Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Chương 6 Một số yếu tố xác suất Cánh Diều

Mô tả thêm:

Trong chương trình Toán 12 Cánh Diều, Chương 6 về một số yếu tố xác suất là chuyên đề quan trọng, cung cấp nền tảng để học sinh hiểu rõ hơn về quy tắc cộng, quy tắc nhân, biến cố và xác suất của biến cố. Đây là nội dung thường xuyên xuất hiện trong các đề kiểm tra ngắn hạn cũng như đề thi học kỳ. Việc luyện tập với đề kiểm tra 15 phút Chương 6 Toán 12 giúp học sinh ôn tập kiến thức cơ bản, rèn luyện kỹ năng tư duy logic và làm quen với các dạng toán xác suất điển hình. Bài viết này sẽ cung cấp đề kiểm tra 15 phút Toán 12 Cánh Diều kèm đáp án chi tiết, giúp học sinh dễ dàng ôn tập và đạt kết quả cao.

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Tính xác suất người được chọn là đàn ông

    Được biết có 5\% đàn ông bị mù màu và 0,25\% phụ nữ bị mù màu (Nguồn: F. M. Dekking et al., A modern introduction to probability and statistics – Understanding why and how, Springer, 2005). Giả sử số đàn ông bằng số phụ nữ. Chon một người bị mù màu. Xác suất để người đó là đàn ông là bao nhiêu?

    Gọi A là biến cố người được chọn là đàn ông, B là biến cố người được chọn mù màu.

    Theo đề bài ra ta có P\left( \left. \ B
\right|A \right) = 0,05;P\left( \left. \ B \right|\overline{A} \right) =
0,0025.

    Vì số đàn ông bằng số phụ nữ nên ta có P(A) = P\left( \overline{A} \right) = 0,5.

    Áp dụng công thức Bayes ta có xác suất để chọn được một người đàn ông mù màu là:

    P\left( \left. \ A \right|B \right) =\frac{P(A).P\left( \left. \ B \right|A \right)}{P(A).P\left( \left. \ B \right|A \right) + P\left( \overline{A} \right).P\left( \left. \ B\right|\overline{A} \right)}

    = \frac{0,5.0,05}{0,5.0,05 + 0,5.0,0025}
= \frac{20}{21}.

  • Câu 2: Thông hiểu

    Xét tính đúng sai của các kết luận

    Một cuộc thi khoa học có 36 bộ câu hỏi, trong đó có 20 bộ câu hỏi về chủ đề tự nhiên và 16 bộ câu hỏi về chủ đề xã hội. Bạn An lấy ngẫu nhiên 1 bộ câu hỏi (lấy không hoàn lại), sau đó bạn Bình lấy ngẫu nhiên 1 bộ câu hỏi. Các khẳng định sau đúng hay sai?

    a) Xác suất bạn An chọn được bộ câu hỏi chủ đề tự nhiên là \frac{5}{9}Đúng||Sai

    b) Xác suất bạn Bình chọn câu hỏi chủ đề xã hội biết bạn An chọn được chủ đề tự nhiên là \frac{16}{27}Sai||Đúng

    c) Xác suất bạn Bình chọn câu hỏi chủ đề xã hội biết bạn An chọn được chủ đề xã hội là là \frac{15}{27}. Sai||Đúng

    d) Xác suất bạn Bình lấy được bộ câu hỏi về chủ đề xã hội bằng \frac{4}{9}. Đúng||Sai

    Đáp án là:

    Một cuộc thi khoa học có 36 bộ câu hỏi, trong đó có 20 bộ câu hỏi về chủ đề tự nhiên và 16 bộ câu hỏi về chủ đề xã hội. Bạn An lấy ngẫu nhiên 1 bộ câu hỏi (lấy không hoàn lại), sau đó bạn Bình lấy ngẫu nhiên 1 bộ câu hỏi. Các khẳng định sau đúng hay sai?

    a) Xác suất bạn An chọn được bộ câu hỏi chủ đề tự nhiên là \frac{5}{9}Đúng||Sai

    b) Xác suất bạn Bình chọn câu hỏi chủ đề xã hội biết bạn An chọn được chủ đề tự nhiên là \frac{16}{27}Sai||Đúng

    c) Xác suất bạn Bình chọn câu hỏi chủ đề xã hội biết bạn An chọn được chủ đề xã hội là là \frac{15}{27}. Sai||Đúng

    d) Xác suất bạn Bình lấy được bộ câu hỏi về chủ đề xã hội bằng \frac{4}{9}. Đúng||Sai

    Xét các biến cố:

    A: "Bạn An lấy được bộ câu hỏi về chủ đề tự nhiên";

    B: "Bạn Bình lấy được bộ câu hỏi về chủ đề xã hội".

    Khi đó P(A) = \frac{20}{36} =
\frac{5}{9},\ \ P\left( \overline{A} \right) = 1 - P(A) =
\frac{4}{9}

    Nếu bạn An chọn được một bộ câu hỏi về chủ đề tự nhiên thì sau đó còn 35 bộ câu hỏi, trong đó có 16 bộ câu hỏi về chủ đề xã hội, suy ra P\left( B|A \right) = \frac{16}{35}

    Nếu bạn An chọn được một bộ câu hỏi về chủ đề xã hội thì sau đó còn 35 bộ câu hỏi, trong đó có 15 bộ câu hỏi về chủ đề xã hội, suy raP\left( B|\overline{A} \right) =
\frac{15}{35}

    Theo công thức xác suất toàn phần, xác suất bạn Bình lấy được bộ câu hỏi về chủ đề

    xã hội là: P(B) = P(A).P\left( B|A
\right) + P\left( \overline{A} \right).P\left( B|\overline{A} \right) =
\frac{5}{9}.\frac{16}{35} + \frac{4}{9}.\frac{15}{35} =
\frac{4}{9}

  • Câu 3: Nhận biết

    Tính P(A|B)

    Cho P(A) = 0,3; P(B) = 0,5; P\left( B\left| A \right.\  \right) =
0,7. Khi đó P\left( A\left| B
\right.\  \right) bằng

    Theo công thức Bayes, ta có:

    P\left( A\left| B \right.\  \right) =
\frac{P(A).P\left( B\left| A \right.\  \right)}{P(B)} =
\frac{0,3.0,7}{0,5} = 0,42.

  • Câu 4: Vận dụng

    Xét tính đúng sai của các phương án

    Một công ty truyền thông đấu thầu 2 dự án. Khả năng thắng thầu của dự án 1 là 0,5 và dự án 2 là 0,6. Khả năng thắng thầu của 2 dự án là 0,4. Gọi A;B lần lượt là biến cố thắng thầu dự án 1 và dự án 2.

    a) A;B là hai biến độc lập. Đúng||Sai

    b) Xác suất công ty thắng thầu đúng 1 dự án là 0,3. Đúng||Sai

    c) Biết công ty thắng thầu dự án 1, xác suất công ty thắng thầu dự án 2 là 0,4. Sai|| Đúng

    d) Biết công ty không thắng thầu dự án 1, xác suất công ty thắng thầu dự án 0,8. Sai|| Đúng

    Đáp án là:

    Một công ty truyền thông đấu thầu 2 dự án. Khả năng thắng thầu của dự án 1 là 0,5 và dự án 2 là 0,6. Khả năng thắng thầu của 2 dự án là 0,4. Gọi A;B lần lượt là biến cố thắng thầu dự án 1 và dự án 2.

    a) A;B là hai biến độc lập. Đúng||Sai

    b) Xác suất công ty thắng thầu đúng 1 dự án là 0,3. Đúng||Sai

    c) Biết công ty thắng thầu dự án 1, xác suất công ty thắng thầu dự án 2 là 0,4. Sai|| Đúng

    d) Biết công ty không thắng thầu dự án 1, xác suất công ty thắng thầu dự án 0,8. Sai|| Đúng

    Ta có:\left\{ \begin{matrix}
P(A) = 0,5 \Rightarrow P\left( \overline{A} ight) = 1 - 0,5 = 0,5 \\
P(B) = 0,6 \Rightarrow P\left( \overline{B} ight) = 1 - 0,6 = 0,4 \\
P(A \cap B) = 0,4 \\
\end{matrix} ight.

    a) A;B là hai biến cố độc lập khi và chỉ khi P(A \cap B) =
P(A).P(B)

    0,4 eq 0,5.0,6 nên A;B không độc lập.

    b) Gọi C là biến cố thắng thầu đúng 1 dự án

    P(C) = P\left( A \cap \overline{B}
ight) + P\left( \overline{A} \cap B ight)

    = P(A) - P(A \cap B) + P(B) - P(A \cap
B)

    = P(A) + P(B) - 2P(A \cap
B)

    = 0,5 + 0.6 - 2.0,4 = 0,3.

    c) Gọi D là biến cố thắng dự 2 biết thắng dự án 1

    P(D) = P\left( B|A ight) = \frac{P(B
\cap A)}{P(A)} = \frac{0,4}{0,5} = 0,8.

    d) Gọi E là biến cố “thắng dự án 2 biết không thắng dự án 1”

    P(E) = P\left( B|\overline{A} ight) =
\frac{P(B) - P(A \cap B)}{P\left( \overline{A} ight)} = \frac{0,6 -
0,4}{0,5} = 0,4.

  • Câu 5: Thông hiểu

    Chọn đáp án đúng

    Một bình đựng 3 bi xanh và 2 bi trắng. Lấy ngẫu nhiên lần 1 một viên bi (không bỏ vào lại), rồi lần 2 một viên bi. Tính xác suất để lần 1 lấy một viên bi xanh, lần 2 lấy một viên bi trắng.

    Gọi A là biến cố “lấy một bi xanh lần thứ nhất” thì Ρ(A) =
\frac{3}{5}.

    Gọi B là biến cố “lấy một bi trắng lần thứ hai”.

    Gọi C là biến cố “lấy lần 1 lấy một viên bi xanh, lần 2 lấy một viên bi trắng”.

    Nếu A đã xảy ra thì trong bình chỉ còn 2 bi xanh, 2 bi trắng.

    Khi đó Ρ\left( B|A \right) = \frac{2}{4}
= \frac{1}{2}.

    C = AB, do đó theo công thức nhân ta có:

    Ρ(C) = Ρ(AB) = Ρ(A).Ρ\left( B|A \right) =
\frac{3}{5}.\frac{1}{2} = \frac{3}{10}.

  • Câu 6: Thông hiểu

    Xác định công thức đúng

    Cho ba biến cố A;B;C độc lập từng đôi thỏa mãn P(A) = P(B) = P(C) =
pP(ABC) = 0. Xác định P\left( AB\overline{C} ight)?

    Ta có:

    P\left( AB\overline{C} ight) = P(AB) -
P(ABC) = p^{2}.

  • Câu 7: Vận dụng

    Chọn đáp án đúng

    Cho hai hộp đựng phiếu bốc thăm trúng thưởng giống nhau:

    Hộp thứ nhất có tỉ lệ trúng thưởng bằng \frac{3}{4}.

    Hộp thứ hai có tỉ lệ trúng thưởng bằng \frac{2}{3}.

    Chọn ngẫu nhiên một thùng và lấy ngẫu nhiên một phiếu trong thùng đó thấy phiếu đó trúng thưởng. Bỏ lại phiếu trở lại thùng, từ thùng đó lấy tiếp một phiếu. Tìm xác suất để lần thứ hai cũng lấy được phiếu trúng thưởng.

    Gọi A là biến cố phiếu đầu tiên lấy là phiếu trúng thưởng.

    Biến cố A có thể xảy ra cùng với một trong các biến cố sau:

    H1 phiếu bốc thăm lấy ra từ thùng I.

    H2 phiếu bốc thăm lấy ra từ thùng II.

    Theo công thức xác xuất toàn phần ta có:

    P(A) = P\left( H_{1} ight).P\left(
A|H_{1} ight) + P\left( H_{2} ight).P\left( A|H_{2}
ight)

    Theo dữ kiện đề bài ta có: \left\{
\begin{matrix}
P\left( H_{1} ight) = P\left( H_{2} ight) = \frac{1}{2} \\
P\left( A|H_{1} ight) = \frac{3}{4};P\left( A|H_{2} ight) =
\frac{2}{3} \\
\end{matrix} ight.

    Do đó: P(A) = \frac{1}{2}.\frac{3}{4} +
\frac{1}{2}.\frac{2}{3} = \frac{17}{24}

    Sau khi biến cố A đã xảy ra, xác suất của các biến cố H_{1};H_{2} thay đổi theo công thức Bayes như sau:

    P\left( H_{1}|A ight) = \frac{P\left(
H_{1} ight).P\left( A|H_{1} ight)}{P(A)} = \frac{3}{8}:\frac{17}{24}
= \frac{9}{17}

    P\left( H_{2}|A ight) = \frac{P\left(
H_{2} ight).P\left( A|H_{2} ight)}{P(A)} = \frac{1}{3}:\frac{17}{24}
= \frac{8}{17}

    Gọi B là biến cố lấy phiếu lần thứ hai là trúng thưởng.

    B vẫn có thể xảy ra với một trong hai giả thiết H_{1};H_{2} do đó theo công thức xác suất toàn phần ta có:

    P(B) = P\left( H_{1}|A ight).P\left(
B|H_{1}A ight) + P\left( H_{2}|A ight).P\left( B|H_{2}A
ight)

    Vì phiếu lấy lần thứ nhất bỏ trở lại thùng, do đó tỉ lệ trúng thưởng ở các thùng đó vẫn không thay đổi.

    Vì thế

    P\left( B|H_{1}A ight) =
\frac{3}{4};P\left( B|H_{2}A ight) = \frac{2}{3}

    \Rightarrow P(B) =
\frac{9}{17}.\frac{3}{4} + \frac{8}{17}.\frac{2}{3} = \frac{145}{204} =
0,71

  • Câu 8: Thông hiểu

    Chọn đáp án đúng

    Một công ty đấu thầu 2 dự án. Khả năng thắng thầu của các dự án I và II lần lượt là 0,40,5. Khả năng thắng thầu của hai dự án là 0,3. Gọi A,B lần lượt là biến cố thắng thầu dự án I và dự án II. Biết công ty thắng thầu dự án I, tìm xác suất công ty thắng thầu dự án II.

    Gọi C là biến cố “công ty thắng dự án II biết công ty thắng thầu dự án I”.

    Ta có Ρ(C) = Ρ\left( B|A \right) =
\frac{Ρ(AB)}{Ρ(A)} = \frac{0,3}{0,4} = 0,75.

  • Câu 9: Thông hiểu

    Tìm kết quả đúng

    Một căn bệnh có 1\% dân số mắc phải. Một phương pháp chuẩn đoán được phát triển có tỷ lệ chính xác là 99\%. Với những người bị bệnh, phương pháp này sẽ đưa ra kết quả dương tính 99\% số trường hợp. Với người không mắc bệnh, phương pháp này cũng chuẩn đoán đúng 99 trong 100 trường hợp. Nếu một người kiểm tra và kết quả là dương tính (bị bệnh), xác suất để người đó thực sự bị bệnh là bao nhiêu?

    Gọi A là biến cố “người đó mắc bệnh”

    Gọi B là biến cố “kết quả kiểm tra người đó là dương tính (bị bệnh)”

    Ta cần tính P\left( A|B ight) với P\left( A|B ight) = \frac{P(A).P\left(
B|A ight)}{P(A).P\left( B|A ight) + P\left( \overline{A}
ight).P\left( B|\overline{A} ight)}.

    Ta có:

    Xác suất để người đó mắc bệnh khi chưa kiểm tra: P(A) = 1\% = 0,01

    Do đó xác suất để người đó không mắc bệnh khi chưa kiểm tra: P\left( \overline{A} ight) = 1 - 0,01 =
0,99

    Xác suất kết quả dương tính nếu người đó mắc bệnh là: P\left( B|A ight) = 99\% = 0,99

    Xác suất kết quả dương tính nếu người đó không mắc bệnh là: P\left( B|\overline{A} ight) = 1 - 0,99 =
0,01

    Khi đó:

    P\left( A|B ight) = \frac{P(A).P\left(
B|A ight)}{P(A).P\left( B|A ight) + P\left( \overline{A}
ight).P\left( B|\overline{A} ight)}

    \Rightarrow P\left( A|B ight) =
\frac{0,01.0,99}{0,01.0,99 + 0,99.0,01} = 0,5

    Xác suất kết để người đó mắc bệnh nếu kết quả kiểm tra người đó là dương tính là 0,5.

  • Câu 10: Nhận biết

    Chọn công thức đúng

    Cho hai biến cố AB với 0 <
P(A) < 1. Khi đó công thức xác suất toàn phần tính P(B) là:

    Ta có công thức xác suất toàn phần tính P(B) là:

    P(B) = P(A).P\left( B|A ight) + P\left(
\overline{A} ight).P\left( B|\overline{A} ight)

  • Câu 11: Thông hiểu

    Chọn đáp án đúng

    Một phân xưởng có 3 máy tự động: máy I sản xuất 25%, máy II sản xuất 30%, máy III sản xuất 45% số sản phẩm. Tỷ lệ phế phẩm tương ứng của các máy lần lượt là 0,1%, 0,2% và 0,3%. Chọn ngẫu nhiên ra một sản phẩm của phân xưởng. 1. Tìm xác suất nó là phế phẩm.

    Gọi Ai là "lấy ra sản phẩm từ lô i" thì A1, A2, A3 tạo thành hệ đầy đủ.

    Gọi A là "lấy ra sản phẩm là phế phẩm".

    Áp dụng công thức xác suất toàn phần, ta có

    P(A) = P\left( A_{1} ight)P\left(
A|A_{1} ight) + P\left( A_{2} ight)P\left( A|A_{2} ight) + P\left(
A_{3} ight)P\left( A|A_{3} ight)

    \Rightarrow P(A) = 0,25.0,1\% +
0,3.0,2\% + 0,45.0,3\% = 0,22\%

  • Câu 12: Nhận biết

    Tính P(A)

    Cho hai biến cố AB với P(B) =
0,8;P\left( A|B ight) = 0,7,P\left( A|\overline{B} ight) =
0,45. Tính P(A)?

    Ta có:

    P\left( \overline{B} ight) = 1 - P(B)
= 1 - 0,8 = 0,2

    Áp dụng công thức xác suất toàn phần ta có:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    \Rightarrow P(A) = 0,8.0,7 + 0,2.0,45 =
0,65

  • Câu 13: Vận dụng cao

    Chọn đáp án đúng

    Trong học kỳ I năm học 2024 - 2025, sinh viên phải thi 4 học phần. Xác suất để sinh viên thi đạt một học phần trong mỗi lần thi đều là 0,8. Nếu thi không đạt học phần nào phải thi lại học phần đó. Tính xác suất để một sinh viên thi đạt cả 4 học phần trong đó không có học phần nào thi quá 2 lần.

    Gọi A_{i} là "đạt i học phần ở lần thi đầu".

    Khi đó, A_{0},A_{1},A_{2},A_{3},A_{4} tạo thành hệ đầy đủ và P\left( A_{i} ight) =
C_{4}^{i}.0,8^{i}.0,2^{4 - i}

    Gọi A là "đạt cả 4 học phần trong đó không có học phần nào thi quá 2 lần".

    Áp dụng công thức xác suất toàn phần ta có:

    P(A) = \sum_{i = 0}^{4}P\left( A_{i}
ight)P\left( A \mid A_{i} ight)

    = C_{4}^{0}.0,8^{0}.0,2^{4}.\left(
0,8^{4} ight) + C_{4}^{2}.0,8^{1}.0,2^{3}.\left( 0,8^{3} ight) +
C_{4}^{2}.0,8^{2}.0,2^{2}.\left( 0,8^{2} ight)

    + C_{4}^{3}.0,8^{3}.0,2^{1}.(0,8) +
C_{4}^{4}.0,8^{4}.0,2^{0}.\left( 0,8^{0} ight)

    \approx 0,8493 = 84,93\%

  • Câu 14: Thông hiểu

    Tính xác suất theo yêu cầu

    Một bình đựng 9 viên bi xanh và 7 viên bi đỏ. Lần lượt lấy ngẫu nhiên ra 2 bi, mỗi lần lấy 1 bi không hoàn lại. Tính xác suất để bi thứ 2 màu xanh nếu biết bi thứ nhất màu đỏ?

    Gọi A là biến cố “lần thứ nhất lấy được bi màu đỏ”.

    Gọi B là biến cố “lần thứ hai lấy được bi màu xanh”.

    Ta cần tìm P\left( B|A
ight)

    Không gian mẫu n(\Omega) = 16.15 cách chọn

    Lần thứ nhất lấy 1 viên bi màu đỏ có 7 cách chọn, lần thứ hai lấy 1 viên bi rong 15 bi còn lại có 15 cách chọn, do đó: P(A) = \frac{7.15}{16.15} =
\frac{7}{16}

    Lần thứ nhất lấy 1 viên bi màu đỏ có 7 cách chọn, lần thứ hai lấy 1 viên bi màu xanh có 9 cách chọn, do đó: P(A
\cap B) = \frac{7.9}{16.15} = \frac{21}{80}

    Vậy xác suất để viên bi lấy lần thứ hai là màu xanh nếu biết rằng viên bi lấy lần thứ nhất là màu đỏ là: P\left( B|A ight) = \dfrac{P(A \cap B)}{P(A)} =\dfrac{\dfrac{21}{80}}{\dfrac{7}{16}} = \dfrac{3}{5}.

  • Câu 15: Nhận biết

    Tìm giá trị xác suất

    Cho hai biến cố AB, với P(A) =
0,6;P(B) = 0,7;P(A \cap B) = 0,3. Tính P\left( \overline{B}|A ight)?

    Ta có:

    P\left( \overline{B}|A ight) = 1 -
P\left( B|A ight)

    = 1 - \frac{P(A \cap B)}{P(A)} = 1 -
\frac{0,3}{0,6} = \frac{1}{2}.

  • Câu 16: Thông hiểu

    Tính xác suất thắng thầu

    Một công ty xây dựng đấu thầu 2 dự án độc lập. Khả năng thắng thầu của các dự án 1 là 0,6 và dự án 2 là 0,7. Biết công ty thắng thầu dự án 1, tìm xác suất công ty thắng thầu dự án 2?

    Gọi A là biến cố ”Thắng thầu dự án 1″

    Gọi B là biến cố “Thắng thầu dự án 2″

    Theo đề bài ta có: \left\{ \begin{matrix}
P(A) = 0,6 \Rightarrow P\left( \overline{A} ight) = 0,4 \\
P(B) = 0,3 \Rightarrow P\left( \overline{B} ight) = 0,7 \\
\end{matrix} ight. với 2 biến cố A; B độc lập.

    Gọi E là biến cố “thắng thầu dự án 2 biết không thắng thầu dự án 1” do A; B là hai biến cố độc lập nên:

    P(E) = P\left( B|\overline{A} ight) =
P(B) = 0,7.

  • Câu 17: Nhận biết

    Chọn kết luận đúng

    Cho AB là hai biến cố, trong đó P(B) > 0. Khi đó

    Ta có : P\left( \left. \ A \right|B
\right) = \frac{P(A \cap B)}{P(B)}.

  • Câu 18: Vận dụng

    Ghi đáp án vào ô trống

    Trong một đợt kiểm tra sức khoẻ, có một loại bệnh X mà tỉ lệ người mắc bệnh là 0,2\% và một loại xét nghiệm Y mà ai mắc bệnh X khi xét nghiệm Y cũng có phản ứng dương tính. Tuy nhiên, có 6\% những người không bị bệnh X lại có phản ứng dương tính với xét nghiệm Y. Chọn ngẫu nhiên 1 người trong đợt kiểm tra sức khoẻ đó. Giả uử người đó có phản ứng dương tính với xét nghiệm Y. Xác suất người đó bị mắc bệnh X là bao nhiêu (làm tròn kết quả đến hàng phần trăm)?

    Đáp án : 0,03

    Đáp án là:

    Trong một đợt kiểm tra sức khoẻ, có một loại bệnh X mà tỉ lệ người mắc bệnh là 0,2\% và một loại xét nghiệm Y mà ai mắc bệnh X khi xét nghiệm Y cũng có phản ứng dương tính. Tuy nhiên, có 6\% những người không bị bệnh X lại có phản ứng dương tính với xét nghiệm Y. Chọn ngẫu nhiên 1 người trong đợt kiểm tra sức khoẻ đó. Giả uử người đó có phản ứng dương tính với xét nghiệm Y. Xác suất người đó bị mắc bệnh X là bao nhiêu (làm tròn kết quả đến hàng phần trăm)?

    Đáp án : 0,03

    Xét các biến cố:

    A : "Người được chọn mắc bệnh X ";

    B : "Người được chọn có phản ứng dương tính với xét nghiệm Y".

    Theo giả thiết ta có:

    P(A) = 0,002;P\left( \overline{A} ight)
= 1 - 0,002 = 0,998;

    P(B \mid A) = 1;P\left( B \mid
\overline{A} ight) = 0,06

    Theo công thức Bayes, ta có:

    P(A \mid B) = \frac{P(A) \cdot P(B \mid
A)}{P(A) \cdot P(B \mid A) + P\left( \overline{A} ight).P\left( B \mid
\overline{A} ight)}

    = \frac{0,002 \cdot 1}{0,002 \cdot 1 +
0,998 \cdot 0,06} \approx 0,03

    Vậy nếu người được chọn có phản ứng dương tính với xét nghiệm Y thì xác suất bị mắc bệnh X của người đó là khoảng 0,03.

  • Câu 19: Nhận biết

    Chọn phát biểu đúng

    Cho hai biến cố A, B với 0 <
P(B) < 1. Phát biểu nào sau đây đúng?

    Theo công thức xác suất toàn phần, ta có:

    P(A) = P(B).P\left( A|B ight) + P\left(
\overline{B} ight).P\left( A|\overline{B} ight).

  • Câu 20: Vận dụng

    Chọn đáp án đúng

    Để kiểm tra tính chính xác của một xét nghiệm nhằm chẩn đoán bệnh X, người ta chọn một mẫu gồm 5282 người, trong đó có 54 người mắc bệnh X5228 người không mắc bệnh X để làm xét nghiệm. Trong số 54 người mắc bệnh X48 người cho kết quả dương tính. Trong số 5228 người không mắc bệnh có 1307 người cho kết quả dương tính. Chọn ngẫu nhiên một người trong mẫu. Tính xác suất để người đó mắc bệnh X nếu biết rằng người đó có xét nghiệm âm tính.

    Ta có bảng sau đây

    A table with numbers and textDescription automatically generated

    Gọi A là biến cố “Người đó mắc bệnh X”, B là biến cố “Người đó có xét nghiệm âm tính”.

    Khi đó A \cap B là biến cố “Người đó vừa mắc bệnh X, vừa có xét nghiệm âm tính”.

    Từ bảng trên, ta có P(A \cap B) =
\frac{6}{5282}; P(B) =
\frac{3927}{5282}.

    Vậy xác suất cần tính là P\left( A\left|
B \right.\  \right) = \frac{P(A \cap B)}{P(B)} =
\frac{6}{3927}.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 6 Một số yếu tố xác suất Cánh Diều Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo