s'(t) = 12t^{2} + 6

    Khi t = 2,\ v(2) = 12.2^{2} + 6 =
54(m/s)

  • Câu 8: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Cho hàm số y = f(x) có đồ thị như hình vẽ như sau:

    Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đã cho nghịch biến trên khoảng (−2, 0). Đúng||Sai

    b) Hàm số đã cho đồng biến trên khoảng (−1; +∞). Sai|| Đúng

    c) Hàm số đã cho đồng biến trên khoảng (2; +∞). Đúng||Sai

    d) Hàm số đạt cực tiểu tại x = −1.Sai|| Đúng

    Đáp án là:

    Cho hàm số y = f(x) có đồ thị như hình vẽ như sau:

    Xét tính đúng sai của các khẳng định sau:

    a) Hàm số đã cho nghịch biến trên khoảng (−2, 0). Đúng||Sai

    b) Hàm số đã cho đồng biến trên khoảng (−1; +∞). Sai|| Đúng

    c) Hàm số đã cho đồng biến trên khoảng (2; +∞). Đúng||Sai

    d) Hàm số đạt cực tiểu tại x = −1.Sai|| Đúng

    Ta có thể từ đồ thị thiết lập lại bảng biến thiên như sau:

    a) Hàm số nghịch biến trên khoảng (−2, 0).

    b) Hàm số đồng biến trên khoảng (0; +∞) nên khẳng định đồng biến trên khoảng (−1; +∞) là sai.

    c) Hàm số đồng biến trên khoảng (0; +∞) nên nên hàm số đồng biến trên khoảng (2; +∞).

    d) Hàm số đạt cực tiểu tại x = 0 (chú ý: y = −1 gọi là giá trị cực tiểu).

  • Câu 9: Thông hiểu
    Chọn mệnh đề đúng

    Đường cong trong hình vẽ dưới đây là đồ thị của hàm số y = \frac{ax + b}{cx + d};\left(
a;b;c;d\mathbb{\in R} ight). Chọn mệnh đề đúng?

    Hướng dẫn:

    Dựa vào đồ thị ta thấy hàm số có tập xác định là D\mathbb{= R}\backslash\left\{ 1 ight\} hàm số luôn nghịch biến trên khoảng ( -
\infty;1),(1; + \infty) nên y'
< 0;\forall x eq 1.

  • Câu 10: Nhận biết
    Tìm giá trị lớn nhất của hàm số

    Giá trị trị lớn nhất của hàm số f(x) =
x^{3} - 3x^{2} - 9x + 10 trên đoạn \lbrack 0;4brack bằng

    Hướng dẫn:

    Ta có f'(x) = 3x^{2} - 6x -
9.

    f'(x) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1(ktm) \\
x = 3(tm) \\
\end{matrix} ight.

    Do đó f(0) = 10, f(3) = - 17, f(4) = - 10.

    Vậy \max_{\lbrack 0;4brack}f(x) = f(0)
= 10

  • Câu 11: Nhận biết
    Chọn khẳng định đúng

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Điểm cực tiểu của hàm số là x = - 1;x =
1

    Điểm cực tiểu của đồ thị hàm số là ( -
1;0),(1;0)

    Điểm cực đại của hàm số là x =
0.

  • Câu 12: Nhận biết
    Tìm vận tốc tức thời của vật

    Một vật rơi tự do có phương trình chuyển động là s(t) = \frac{1}{2}gt^{2}, trong đó g = 9,8m/s^{2}. Tìm vận tốc tức thời của vật tại thời điểm t = 3(s).

    Hướng dẫn:

    Ta có: v(t) = s'(t) =
9,8t.

    Vận tốc tức thời của vật tại thời điểm t
= 3(s)là: v(3) = 9,8.3 =
29,4(m/s).

  • Câu 13: Nhận biết
    Chọn đáp án đúng trong các đáp án dưới đây

    Cho hàm số f\left( x ight) = \frac{{{x^3}}}{3} - \frac{{{x^2}}}{2} - 6x + \frac{3}{4}

    Hướng dẫn:

    Ta có: f'\left( x ight) = {x^2} - x - 6 có hai nghiệm phân biệt là -2 và 3

    => f’(x) < 0 => x \in \left( { - 2;3} ight)

    Vậy hàm số nghịch biến trên khoảng (-2; 3)

  • Câu 14: Vận dụng cao
    Ghi đáp án vào ô trống

    Cho hàm số y = f(x) có đạo hàm f'(x) = x^{2}(x - 1)\left( x^{2} + 2mx +m + 1 ight) với \forallx\mathbb{\in R}m là tham số. Có bao nhiêu giá trị nguyên của m\in (10; + \infty) để hàm số g(x) =f\left( |x| ight) có 5 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm f'(x) = x^{2}(x - 1)\left( x^{2} + 2mx +m + 1 ight) với \forallx\mathbb{\in R}m là tham số. Có bao nhiêu giá trị nguyên của m\in (10; + \infty) để hàm số g(x) =f\left( |x| ight) có 5 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 15: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số y = 2^{x^{2} - 3x +
\frac{13}{4}}. Xét tính đúng sai của các khẳng định dưới đây?

    a) Hàm số nghịch biến trên khoảng ( - 1;\
0). Đúng||Sai

    b) Hàm số đồng biến trên khoảng (0;\
1). Sai||Đúng

    c) Hàm số có giá trị cực tiểu y_{CT} =
2. Đúng||Sai

    d) Hàm số có 2 điểm cực trị. Sai||Đúng

    Đáp án là:

    Cho hàm số y = 2^{x^{2} - 3x +
\frac{13}{4}}. Xét tính đúng sai của các khẳng định dưới đây?

    a) Hàm số nghịch biến trên khoảng ( - 1;\
0). Đúng||Sai

    b) Hàm số đồng biến trên khoảng (0;\
1). Sai||Đúng

    c) Hàm số có giá trị cực tiểu y_{CT} =
2. Đúng||Sai

    d) Hàm số có 2 điểm cực trị. Sai||Đúng

    a) Đúng

    b) Sai

    c) Đúng

    d) Sai

    y = f(x) = 2^{x^{2} - 3x +
\frac{13}{4}}.

    Tập xác định: D\mathbb{= R}.

    Ta có y' = (2x - 3).2^{x^{2} - 3x +\frac{13}{4}}.ln2\ ;y' = 0 \Leftrightarrow x = \frac{3}{2} \in D;f\left( \frac{3}{2} \right) = 2.

    Bảng biến thiên của hàm số y = 2^{x^{2} -
3x + 2}

    Từ bảng biến thiên ta có: Các mệnh đề a) và c) đúng.

    Các mệnh đề b) và d) sai.

  • Câu 16: Thông hiểu
    Chọn đáp án thích hợp

    Cho các hàm số sau: y = x^{2} + 1;y =
\left( 2x^{2} - 1 ight)^{2};y = (2x - 1)\sqrt[3]{x^{2}};y =
\frac{x}{x^{2} + 1}. Có bao nhiêu hàm số có đúng một điểm cực trị?

    Hướng dẫn:

    Ta có:

    y = x^{2} + 1y' = 2x \Rightarrow y' = 0 \Leftrightarrow
x = 0y' đổi dấu khi x qua nghiệm đó nên hàm số có đúng 1 điểm cực trị.

    y = \left( 2x^{2} - 1
ight)^{2}y' = 2\left(
2x^{2} - 1 ight).4x \Rightarrow y' = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = \pm \frac{1}{\sqrt{2}} \\
\end{matrix} ight.y' đổi dấu khi x qua các nghiệm đó nên hàm số có 3 điểm cực trị.

    y = (2x - 1)\sqrt[3]{x^{2}} \Rightarrow
y' = 2\sqrt[3]{x^{2}} + \frac{2(2x - 1)}{3\sqrt[3]{x}} = \frac{10x -
2}{3\sqrt[3]{x}}

    \Rightarrow y' = 0 \Leftrightarrow x
= \frac{1}{5}; y’ không xác định khi x = 0 và y’ đổi dấu khi x qua 0;\frac{1}{5} nên hàm số có hai điểm cực trị.

    y = \frac{x}{x^{2} + 1} \Rightarrow
y' = \frac{1 - x^{2}}{\left( x^{2} + 1 ight)^{2}} = 0
\Leftrightarrow x = \pm 1 và y’ đổi dấu khi x qua các nghiệm đó nên hàm số có hai điểm cực trị.

    Vậy chỉ có một hàm số có đúng một cực trị.

  • Câu 17: Vận dụng cao
    Tìm m để hàm số có 4 tiệm cận

    Cho hàm số y = f(x) là hàm số bậc 2. Đồ thị hàm số y = f’(x) như hình vẽ dưới đây và f(-1) < 20

    Tìm m để hàm số có 4 tiệm cận

    Đồ thị hàm số g\left( x ight) = \frac{{f\left( x ight) - 20}}{{f\left( x ight) - m}} (m là tham số thực) có bốn tiệm cận khi và chỉ khi:

    Hướng dẫn:

     Điều kiện f\left( x ight) e m

    Từ đồ thị hàm số f’(x) ta có bảng biến thiên hàm số f(x) là:

    Tìm m để hàm số có 4 tiệm cận

    Nếu m = 20 thì đồ thị hàm số không có đủ bốn tiệm cận

    Nếu m e 20 thì \mathop {\lim }\limits_{x \to  \pm \infty } \frac{{f\left( x ight) - 20}}{{f\left( x ight) - m}} = 1 => y = 1 là tiệm cận ngang của đồ thị hàm số

    Ta có phương trình f(x) = 20 có một nghiệm x = a > 3 vì f(-1) < 20

    => Đồ thị hàm số g(x) có bốn tiệm cận khi phương trình f(x) = m có ba nghiệm phân biệt khác a

    => f(3) < m < f(-1)

  • Câu 18: Vận dụng
    Xác định hàm số v(t)

    Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250\
km so với bể mặt của Mặt Trăng. Trong khoảng 50 giây đầu tiên kể từ khi đốt cháy các tên lửa hãm, độ cao h của con tàu so với bề mặt của Mặt Trăng được tính (gẩn đúng) bởi hàm h(t) = - 0,01t^{3} + 1,1t^{2} - 30t +
250, trong đó t là thời gian tính bằng giây và h là độ cao tính bằng kilômét. Gọi v(t) là vận tốc tức thời của con tàu ở thời điểm t (giây) kể từ khi đốt cháy các tên lửa hãm với 0 \leq t \leq
50. Vận tốc tức thời của con tàu lúc bắt đầu hãm phanh là bao nhiêu?

    Hướng dẫn:

    Vận tốc tức thời của con tàu ở thời điểm t, v(t), là đạo hàm của hàm số h(t) theo thời gian t. Hàm số h(t) đã cho là: h(t) = - 0,01t^{3} + 1,1t^{2} - 30t +
250

    Để tìm v(t), ta lấy đạo hàm của h(t): v(t) = h^{'}(t) = - 0,03t^{2} + 2,2t -
30

    Vậy hàm số v(t)biểu diễn vận tốc tức thời của con tàu ở thời điểm t là:

    v(t) = - 0,03t^{2} + 2,2t -
30

    Tại thời điểm bắt đầu hãm phanh (t =
0), vận tốc của con tàu là:

    v(0) = - 0,030^{2} + 2,20 - 30 = - 30\
km/s

  • Câu 19: Nhận biết
    Chọn đáp án đúng

    Điểm cực tiểu của đồ thị hàm số y = x^{3}
- 3x + 4 thuộc đường thẳng nào sau đây?

    Hướng dẫn:

    Ta có: y' = 3x^{2} - 3. Do đó y' = 0 \Leftrightarrow 3x^{2} - 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    x = 1 là điểm cực tiểu của hàm số nên điểm A(1;2) là điểm cực tiểu của đồ thị hàm số.

    Nhận thấy A(1;2) thuộc đường thẳng y = x + 1.

    Vậy điểm cực tiểu của đồ thị hàm số y =
x^{3} - 3x + 4 thuộc đường thẳng y
= x + 1.

  • Câu 20: Thông hiểu
    Định giá trị lớn nhất của hàm số chứa căn

    Tìm giá trị lớn nhất M của hàm số f(x) = \sqrt{x - 2} + \sqrt{4 -
x}.

    Hướng dẫn:

    TXĐ: D = \lbrack 2;4brack.

    Đạo hàm f(x) = \frac{1}{2\sqrt{x - 2}} -
\frac{1}{2\sqrt{4 - x}}

    \Rightarrow f'(x) = 0
\Leftrightarrow x = 3 \in \lbrack 2;4brack

    Ta có \left\{ \begin{matrix}
f(2) = \sqrt{2} \\
f(3) = 2 \\
f(4) = \sqrt{2} \\
\end{matrix} ight.\  ightarrow M = 2.

  • Câu 21: Thông hiểu
    Tính thời gian số vi khuẩn đạt max

    Một loại vi khuẩn được tiêm một loại thuốc kích thích sự sinh sản. Sau t phút, số vi khuẩn được xác định theo công thức N(t) = 1000 + 30t^{2} - t^{3}\ (0 \leq t \leq
30). Hỏi sau bao giây thì số vi khuẩn lớn nhất?

    Hướng dẫn:

    Xét hàm số N(t) = 1000 + 30t^{2} - t^{3}\
(0 \leq t \leq 30).

    N'(t) = 60t - 3t^{2}.

    N'(t) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
t = 0 \\
t = 20 \\
\end{matrix} \right..

    Description: A picture containing chartDescription automatically generated

    Với t = 20 giây thì số vi khuẩn lớn nhất.

  • Câu 22: Thông hiểu
    Tìm các tiệm cận của đồ thị hàm số

    Đồ thị hàm số y = \frac{\sqrt{x^{2} - 3x
- 10}}{x - 2} có bao nhiêu đường tiệm cận?

    Hướng dẫn:

    Điều kiện xác định \left\{ \begin{matrix}
x^{2} - 3x - 10 \geq 0 \\
x - 2 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
x \leq - 2 \\
x \geq 5 \\
\end{matrix} ight.\  \\
x eq 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x \leq - 2 \\
x \geq 5 \\
\end{matrix} ight.

    Vậy D = ( - \infty; - 2brack \cup
\lbrack 5; + \infty)

    Xét \lim_{x ightarrow +\infty}\dfrac{\sqrt{x^{2} - 3x - 10}}{x - 2} = \lim_{x ightarrow +\infty}\dfrac{x\sqrt{1 - \dfrac{3}{x} - \dfrac{10}{x^{2}}}}{x - 2}=\lim_{x ightarrow + \infty}\dfrac{\sqrt{1 - \dfrac{3}{x} -\dfrac{10}{x^{2}}}}{1 - \dfrac{2}{x}} = 1

    Vậy y = 1 là tiệm cận ngang của đồ thị hàm số.

    Xét \lim_{x ightarrow -\infty}\dfrac{\sqrt{x^{2} - 3x - 10}}{x - 2} = \lim_{x ightarrow -\infty}\dfrac{- x\sqrt{1 - \dfrac{3}{x} - \dfrac{10}{x^{2}}}}{x - 2}=\lim_{x ightarrow + \infty}\dfrac{- \sqrt{1 - \dfrac{3}{x} -\dfrac{10}{x^{2}}}}{1 - \dfrac{2}{x}} = - 1

    Vậy y = - 1 là tiệm cận ngang của đồ thị hàm số.

    \lim_{x ightarrow
2^{+}}\frac{\sqrt{x^{2} - 3x - 10}}{x - 2};\lim_{x ightarrow
2^{-}}\frac{\sqrt{x^{2} - 3x - 10}}{x - 2} không tồn tại nên đồ thị hàm số đã cho không có tiệm cận đứng.

    Vậy đồ thị hàm số có 2 tiệm cận.

  • Câu 23: Thông hiểu
    Xác định vận tốc của vật khi chạm đất

    Một vật được phóng theo phương thẳng đứng lên trên từ mặt đất với vận tốc ban đầu là 19,6m/s thì độ cao h của nó (tính bằng m) sau t giây được cho bởi công thức h = 19,6t - 4,9t^{2}. Tìm vận tốc của vật khi nó chạm đất.

    Hướng dẫn:

    Tại thời điểm mà vật đạt độ cao bằng 0, ta có: 0 = 19,6t - 4,9t^{2} \Leftrightarrow 0 = t(19,6 -
4,9t) \Leftrightarrow \left\lbrack \begin{matrix}
t = 0 \\
t = 4 \\
\end{matrix} \right.

    Khi t = 4 (thời điểm vật chạm đất), ta có:19,6 - 9,8(4) = -
19,6.

    Vậy vận tốc của vật khi nó chạm đất là 19,6 m/s.

  • Câu 24: Nhận biết
    Tìm tiệm cận đứng của đồ thị hàm số

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Kết luận nào sau đây đầy đủ về đường tiệm cận của đồ thị hàm số y = f(x)?

    Hướng dẫn:

    Ta có \lim_{x ightarrow - 1}f(x) =
\sqrt{2} eq \pm \infty nên đồ thị hàm số không có TCĐ.

    Ta có \lim_{x ightarrow - \infty}f(x) =
- 1 ightarrow y = - 1 là TCN; \lim_{x ightarrow + \infty}f(x) = 1 ightarrow
y = 1 là TCN.

    Vậy câu đúng là: “Đồ thị hàm số có đường tiệm cận ngang y = \pm 1”.

  • Câu 25: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y = \frac{\sqrt{x - 1} - 1}{x
- 2}. Hỏi đồ thị hàm số đã cho có bao nhiêu đường tiệm cận?

    Hướng dẫn:

    Tập xác định D = \lbrack 1;2) \cup (2; +
\infty)

    Ta có:

    \lim_{x ightarrow 1^{+}}y = \lim_{x
ightarrow 1^{+}}\frac{\sqrt{x - 1} - 1}{x - 2} = 1

    \lim_{x ightarrow 2^{-}}y = \lim_{x
ightarrow 2^{-}}\frac{\sqrt{x - 1} - 1}{x - 2} = \lim_{x ightarrow
2^{-}}\frac{x - 2}{(x - 2)\left( \sqrt{x - 1} + 1 ight)} = \lim_{x
ightarrow 2^{-}}\frac{1}{\sqrt{x - 1} + 1} = \frac{1}{2}

    \lim_{x ightarrow 2^{+}}y = \lim_{x
ightarrow 2^{+}}\frac{\sqrt{x - 1} - 1}{x - 2} = \lim_{x ightarrow
2^{+}}\frac{x - 2}{(x - 2)\left( \sqrt{x - 1} + 1 ight)} = \lim_{x
ightarrow 2^{+}}\frac{1}{\sqrt{x - 1} + 1} = \frac{1}{2}

    \lim_{x ightarrow + \infty}y = \lim_{x
ightarrow + \infty}\frac{\sqrt{x - 1} - 1}{x - 2} = 0

    Vậy đồ thị có một tiệm cận ngang y =
0.

  • Câu 26: Nhận biết
    Chọn đáp án đúng

    Cho hàm số y = f(x) liên tục trên \lbrack - 1;5brack và có đồ thị như hình vẽ:

    Xác định hiệu số giữa giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn \lbrack -
1;5brack?

    Hướng dẫn:

    Từ đồ thị hàm số ta có: \max_{\lbrack -
1;5brack}y = 3;\min_{\lbrack - 1;5brack}y = - 2

    Khi đó \max_{\lbrack - 1;5brack}y -
\min_{\lbrack - 1;5brack}y = 5.

  • Câu 27: Nhận biết
    Chọn kết luận đúng nhất

    Hình vẽ cho biết nhiệt độ trung bình các tháng năm 2020 tại Thành phố Hồ Chí Minh đo bằng đơn vị \ ^{0}C. Hãy cho biết trong năm 2020 tại Thành phố Hồ Chí Minh thì nhiệt độ trung bình của tháng nào cao nhất, nhiệt độ trung bình của tháng nào thấp nhất?

    Nhiệt độ trung bình các tháng năm 2020 tại TPHCM

    Hướng dẫn:

    Từ hình vẽ ta thấy nhiệt độ trung bình của tháng cao nhất là tháng 4. Nhiệt độ trung bình của tháng thấp nhất là tháng 12.

  • Câu 28: Nhận biết
    Đồ thị hàm số có đường tiệm cận ngang

    Cho hàm số f(x) có bảng biến thiên như sau:

    Đồ thị hàm số có đường tiệm cận ngang

    Đồ thị hàm số có đường tiệm cận ngang là:

    Hướng dẫn:

    Dựa vào bảng biến thiên ta có \mathop {\lim }\limits_{x \to \infty } f\left( x ight) = 2

    => Đồ thị hàm số đường tiệm cận ngang là y = 2

  • Câu 29: Thông hiểu
    Tìm tiệm cận ngang của hàm số

    Đồ thị hàm số y = x - \sqrt {{x^2} - 4x + 2} có tiệm cận ngang là:

    Gợi ý:

    Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = {y_0};\mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = {y_0}

    Hướng dẫn:

    Tập xác định D = \mathbb{R}

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  + \infty } \left( {x - \sqrt {{x^2} - 4x + 2} } ight) = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{4x - 2}}{{x + \sqrt {{x^2} - 4x + 2} }} = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{4 - \dfrac{2}{x}}}{{1 + \sqrt {1 - \dfrac{4}{x} + \dfrac{2}{{{x^2}}}} }} = 2 \hfill \\  \mathop {\lim }\limits_{x \to  - \infty } \left( {x - \sqrt {{x^2} - 4x + 2} } ight) = \mathop {\lim }\limits_{x \to \infty } \left( {1 + \sqrt {1 - \dfrac{4}{x} + \dfrac{4}{{{x^2}}}} } ight) =  - \infty  \hfill \\ \end{matrix}

    \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to  - \infty } x =  - \infty } \\   {\mathop {\lim }\limits_{x \to  - \infty } \left( {1 + \sqrt {1 - \dfrac{4}{x} + \dfrac{2}{{{x^2}}}} } ight) = 2 > 0} \end{array}} ight. nên đồ thị hàm số có đường tiệm cận ngang là y = 2.

  • Câu 30: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y = f(x) có đồ thị như hình vẽ. Giá trị lớn nhất của hàm số f(x) trên đoạn \lbrack 0;2brack là:

    Hướng dẫn:

    Dựa vào đồ thị ta thấy trên đoạn \lbrack
0;2brack hàm số f(x) có giá trị lớn nhất bằng 4 khi x = \sqrt{2}

    Suy ra \underset{\lbrack
0;2brack}{Max}f(x) = 4

  • Câu 31: Thông hiểu
    Ghi đáp án vào ô trống

    Cho hàm số y = f(x) có đạo hàm f'(x) = (x + 1)\left( x^{2} - 1ight)(x - 3)^{3};\forall x\mathbb{\in R}. Hỏi hàm số y = f\left( |x| ight) có bao nhiêu cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm f'(x) = (x + 1)\left( x^{2} - 1ight)(x - 3)^{3};\forall x\mathbb{\in R}. Hỏi hàm số y = f\left( |x| ight) có bao nhiêu cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 32: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số y = \sqrt{2x^{2} +1}. Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

    Ta có D\mathbb{= R}, y' = \frac{2x}{\sqrt{2x^{2} + 1}}; y' > 0 \Leftrightarrow x >
0.

    Vậy hàm số nghịch biến trên khoảng ( -
\infty;\ 0) và đồng biến trên khoảng (0;\  + \infty).

  • Câu 33: Vận dụng cao
    Tìm số phần tử của tập hợp S

    Cho hàm số f(x) = x^{3} - 3x^{2} + m^{2}
- 2m với m là tham số. Gọi S tập hợp tất cả các giá trị nguyên của tham số m thỏa mãn 3\max_{\lbrack - 3;1brack}f\left( |x| ight) +
2\min_{\lbrack - 3;1brack}f\left( |x| ight) \leq 112. Số phần tử của tập hợp S bằng:

    Hướng dẫn:

    Ta có: f\left( |x| ight) = f\left( | -
x| ight);\forall x\mathbb{\in R}

    \Rightarrow \left\{ \begin{matrix}
\max_{\lbrack - 3;1brack}f\left( |x| ight) = \max_{0;3}f(x) \\
\min_{\lbrack - 3;1brack}f\left( |x| ight) = \min_{\lbrack
0;3brack}f(x) \\
\end{matrix} ight.

    Đạo hàm f'(x) = 3x^{2} - 6x =
0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \Rightarrow f(0) = m^{2} - 2m \\
x = 2 \Rightarrow f(2) = m^{2} - 2m - 4 \\
\end{matrix} ight.f(3) =
m^{2} - 2m

    Suy ra 3\max_{\lbrack -
3;1brack}f\left( |x| ight) + 2\min_{\lbrack - 3;1brack}f\left( |x|
ight) \leq 112

    \Leftrightarrow 3\left( m^{2} - 2m
ight) + 2\left( m^{2} - 2m - 4 ight) \leq 112

    \Leftrightarrow m^{2} - 2m - 24 \leq 0
\Leftrightarrow - 4 \leq m \leq 6

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 4; - 3;...;5;6 ight\}

    Vậy có tất cả 11 giá trị nguyên của tham số m.

  • Câu 34: Nhận biết
    Tìm kết luận đúng

    Cho hàm số y = f(x) có đồ thị như hình vẽ bên.

    Mệnh đề nào sau đây là đúng?

    Hướng dẫn:

    Nhìn vào đồ thị đã cho, ta có trên khoảng ( - \infty;1) đồ thị hàm số đi xuống (theo chiều từ trái qua phải) nên nghịch biến trên khoảng ( - \infty;1).

  • Câu 35: Thông hiểu
    Tính tổng đường tiệm cận ngang và tiệm cận đứng

    Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \frac{x - 3}{\sqrt{9 - x^{2}}} là:

    Hướng dẫn:

    Tập xác định D = ( - 3;3) suy ra đồ thị hàm số không có tiệm cận ngang.

    \lim_{x ightarrow 3^{-}}\frac{x -
3}{\sqrt{9 - x^{2}}} = \lim_{x ightarrow 3^{-}}\frac{x - 3}{\sqrt{(3 -
x)(3 + x)}} = \lim_{x ightarrow 3^{-}}\frac{- \sqrt{3 - x}}{\sqrt{3 +
x}} = 0

    Suy ra x = 3 không là đường tiệm cận đứng của đồ thị hàm số.

    \lim_{x ightarrow - 3^{+}}\frac{x -
3}{\sqrt{9 - x^{2}}} = \lim_{x ightarrow - 3^{+}}\frac{x - 3}{\sqrt{(3
- x)(3 + x)}} = \lim_{x ightarrow - 3^{+}}\frac{- \sqrt{3 -
x}}{\sqrt{3 + x}} = - \infty

    Suy ra x = - 3 là đường tiệm cận đứng của đồ thị hàm số.

    Vậy đồ thị hàm số có 1 đường tiệm cận.

  • Câu 36: Nhận biết
    Tìm giá trị lớn nhất của hàm số

    Tìm giá trị lớn nhất của hàm số f(x) =
2x^{3} + 3x^{2} - 12x + 2 trên đoạn [ - 1;2]?

    Hướng dẫn:

    Đạo hàm f'(x) = 6x^2 + 6x -12

    \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \in \lbrack - 1;2brack \\
x = - 2 otin \lbrack - 1;2brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
f( - 1) = 15 \\
f(1) = - 5 \\
f(2) = 6 \\
\end{matrix} ight.\  \Rightarrow \max_{\lbrack - 1;2brack}f(x) =
15 .

  • Câu 37: Vận dụng
    Tìm m thỏa mãn điều kiện

    Cho hàm số y = - x^{3} + 3mx^{2} - 3m -1 với m là tham số thực. Tìm giá trị của m để đồ thị hàm số đã cho có hai điểm cực trị đối xứng với nhau qua đường thẳng d:x + 8y - 74 = 0.

    Hướng dẫn:

    Ta có y' = - 3x^{2} + 6mx = - 3x(x -
2m)

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = 2m \\
\end{matrix} ight..

    Để đồ thị hàm số có hai điểm cực trị \Leftrightarrow m eq 0.

    Khi đó gọi A(0; - 3m - 1)B\left( 2m;4m^{3} - 3m - 1 ight) là hai điểm cực trị của đồ thị hàm số.

    Suy ra trung điểm của AB là điểm I\left( m;2m^{3} - 3m - 1
ight)\overrightarrow{AB} =
\left( 2m;4m^{3} ight) = 2m\left( 1;2m^{2} ight).

    Đường thẳng d có một vectơ chỉ phương là \overrightarrow{u} = (8; -
1).

    Ycbt \Leftrightarrow \left\{
\begin{matrix}
I \in d \\
\overrightarrow{AB}.\overrightarrow{u} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m + 8\left( 2m^{3} - 3m - 1 ight) - 74 = 0 \\
8 - 2m^{2} = 0 \\
\end{matrix} ight.\  \Leftrightarrow m = 2

  • Câu 38: Vận dụng
    Ghi đáp án vào ô trống

    Cho hàm số f(x) liên tục trên \lbrack - 1;3brack và có đồ thị như hình vẽ:

    Giá trị lớn nhất của hàm số y = g(x) =f\left( 3\left| \cos x ight| - 1 ight) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số f(x) liên tục trên \lbrack - 1;3brack và có đồ thị như hình vẽ:

    Giá trị lớn nhất của hàm số y = g(x) =f\left( 3\left| \cos x ight| - 1 ight) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 39: Vận dụng cao
    Tìm khoảng đồng biến của hàm số

    Cho y = f\left( x ight) hàm số có f'\left( x ight) = \left( {x - 2} ight)\left( {x + 5} ight)\left( {x + 1} ight). Hàm số y = f\left( {{x^2}} ight) đồng biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Xét dấu f’(x) như sau:

    Tìm khoảng đồng biến của hàm số

    Ta có:

    \begin{matrix}  y' = \left( {f\left( {{x^2}} ight)} ight)' = 2xf'\left( {{x^2}} ight) \hfill \\  y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {f'\left( {{x^2}} ight) = 0} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = \sqrt 2 } \\   {x =  - \sqrt 2 } \end{array}} ight. \hfill \\ \end{matrix}

    Chọn x = 1 \in \left( {0;\sqrt 2 } ight) ta có: y'\left( 1 ight) = 2.1.f'\left( {{1^2}} ight) = 2.f'\left( {{1^2}} ight) < 0

    => \left( {0;\sqrt 2 } ight) là khoảng âm

    Khi đó bảng xét dấu của y’ = (f(x2))’ như sau:

    Tìm khoảng đồng biến của hàm số

    Từ trục xét dấu ta thấy. Hàm số y = f(x2) đồng biến trên (-1; 0)

  • Câu 40: Thông hiểu
    Tìm điều kiện của m thỏa mãn yêu cầu bài toán

    Tập hợp tất cả các giá trị của tham số m để hàm số y
= x^{3} + 2x^{2} + (m + 1)x - m^{2} đồng biến trên khoảng ( - \infty; + \infty) là:

    Hướng dẫn:

    Hàm số đồng biến trên \mathbb{R} khi và chỉ khi y' = 3x^{2} + 4x + m + 1
\geq 0;\forall x\mathbb{\in R}

    \Leftrightarrow \left\{ \begin{matrix}
a = 3 > 0 \\
\Delta' = 2^{2} - 3(m + 1) \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow m \geq \frac{1}{3}

    Vậy m \in \left( \frac{1}{3}; + \infty
ight) là giá trị cần tìm.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (32%):
    2/3
  • Thông hiểu (42%):
    2/3
  • Vận dụng (15%):
    2/3
  • Vận dụng cao (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo