Cho hàm số có đạo hàm
. Hàm số
đồng biến trên khoảng nào sau đây?
Ta có bảng xét dấu:
Từ bảng xét dấu trên ta có hàm số đồng biến trên
.
Cho hàm số có đạo hàm
. Hàm số
đồng biến trên khoảng nào sau đây?
Ta có bảng xét dấu:
Từ bảng xét dấu trên ta có hàm số đồng biến trên
.
Cho hàm số có bảng biến thiên như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Hàm số đã cho đồng biến trên khoảng và
.
Tìm tất cả các giá trị thực của tham số để đồ thị hàm số
có đường tiệm cận ngang.
Đồ thị hàm số có đường tiệm cận ngang khi và chỉ khi các giới hạn
và
tồn tại hữu hạn.
Ta có:
Với .
Khi đó suy ra đồ thị không có tiệm cận ngang.
Với , khi đó hàm số có tập xác định:
nên ta không xét trường hợp
hay
được.
Do đó hàm số không có tiệm cận ngang.
Với , khi đó hàm số có tập xác định
và
là TCN.
Tìm tất cả các giá trị của tham số m để hàm số ; (
là tham số) đồng biến trên tập số thực?
Ta có:
Hàm số đã cho đồng biến trên khi và chỉ khi
Vậy đáp án cần tìm là .
Một máy bay loại nhỏ bắt đầu hạ cánh, đường bay của nó khi gắn với hệ trục toạ độ được mô phỏng ở hình. Biết đường bay của nó có dạng đồ thị hàm số bậc ba; vị trí bắt đầu hạ cánh có toạ độ
là điểm cực đại của đồ thị hàm số và máy bay tiếp đất tại vị trí gốc toạ độ là điểm cực tiểu của đồ thị hàm số.

a) Hàm số mô phỏng đường bay của máy bay trên đoạn là hàm số bậc 3 có hệ số a âm. Sai|Đúng
b) Công thức xác định hàm số mô phỏng đường bay của máy bay trên đoạn là
. Đúng||Sai
c) Khi máy bay cách vị trí hạ cánh theo phương ngang 3 dặm thì máy bay cách mặt đất là dặm? (Biết đơn vị trên hệ trục toạ độ là dặm). Sai|Đúng
d) Khi ở độ cao 0,5 dặm, máy bay cách vị trí hạ cánh theo phương ngang 2 dặm. Đúng||Sai
Một máy bay loại nhỏ bắt đầu hạ cánh, đường bay của nó khi gắn với hệ trục toạ độ được mô phỏng ở hình. Biết đường bay của nó có dạng đồ thị hàm số bậc ba; vị trí bắt đầu hạ cánh có toạ độ
là điểm cực đại của đồ thị hàm số và máy bay tiếp đất tại vị trí gốc toạ độ là điểm cực tiểu của đồ thị hàm số.

a) Hàm số mô phỏng đường bay của máy bay trên đoạn là hàm số bậc 3 có hệ số a âm. Sai|Đúng
b) Công thức xác định hàm số mô phỏng đường bay của máy bay trên đoạn là
. Đúng||Sai
c) Khi máy bay cách vị trí hạ cánh theo phương ngang 3 dặm thì máy bay cách mặt đất là dặm? (Biết đơn vị trên hệ trục toạ độ là dặm). Sai|Đúng
d) Khi ở độ cao 0,5 dặm, máy bay cách vị trí hạ cánh theo phương ngang 2 dặm. Đúng||Sai
a. Sai
b) .
c) Thay , ta được
.
Vậy khi máy bay cách vị trí hạ cánh theo phương ngang 3 dặm thì máy bay cách mặt đất (dặm).
d) Thay ta được
. Do
nên
.
Tìm tất cả các giá trị của tham số để hàm số
đạt cực tiểu tại
?
Tập xác định
Ta có:
Hàm số đạt cực tiểu tại
Lại có:
Để hàm số đạt cực tiểu tại thì
thỏa mãn.
vậy giá trị m cần tìm là .
Cho hàm số có bảng biến thiên như hình vẽ dưới đây. Hỏi đồ thị của hàm số đã cho có bao nhiêu đường tiệm cận?
Dựa vào bảng biến thiên ta có:
, suy ra đường thẳng
là tiệm cận đứng của đồ thị hàm số.
, suy ra đường thẳng
là tiệm cận đứng của đồ thị hàm số.
, suy ra đường thẳng
là tiệm cận ngang của đồ thị hàm số.
Vậy đồ thị hàm số có 3 đường tiệm cận.
Cho hàm số xác định, liên tục trên
và có đồ thị như hình vẽ
Giá trị lớn nhất của hàm số trên
là
Từ đồ thị hàm số, ta thấy hàm số đạt giá trị lớn nhất bằng 3 tại x = 1.
Tìm tất cả các giá trị thực của tham số để đồ thị hàm số
nhận đường thẳng
làm tiệm cận ngang.
Ta có là TCN.
Do đó theo yêu cầu bài toán .
Cho hàm số có bảng xét dấu
như sau:
Hàm số đồng biến trong khoảng nào dưới đây?
Cho hàm số có bảng xét dấu
như sau:
Hàm số đồng biến trong khoảng nào dưới đây?
Tiệm cận đứng của đồ thị hàm số là
Ta có:
. Suy ta tiệm cận đứng là đường thẳng
.
Một loại vi khuẩn được tiêm một loại thuốc kích thích sự sinh sản. Sau t phút, số vi khuẩn được xác định theo công thức . Hỏi sau bao giây thì số vi khuẩn lớn nhất?
Xét hàm số .
.
.

Với giây thì số vi khuẩn lớn nhất.
Cho hàm số với
là tham số thực. Tìm tất cả các giá trị của
để hàm số có điểm cực đại và điểm cực tiểu nằm trong khoảng
.
Ta có
Để hàm số có hai cực trị có hai nghiệm phân biệt
.
Nếu , ycbt
.
Nếu , ycbt
.
Vậy .
Cho hàm số xác định trên tập số thực và có đạo hàm
. Xét tính đúng sai của các khẳng định sau:
a) Hàm số đồng biến trên khoảng . Đúng||Sai
b) Hàm số nghịch biến trên khoảng . Đúng||Sai
c) Đồ thị hàm số có hai điểm cực trị. Sai|| Đúng
d) Đồ thị hàm số có một điểm cực tiểu. Đúng||Sai
Cho hàm số xác định trên tập số thực và có đạo hàm
. Xét tính đúng sai của các khẳng định sau:
a) Hàm số đồng biến trên khoảng . Đúng||Sai
b) Hàm số nghịch biến trên khoảng . Đúng||Sai
c) Đồ thị hàm số có hai điểm cực trị. Sai|| Đúng
d) Đồ thị hàm số có một điểm cực tiểu. Đúng||Sai
Ta có:
Bảng biến thiên:
a) Hàm số đồng biến trên khoảng .
b) Hàm số nghịch biến trên khoảng nên nghịch biến trên
.
c) Hàm số có đúng một điểm cực trị.
d) Hàm số có đúng một điểm cực tiểu .
Số giá trị nguyên của tham số để hàm số
đồng biến trên
?
Theo yêu cầu bài toán
Mà
Vậy có tất cả 3 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Cho hàm số . Xét tính đúng sai của các nhận định dưới đây?
a) Hàm số đồng biến trên khoảng
Sai||Đúng
b) Cực đại của hàm số là
Đúng||Sai
c) Hàm số có ba điểm cực trị. Sai||Đúng
d) Hàm số nghịch biến trên khoảng
Sai||Đúng
Cho hàm số . Xét tính đúng sai của các nhận định dưới đây?
a) Hàm số đồng biến trên khoảng
Sai||Đúng
b) Cực đại của hàm số là
Đúng||Sai
c) Hàm số có ba điểm cực trị. Sai||Đúng
d) Hàm số nghịch biến trên khoảng
Sai||Đúng
|
a) Sai |
b) Đúng |
c) Sai |
d) Sai |
Tập xác định: .
.
Bảng biến thiên:

a) Từ bảng biến thiên suy ra mệnh đề sai.
b) Mệnh đề đúng.
c) Hàm số chỉ có hai điểm cực trị là và
Vậy mệnh đề sai.
d) Do hàm số không xác định tại thuộc
nên mệnh đề sai.
Cho hàm số (với
là tham số thực) thỏa mãn
. Mệnh đề nào dưới đây là đúng?
Đạo hàm
TH1. Với suy ra
nên hàm số
nghịch biến trên mỗi khoảng xác định.
Khi đó (thỏa mãn).
TH2. Với suy ra
nên hàm số
đồng biến trên mỗi khoảng xác định.
Khi đó (Không thỏa mãn).
Vậy là giá trị cần tìm và thỏa mãn điều kiện
.
Một công ty sản xuất dụng cụ thể thao nhận được một đơn đặt hàng sản xuất 8000 quả bóng tennis. Công ty này sở hữu một số máy móc, mỗi máy có thể sản xuất 30 quả bóng trong một giờ. Chi phí thiết lập các máy này là 200 nghìn đồng cho mỗi máy. Khi được thiết lập, hoạt động sản xuất sẽ hoàn toàn diễn ra tự động dưới sự giám sát. Số tiền phải trả cho người giám sát là 192 nghìn đồng một giờ. Số máy móc công ty nên sử dụng là bao nhiêu để chi phí hoạt động là thấp nhất?
Một công ty sản xuất dụng cụ thể thao nhận được một đơn đặt hàng sản xuất 8000 quả bóng tennis. Công ty này sở hữu một số máy móc, mỗi máy có thể sản xuất 30 quả bóng trong một giờ. Chi phí thiết lập các máy này là 200 nghìn đồng cho mỗi máy. Khi được thiết lập, hoạt động sản xuất sẽ hoàn toàn diễn ra tự động dưới sự giám sát. Số tiền phải trả cho người giám sát là 192 nghìn đồng một giờ. Số máy móc công ty nên sử dụng là bao nhiêu để chi phí hoạt động là thấp nhất?
Cho hàm số y = f(x) liên tục trên và y = f’(x) có bảng biến thiên như sau:

Đồ thị hàm số có nhiều nhất bao nhiêu tiệm cận đứng:
Điều kiện
Để đồ thị hàm số có đường tiệm cận đứng
thì phải có nghiệm.
Từ bảng biến thiên của hàm số y = f’(x) suy ra phương trình f’(x) = 0 có đúng hai nghiệm là với
Từ đó ta có bảng biến thiên của hàm số y = f(x) như sau:

=> Phương trình y = f(x) có nhiều nhất ba nghiệm phân biệt
Vậy đồ thị hàm số có nhiều nhất ba đường tiệm cận đứng.
Cho hàm số với
là tham số. Tìm tất cả các giá trị nguyên của tham số
để hàm số đã cho có đúng
điểm cực trị?
Cho hàm số với
là tham số. Tìm tất cả các giá trị nguyên của tham số
để hàm số đã cho có đúng
điểm cực trị?
Giá trị lớn nhất của hàm số trên đoạn
là:
Ta có:
Cho hàm số liên tục và có đạo hàm trên
, biết
có đồ thị như hình vẽ:
Điểm cực đại của hàm số đã cho là:
Dựa vào đồ thị hàm số ta có:
Khi đó ta có bảng xét dấu như sau:
Dựa vào bảng xét dấu suy ra điểm cực đại của hàm số là
.
Cho hàm số xác định, liên tục trên
và có đồ thị là đường cong như hình vẽ.
Giá trị lớn nhất và giá trị nhỏ nhất
của hàm số
trên
là:
Dựa vào đồ thị .
Cho hàm số có
và
. Khẳng định nào sau đây là khẳng định đúng?
Theo định nghĩa về tiệm cận, ta có:
là TCN.
là TCĐ.
Tìm giá trị lớn nhất của hàm số
.
Ta có .
Đặt
Khi đó, bài toán trở thành Tìm giá trị lớn nhất của hàm số
trên đoạn
.
Đạo hàm
Ta có
Có bao nhiêu giá trị nguyên dương của tham số để đồ thị hàm số
có ba đường tiệm cận?
Ta có: nên suy ra hàm số có 1 đường tiệm cận ngang là
Để đồ thị hàm số có 3 đường tiệm cận thì phải có 2 tiệm cận đứng hay phương trình có hai nghiệm phân biệt khác
Do m nguyên dương nên có 14 giá trị m thỏa mãn.
Cho hàm số có bảng biến thiên như sau:

Xét tính đúng sai của các nhận định dưới đây?
a) Hàm số đồng biến trên khoảng
Sai||Đúng
b) Hàm số nghịch biến trên khoảng
Đúng||Sai
c) Hàm số đạt cực đại tại
Sai||Đúng
d) Giá trị cực tiểu của hàm số là
Đúng||Sai
Cho hàm số có bảng biến thiên như sau:

Xét tính đúng sai của các nhận định dưới đây?
a) Hàm số đồng biến trên khoảng
Sai||Đúng
b) Hàm số nghịch biến trên khoảng
Đúng||Sai
c) Hàm số đạt cực đại tại
Sai||Đúng
d) Giá trị cực tiểu của hàm số là
Đúng||Sai
|
a) Sai |
b) Đúng |
c) Sai |
d) Đúng |
a) Hàm số đồng biến trên các khoảng
và
b) Hàm số nghịch biến trên khoảng
c) Hàm số đạt cực đại tại
d) Giá trị cực tiểu của hàm số là
Tất cả các giá trị của tham số để hàm số
có ba điểm cực trị phân biệt là:
Hàm số có ba điểm cực trị khi và chỉ khi
.
Để hàm số đa cho có ba điểm cực trị khi và chỉ khi .
Cho đồ thị hàm số như hình vẽ dưới đây:

Đồ thị hàm số tương ứng với hàm số nào sau đây?
Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Từ đồ thị hàm số ta có tiệm cận đứng là x = 1, tiệm cận ngang là y = 1
=> Loại A và B
Xét thấy giao điểm của đồ thị hàm số với trục tung là (0; -2) => Chọn đáp án C
Cho hàm số . Xét tính đúng sai của các khẳng định sau:
a) Tập xác định của hàm số là . Sai||Đúng
b) Đạo hàm của hàm số là . Đúng||Sai
c) Giá trị lớn nhất của hàm số trên là 2. Sai||Đúng
d) Giá trị nhỏ nhất của hàm số trên là
. Đúng||Sai
Cho hàm số . Xét tính đúng sai của các khẳng định sau:
a) Tập xác định của hàm số là . Sai||Đúng
b) Đạo hàm của hàm số là . Đúng||Sai
c) Giá trị lớn nhất của hàm số trên là 2. Sai||Đúng
d) Giá trị nhỏ nhất của hàm số trên là
. Đúng||Sai
Tập xác định của hàm số là .
Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số.
Ta có:
Khi đó
Ta có:
Cho hàm số biết hàm số
có đạo hàm
và hàm số
có đồ thị như hình vẽ. Đặt
. Kết luận nào sau đây đúng?
Ta có:
.
Ta có:
Hàm số đồng biến
.
Hàm số nghịch biến
.
Vậy hàm số đồng biến trên khoảng
;
và nghịch biến trên khoảng
;
.
Hình bên cho biết sự thay đổi của nhiệt độ ở một thành phố trong một ngày. Thời điểm nào trong ngày có nhiệt độ thấp nhất ?

Từ đồ thị ta thấy thời điểm có nhiệt độ thấp nhất trong ngày là vào 4h sáng.
Tìm hàm số luôn đồng biến trên từng khoảng xác định?
Xét hàm số
Tập xác định . Ta có:
Vậy hàm số đồng biến trên các khoảng .
Điểm cực tiểu của đồ thị hàm số thuộc đường thẳng nào sau đây?
Ta có: . Do đó
Vì là điểm cực tiểu của hàm số nên điểm
là điểm cực tiểu của đồ thị hàm số.
Nhận thấy thuộc đường thẳng
.
Vậy điểm cực tiểu của đồ thị hàm số thuộc đường thẳng
.
Một viên đạn được bắn lên cao theo phương thẳng đứng có phương trình chuyển động , trong đó
,
là thời gian chuyển động,
là độ cao so với mặt đất. Tính vận tốc tức thời của viên đạn khi viên đạn đạt được độ cao
.
Vận tốc tức thời của viên đạn tại thời điểm là:
Viên đạn đạt được độ caovào thời điểm
kể từ lúc bắn, khi đó vận tốc tức thời của viên đạn là:
.
Một chuyển động thẳng xác định bởi phương trình , trong đó
tính bằng mét và
là thời gian tính bằng giây. Tính vận tốc tức thời tại thời điểm
.
Ta có .
Vận tốc tức thời tại thời điểm là
.
Giá trị lớn nhất của hàm số trên đoạn [-1;2] có giá trị là một số thuộc khoảng nào dưới đây?
Có bao nhiêu giá trị nguyên của tham số để hàm số
không có điểm cực trị?
Ta có:
Hàm số đã cho không có cực trị khi và chỉ khi vô nghiệm hoặc có nghiệm kép.
Vì
Vậy có bốn giá trị của tham số thỏa mãn yêu cầu bài toán.
Tìm tất cả các giá trị của tham số để hàm số
nghịch biến trên khoảng
?
Tập xác định
Ta có:
Theo yêu cầu bài toán:
Vậy đáp án cần tìm là .
Cho hai số thực thỏa mãn
. Tìm giá trị nhỏ nhất của biểu thức
?
Đáp án: 2025
Cho hai số thực thỏa mãn
. Tìm giá trị nhỏ nhất của biểu thức
?
Đáp án: 2025
Giả thiết cho
Xét hàm số trên
Suy ra
Vậy hàm số luôn đồng biến trên
nên ta có:
Suy ra:
Xét hàm số
luôn nghịch biến trên
luôn nghịch biến trên
Vậy khi
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: