Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Chương 6 Một số yếu tố xác suất Cánh Diều

Mô tả thêm:

Trong chương trình Toán 12 Cánh Diều, Chương 6 về một số yếu tố xác suất là chuyên đề quan trọng, cung cấp nền tảng để học sinh hiểu rõ hơn về quy tắc cộng, quy tắc nhân, biến cố và xác suất của biến cố. Đây là nội dung thường xuyên xuất hiện trong các đề kiểm tra ngắn hạn cũng như đề thi học kỳ. Việc luyện tập với đề kiểm tra 15 phút Chương 6 Toán 12 giúp học sinh ôn tập kiến thức cơ bản, rèn luyện kỹ năng tư duy logic và làm quen với các dạng toán xác suất điển hình. Bài viết này sẽ cung cấp đề kiểm tra 15 phút Toán 12 Cánh Diều kèm đáp án chi tiết, giúp học sinh dễ dàng ôn tập và đạt kết quả cao.

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Vận dụng

    Chọn đáp án chính xác

    Cho hai hộp đựng các viên bi có cùng kích thước và khối lượng như sau:

    Hộp thứ nhất có 3 viên bi xanh và 6 viên vi đỏ.

    Hộp thứ hai có 3 viên vi xanh và 7 viên bi đỏ.

    Lấy ngẫu nhiên ra một viên bi từ hộp thứ nhất chuyển sang hộp thứ hai. Sau đó lại lấy ngẫu nhiên đồng thời hai viên từ hộp thứ hai, biết rằng hai bi lấy ra từ hộp thứ hai là bi màu đỏ, tính xác suất viên bi lấy ra từ hộp thứ nhất cũng là bi màu đỏ.

    Gọi A1: “Lấy ra một bi một màu xanh ở hộp thứ nhất”

    Và A2: “Lấy ra một bi một màu đỏ ở hộp thứ nhất”

    Nên A_{1};A_{2} là hệ biến cố đầy đủ

    Gọi B: “Hai bi lấy ra từ hộp thứ hai là màu đỏ”

    Ta có:

    P\left( A_{1} ight) =
\frac{C_{3}^{1}}{C_{9}^{1}} = \frac{1}{3};P\left( A_{2} ight) =
\frac{C_{6}^{1}}{C_{9}^{1}} = \frac{2}{3}

    P\left( B|A_{1} ight) =
\frac{C_{7}^{2}}{C_{11}^{2}} = \frac{21}{55};P\left( B|A_{2} ight) =
\frac{C_{8}^{2}}{C_{11}^{2}} = \frac{28}{55}

    Áp dụng công thức xác suất toàn phần

    P(B) = P\left( B|A_{1} ight).P\left(
A_{1} ight) + P\left( B|A_{2} ight).P\left( A_{2}
ight)

    \Rightarrow P(B) =
\frac{1}{3}.\frac{21}{55} + \frac{2}{3}.\frac{28}{55} =
\frac{7}{15}

    Xác suất viên bi lấy ra từ hộp thứ nhất màu đỏ, biết rằng hai bi lấy ra từ hộp thứ hai màu đỏ, ta áp dụng công thức Bayes:

    P\left( A_{2}|B ight) = \dfrac{P\left(B|A_{2} ight).P\left( A_{2} ight)}{P(B)} =\dfrac{\dfrac{28}{55}.\dfrac{2}{3}}{\dfrac{7}{15}} =\dfrac{8}{11}

  • Câu 2: Nhận biết

    Tính P(AB)

    Cho hai biến cố A,\ B với P(B) = 0,8;P(A/B) = 0,5. Tính P(AB).

    Ta có P(AB) = P(A/B)P(B) = 0,5.0,8 =
0,4

  • Câu 3: Vận dụng cao

    Chọn đáp án đúng

    Một loại linh kiện do 3 nhà máy số I, số II, số III cùng sản xuất. Tỷ lệ phế phẩm của các nhà máy lần lượt là: I; 0,04; II: 0,03 và III: 0,05. Trong 1 lô linh kiện để lẫn lộn 80 sản phẩm của nhà máy số I, 120 của nhà máy số II và 100 của nhà máy số III. Khách hàng lấy phải một linh kiện loại phế phẩm từ lô hàng đó. Khả năng linh kiện đó do nhà máy nào sản xuất là cao nhất?

    Gọi E1 là biến cố phế phẩm máy số I

    \Rightarrow P\left( E_{1} ight) = 0,04
\Rightarrow P\left( \overline{E_{1}} ight) = 1 - 0,04 =
0,96

    E2 là biến cố phế phẩm máy số II

    \Rightarrow P\left( E_{2} ight) = 0,03
\Rightarrow P\left( \overline{E_{2}} ight) = 1 - 0,03 =
0,97

    E3 là biến cố phế phẩm máy số III

    \Rightarrow P\left( E_{3} ight) = 0,05
\Rightarrow P\left( \overline{E_{3}} ight) = 1 - 0,05 =
0,95

    Gọi B là biến cố khách hàng lấy được 1 linh kiện tốt

    Xác suất để khách hàng lấy được linh kiện tốt là:

    P(B) =
\frac{C_{80}^{1}}{C_{300}^{1}}.0,96 +
\frac{C_{120}^{1}}{C_{300}^{1}}.0,97 +
\frac{C_{100}^{1}}{C_{300}^{1}}.0,95 = 0,96

    Gọi \overline{B} là biến cố khách hàng lấy 1 linh kiện loại không tốt

    Ta xác định được:

    P\left( \overline{B} ight) = 1 - P(B)
= 0,04

    P\left( E_{1}|\overline{B} ight) =
\frac{P\left( E_{1} ight).P\left( \overline{B}|E_{1} ight)}{P\left(
\overline{B} ight)} = \frac{C_{80}^{1}.0,04}{0,04} = 0,26

    P\left( E_{2}|\overline{B} ight) =
\frac{P\left( E_{2} ight).P\left( \overline{B}|E_{2} ight)}{P\left(
\overline{B} ight)} = \frac{C_{120}^{1}.0,03}{0,04} = 0,3

    P\left( E_{3}|\overline{B} ight) =
\frac{P\left( E_{3} ight).P\left( \overline{B}|E_{3} ight)}{P\left(
\overline{B} ight)} = \frac{C_{100}^{1}.0,05}{0,04} =
0,41

    Vậy linh kiện đó do máy III là cao nhất.

  • Câu 4: Thông hiểu

    Chọn đáp án đúng

    Một lớp có 50 học sinh, trong đó có 30 học sinh nam và 20 học sinh nữ. Có 5 học sinh nam được học sinh giỏi và có 6 học sinh nữ được học sinh giỏi. Xác suất để chọn được một bạn nữ là học sinh giỏi

    Gọi A là biến cố chọn được học sinh giỏi.

    Gọi B là biến cố chọn được học sinh là nữ.

    Khi đó n(A \cap B) = 6

    Xác suất để chọn được một học sinh nữ và học sinh đó là học sinh giỏi là:

    P(A|B) = \frac{P(A \cap B)}{P(B)} =
\frac{n(A \cap B)}{n(B)} = \frac{6}{20} = \frac{3}{10}

  • Câu 5: Thông hiểu

    Xét tính đúng sai của các khẳng định

    Cho hai biến cố ABP(A) =
0,6, P(B) = 0,4, P(AB) = 0,2.

    a) P\left( \overline{A} \right) =
0,6.Sai||Đúng

    b) P\left( \overline{B} \right) =
0,6.Đúng|Sai

    c) P\left( A|B \right) = 0,4. Sai||Đúng

    d) P\left( B|A \right) =
\frac{1}{3}. Đúng|Sai

    Đáp án là:

    Cho hai biến cố ABP(A) =
0,6, P(B) = 0,4, P(AB) = 0,2.

    a) P\left( \overline{A} \right) =
0,6.Sai||Đúng

    b) P\left( \overline{B} \right) =
0,6.Đúng|Sai

    c) P\left( A|B \right) = 0,4. Sai||Đúng

    d) P\left( B|A \right) =
\frac{1}{3}. Đúng|Sai

    a) SP\left( \overline{A} \right) = 1 -
0,6 = 0,4 \neq 0,6.

    b) Đ P\left( \overline{B} \right) = 1 -
0,4 = 0,6.

    c) s P\left( A|B \right) =
\frac{P(AB)}{P(B)} = \frac{0,2}{0,4} = 0,5 \neq 0,4.

    d) Đ P\left( B|A \right) =
\frac{P(AB)}{P(A)} = \frac{0,2}{0,6} = \frac{1}{3}.

  • Câu 6: Thông hiểu

    Chọn kết quả đúng

    Có 2 xạ thủ loại I và 8 xạ thủ loại II, xác suất bắn trúng đích của các loại xạ thủ loại I là 0,9 và loại II là 0,7. Chọn ngẫu nhiên ra hai xạ thủ và mỗi người bắn một viên đạn. Tìm xác suất để cả hai viên đạn đó trúng đích.

    Gọi B là biến cố "Cả 2 viên đạn trúng đích".

    B_{i},(i = 1,2) là biến cố "Chọn được i xạ thủ loại I".

    P\left( {\text{ }B}_{0} ight) =\frac{C_{8}^{2}}{C_{10}^{2}} = \frac{28}{45};P\left( \text{ }B \mid B_{0} ight) = 0,7 \cdot 0,7 = 0,49

    P\left( {\text{ }B}_{1} ight) =\frac{C_{2}^{1} \cdot C_{8}^{1}}{C_{10}^{2}} = \frac{16}{45};P\left(\text{ }B \mid B_{1} ight) = 0,9 \cdot 0,7 = 0,63

    P\left( {\text{ }B}_{2} ight) =\frac{C_{2}^{2}}{C_{10}^{2}} = \frac{1}{45};P\left( \text{ }B \mid B_{2} ight) = 0,9.0,9 = 0,81

    Ta có B_{1},B_{2},B_{3} tạo thành họ đầy đủ các biến cố.

    Áp dụng công thức, ta có

    P(\text{ }B) = P\left( {\text{ }B}_{0}ight) \cdot P\left( \text{ }B \mid B_{0} ight) + P\left( {\text{}B}_{1} ight) \cdot P\left( \text{ }B \mid B_{1} ight) + P\left({\text{ }B}_{2} ight) \cdot P\left( \text{ }B \mid B_{2}ight)

    = \frac{28}{45} \cdot 0,49 +
\frac{16}{45} \cdot 0,63 + \frac{1}{45}0,81 = 0,5469

  • Câu 7: Vận dụng

    Chọn phương án đúng

    Tỷ lệ người nghiện thuốc là ở một vùng là 30\%. Biết rằng tỷ lệ người bị viêm họng trong số những người nghiện thuốc là 60\%, còn tỷ lệ người bị viêm họng trong số những người không nghiện là 40\%. Lấy ngẫu nhiên một người thấy người ấy bị viêm họng. Nếu người đó không bị viêm họng, tính xác suất người đó nghiện thuốc lá.

    Gọi A là "người nghiện thuốc" và B là "người viêm họng" thì từ đề bài ta có:

    P(A) = 0,3;P\left( B|A ight) =
0,6;P\left( B|\overline{A} ight) = 0,4

    Cần tính xác suất là C = A|B.

    Sử dụng công thức Baye ta có:

    P\left( A|B ight) = \frac{P(A).P\left(
B|A ight)}{P(A).P\left( B|A ight) + P\left( \overline{A}
ight)P\left( B|\overline{A} ight)}

    \Rightarrow P\left( A|B ight) =
\frac{0,3.0,6}{0,3.0,6 + 0,7.0,4} = \frac{9}{23}

    Gọi D = A|\overline{B} ta có:

    P(D) = \frac{P\left( A\overline{B}
ight)}{P\left( \overline{B} ight)} = \frac{P(A) - P(AB)}{1 -
P(B)}

    = \frac{P(A) - P(A)P\left( B|A
ight)}{1 - P(B)} \approx 0,2222

  • Câu 8: Nhận biết

    Tính P(B|A)

    Cho hai biến cố A,B thỏa mãn P(A) = 0,4, P(B) = 0,3, P(A|B) = 0,25. Khi đó, P(B|A) bằng

    Theo công thức Bayes, ta có:

    P(B|A) = \frac{P(B).P(A|B)}{P(A)} =
\frac{0,3.0,25}{0,4} = 0,1875.

  • Câu 9: Thông hiểu

    Chọn đáp án đúng

    Có 6 khẩu súng cũ và 4 khẩu súng mới, trong đó xác suất trúng khi bắn bằng súng cũ là 0,8, còn súng mới là 0,95. Thực hiện bắn bằng một khẩu súng vào một mục tiêu thì thấy trúng. Hỏi sử dụng loại súng nào khả năng bắn trúng cao hơn?

    Gọi M là biến cố "bắn bằng khẩu mới" thì \overline{M} là biến cố "bắn bằng khẩu cũ".

    Có P(M) = 0,4 và P( \overline{M} ) = 0,6.

    Gọi T là biến cố "bắn trúng" thì theo đề bài, ta có:

    P(T | M) = 0,95; P(T |  \overline{M} ) = 0,8.

    Áp dụng công thức xác suất điều kiện suy ra

    P\left( M|T ight) = \frac{P(M).P\left(
T|M ight)}{P(T)} = \frac{0,38}{P(T)}

    P\left( \overline{M}|T ight) =
\frac{P\left( \overline{M} ight).P\left( T|\overline{M} ight)}{P(T)}
= \frac{0,48}{P(T)}

    Suy ra bắn bằng khẩu cũ có khả năng xảy ra cao hơn.

  • Câu 10: Thông hiểu

    Chọn phương án thích hợp

    Kết quả khảo sát tại một xã cho thấy có 25\% cư dân hút thuốc lá. Tỉ lệ cư dân thường xuyên gặp các vấn đề sức khoẻ về đường hô hấp trong số những người hút thuốc lá và không hút thuốc lá lần lượt là 60\%25\%. Nếu ta gặp một cư dân của xã thường xuyên gặp các vấn đề sức khoẻ về đường hô hấp thì xác suất người đó có hút thuốc lá là bao nhiêu?

    Giả sử ta gặp một cư dân của xã, gọi A là biến cố "Người đó có hút thuốc lá" và B là biến cố "Người đó thường xuyên gặp các vấn đề sức khoẻ về đường hô hấp". Ta có sơ đồ hình cây sau:

    Ảnh có chứa văn bản, ảnh chụp màn hình, Phông chữ, biểu đồMô tả được tạo tự động

    Ta có

    P(B) = P(A) \cdot P(B \mid A) +P(\overline{A}) \cdot P(B \mid \overline{A})= 0,15 + 0,1875 =0,3375.

    Theo công thức Bayes, ta có:

    P(A \mid B) =
\frac{P(A)P(B \mid A)}{P(B)} = \frac{0,15}{0,3375} =
\frac{4}{9}.

    Vậy nếu ta gặp một cư dân của xã thường xuyên gặp các vấn đề sức khoẻ về đường hô hấp thì xác suất người đó có hút thuốc lá là \frac{4}{9}.

  • Câu 11: Thông hiểu

    Chọn đáp án thích hợp

    Lớp 12A có 30 học sinh, trong đó có 17 bạn nữ còn lại là nam. Có 3 bạn tên Hiền, trong đó có 1 bạn nữ và 2 bạn nam. Thầy giáo gọi ngẫu nhiên 1 bạn lên bảng. Xác suất để có tên Hiền, nhưng với điều kiện bạn đó nữ là

    Gọi A là biến cố “bạn học sinh được thầy giáo gọi lên bảng tên là Hiền”.

    Gọi B là biến cố “bạn học sinh được thầy giáo gọi lên bảng là nữ”.

    Ta có P(B) = \frac{17}{30},\ P(AB) = \frac{1}{30}.

    Xác suất để thầy giáo gọi bạn đó lên bảng có tên Hiền, nhưng với điều kiện bạn đó nữ là:

    P\left( A|B \right) =\dfrac{P(AB)}{P(B)} = \dfrac{\dfrac{1}{30}}{\dfrac{17}{30}} =\dfrac{1}{17}.

  • Câu 12: Thông hiểu

    Tính xác suất

    Cho hai biến cố A;B với P(AB) = \frac{1}{4};P\left( A|\overline{B} ight)
= \frac{1}{8};P(B) = \frac{1}{2}. Tính P(A)?

    Ta có:

    P(A) = P\left( \overline{A}\overline{B}
+ AB ight)

    = P\left( A|\overline{B} ight).P\left(
\overline{B} ight) + P(AB)

    = \frac{1}{8}.\frac{1}{2} + \frac{1}{4}
= \frac{5}{16}

  • Câu 13: Nhận biết

    Tính P(A|B)

    Cho hai biến cố AB, với P(A) =
0,6, P(B) = 0,7, P(A \cap B) = 0,3. Tính P\left( A|B \right).

    Ta có: P\left( A|B \right) = \frac{P(A
\cap B)}{P(B)} = \frac{0,3}{0,7} = \frac{3}{7}

  • Câu 14: Vận dụng

    Ghi đáp án vào ô trống

    Câu lạc bộ thể thao của trường Việt Anh có 40 bạn đều biết chơi biết chơi ít nhất một trong hai môn là bóng đá và cầu lông, trong đó có 27 bạn biết chơi bóng đá và 25 bạn biết chơi cầu lông. Chọn ngẫu nhiên 1 bạn. Xác suất chọn được bạn biết chơi bóng đá biết bạn đó chơi được cầu lông là bao nhiều?

    Đáp án: 0,48

    Đáp án là:

    Câu lạc bộ thể thao của trường Việt Anh có 40 bạn đều biết chơi biết chơi ít nhất một trong hai môn là bóng đá và cầu lông, trong đó có 27 bạn biết chơi bóng đá và 25 bạn biết chơi cầu lông. Chọn ngẫu nhiên 1 bạn. Xác suất chọn được bạn biết chơi bóng đá biết bạn đó chơi được cầu lông là bao nhiều?

    Đáp án: 0,48

    Xét các biến cố: A: “Chọn được bạn biết chơi bóng đá”

    B: “Chọn được bạn biết chơi cầu lông”

    Khi đó P(A) = \frac{27}{40} =
0,675; P(B) = \frac{25}{40} =
0,625; P(A \cup B) =
1.

    Suy ra P(A \cap B) = P(A) + P(B) - P(A
\cup B) = 0,675 + 0,625 - 1 = 0,3.

    Vậy xác suất chọn được bạn biết chơi bóng đá, bạn đó biết chơi cầu lông là P\left( A|B ight) = \frac{P(A \cap
B)}{P(B)} = \frac{0,3}{0,625} = 0,48.

    Đáp số: 0,48.

  • Câu 15: Nhận biết

    Chọn mệnh đề đúng

    Cho hai biến cố AB. Chọn mệnh đề đúng?

    Ta có: P(A \cap B) = P(A).P\left( B|A
\right) = P(B).P\left( A|B \right).

  • Câu 16: Vận dụng

    Tính xác suất theo yêu cầu

    Tung một con xúc sắc hai lần độc lập nhau. Biết rằng lần tung thứ nhất được số chấm chẵn. Tính xác suất tổng số chấm hai lần tung bằng 4?

    Gọi Ti: "Tổng số nốt hai lần tung bằng i" (i = 1, 6)

    Nj,k: "Số nốt trên lần tung thứ j bằng k" (j = 1, 2; k = 1, 6)

    Ta tìm

    P\left( T_{i}|N_{1,2} \cup N_{1,4} \cup N_{1,6} ight) = \frac{P\left( N_{1,2} \cup N_{2;2} ight)}{P\left(N_{1,2} \cup N_{1,4} \cup N_{1,6} ight)}= \dfrac{\left( \dfrac{1}{6}ight)^{2}}{\dfrac{1}{2}} = \dfrac{1}{18}

  • Câu 17: Thông hiểu

    Chọn đáp án đúng

    Một công nhân đứng hai máy hoạt động độc lập nhau. Xác suất để máy thứ nhất, máy thứ 2 không bị hỏng trong một ca làm việc lần lượt là 0,90,8. Tính xác suất để cả 2 máy đều không bị hỏng trong một ca làm việc?

    Gọi A là biến cố cả 2 máy đều không bị hỏng trong một ca làm việc

    Theo yêu cầu của đầu bài, ta phải tính P(A)

    Nếu gọi Ai là biến cố máy thứ i không bị hỏng trong một ca làm việc với (i = 1, 2)

    Khi đó ta có: A = A_1.A_2

    Vì vậy xác suất cần tìm là: P(A) = P(A_1.A_2)

    Theo giả thiết A1, A2 là 2 biến cố độc lập với nhau nên ta có:

    P(A) = P(A_1.A_2) = P(A_1).P(A_2) = 0,72

  • Câu 18: Thông hiểu

    Xét tính đúng sai của các kết luận

    Một cửa hàng bán hai loại bóng đèn, trong đó có 65\% bóng đèn là màu trắng và 35\% bóng đèn là màu đỏ, các bóng đèn có kích thước như nhau. Các bóng đèn màu trắng có tỉ lệ hỏng là 2\% và các bóng đèn màu xanh có tỉ lệ hỏng là 3\%. Một khách hàng chọn mua ngẫu nhiên 1 bóng đèn từ cửa hàng đó. Xét các biến cố:

    A:“Khách hàng chọn được bóng màu trắng”;

    B:“Khách hàng chọn được bóng không hỏng”;

    Khi đó:

    a) P\left( \overline{A} \right) =
0,65.Sai||Đúng

    b) P\left( B|A \right) =
0,02.Sai||Đúng

    c) P\left( B|\overline{A} \right) =
0,3.Sai||Đúng

    d) P(B) = 0,9765.Đúng||Sai

    Đáp án là:

    Một cửa hàng bán hai loại bóng đèn, trong đó có 65\% bóng đèn là màu trắng và 35\% bóng đèn là màu đỏ, các bóng đèn có kích thước như nhau. Các bóng đèn màu trắng có tỉ lệ hỏng là 2\% và các bóng đèn màu xanh có tỉ lệ hỏng là 3\%. Một khách hàng chọn mua ngẫu nhiên 1 bóng đèn từ cửa hàng đó. Xét các biến cố:

    A:“Khách hàng chọn được bóng màu trắng”;

    B:“Khách hàng chọn được bóng không hỏng”;

    Khi đó:

    a) P\left( \overline{A} \right) =
0,65.Sai||Đúng

    b) P\left( B|A \right) =
0,02.Sai||Đúng

    c) P\left( B|\overline{A} \right) =
0,3.Sai||Đúng

    d) P(B) = 0,9765.Đúng||Sai

    a) S Ta có P(A) = 0,65 nên P\left( \overline{A} \right) = 0,35.

    b) S Vì các bóng đèn màu trắng có tỉ lệ hỏng là 2\% nên P\left( \overline{B}|A \right) = 0,02, suy ra P\left( B|A \right) = 1 - P\left(
\overline{B}|A \right) = 1 - 0,02 = 0,98.

    c) S Vì các bóng đèn màu xanh có tỉ lệ hỏng là 3\% nên P\left( \overline{B}|\overline{A} \right) =
0,03, suy ra P\left( B|\overline{A}
\right) = 1 - P\left( \overline{B}|\overline{A} \right) = 1 - 0,03 =
0,97.

    d) Đ Theo công thức xác suất toàn phần ta có:

    P(B) = P(A).P\left( B|A \right) + P\left(
\overline{A} \right).P\left( B|\overline{A} \right) = 0,65.0,98 +
0,35.0,97 = 0,9765.

  • Câu 19: Nhận biết

    Tính P(A)

    Cho hai biến cố A,\ B thỏa mãn P\left( \overline{B} \right) = 0,2;\ P\left(
A|B \right) = 0,5;\ P\left( \left. \ A \right|\overline{B} \right) =
0,3. Khi đó, P(A) bằng

    Ta có: P(B) = 1 - P\left( \overline{B}
\right) = 0,8.

    Theo công thức xác suất toàn phần, ta có:

    P(A) = P(B).P\left( A|B \right) +
P\left( \overline{B} \right).P\left( A|\overline{B} \right)

    = 0,8.0,5 + 0,2.0,3 = 0,46.

  • Câu 20: Nhận biết

    Chọn đáp án đúng

    Cho hai biến cố AB với 0 <
P(A) < 1. Biết P(A) =0,1;P\left( \overline{A} ight) = 0,9;P\left( B|A ight) = 0,3;P\left(B|\overline{A} ight) = 0,6. Tính P(B)?

    Ta có công thức xác suất toàn phần tính P(B) là:

    P(B) = P(A).P\left( B|A ight) + P\left(
\overline{A} ight).P\left( B|\overline{A} ight)

    \Rightarrow P(B) = 0,1.0,3 + 0,9.0,6 =
0,57

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 6 Một số yếu tố xác suất Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo