Trong không gian , cho
Tọa độ của điểm
là
Ta có:
Khi đó
Trong không gian , cho
Tọa độ của điểm
là
Ta có:
Khi đó
Trong không gian cho điểm
. Tìm tọa độ hình chiếu vuông góc của
trên mặt phẳng
.
Vì nên tọa độ hình chiếu vuông góc của
trên mặt phẳng
là
.
Trên hệ trục tọa độ , cho
,
, tích
bằng
Ta có
Trong không gian với hệ trục tọa độ cho
. Gọi
là vectơ thỏa mãn
. Tìm tọa độ
?
Giả sử , khi đó:
Trong không gian với hệ trục tọa độ , cho các điểm
. Mệnh đề nào sau đây sai?
Hình vẽ minh họa
Ta có: suy ra
và
không vuông góc với nhau.
Vậy mệnh đề sai là: “”.
Cho và
là hai vectơ cùng hướng và đều khác vectơ
. Mệnh đề nào sau đây đúng?
Do và
là hai vectơ cùng hướng nên
.
Vậy .
Trong không gian , cho hình thang cân
có các đáy lần lượt là
. Biết
,
,
và
với
. Tính
.
Cách 1: Ta có
Do là hình thang cân nên
hay
. Vậy
.
Lại có
.
Với . Kiểm tra thấy:
.
Với .
Kiểm tra thấy: . Do đó,
.
Cách 2
Ta có
Do là hình thang cân nên
ngược hướng hay
. Vậy
với
.
Lại có
.
Với .
Do đó, .
Cách 3
+ Viết phương trình mặt phẳng trung trực của đoạn thẳng
+ Gọi mp là mặt phẳng trung trực của đoạn thẳng
, suy ra mp
đi qua trung điểm
của đoạn thẳng
và có một vectơ pháp tuyến là
, suy ra phương trình của mp
là:
.
+ Vì đối xứng nhau qua mp
nên
Trong không gian với hệ tọa độ , cho hai điểm
và
. Điểm
thỏa mãn
có tọa độ là:
Từ giả thiết nên ba điểm
thẳng hàng và
nằm cùng phía so với điểm
do
dương.
Lại có
.
Vậy B là trung điểm của MA.
Khi đó ta đươc tọa độ điểm .
Trong không gian, cho hai vectơ và
. Vectơ
bằng
Theo quy tắc ba điểm: .
Trong không gian với hệ trục tọa độ cho hình thang
vuông tại
và
. Biết rằng tọa độ các điểm
và hình thang
có diện tích bằng
. Tính giá trị biểu thức
?
Trong không gian với hệ trục tọa độ cho hình thang
vuông tại
và
. Biết rằng tọa độ các điểm
và hình thang
có diện tích bằng
. Tính giá trị biểu thức
?
Trong không gian hệ trục tọa độ , cho các điểm
. Tìm tọa độ điểm
sao cho tứ giác
là hình bình hành?
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Cho hình lập phương có cạnh bằng
Gọi
lần lượt là trung điểm của
và
Tích vô hướng
(
là số thập phân). Giá trị của
bằng bao nhiêu? (Kết quả ghi dưới dạng số thập phân)
Đáp án: -0,5||- 0,5
Cho hình lập phương có cạnh bằng
Gọi
lần lượt là trung điểm của
và
Tích vô hướng
(
là số thập phân). Giá trị của
bằng bao nhiêu? (Kết quả ghi dưới dạng số thập phân)
Đáp án: -0,5||- 0,5
Hình vẽ minh họa
Vì nên
Ta có:
Vậy
Trong không gian , cho
,
. Tìm tọa độ điểm
thuộc trục tung sao cho
nhỏ nhất.
Khi đó:
.
Do đó đạt giá trị nhỏ nhất khi và chỉ khi
có độ dài ngắn nhất, điều này xảy ra khi và chỉ khi
là hình chiếu vuông góc của
trên trục tung.
Phương trình mặt phẳng đi qua
và vuông góc với trục tung là
hay
.
Phương trình tham số của trục tung là .
Tọa độ điểm cần tìm là nghiệm
của hệ phương trình:
.
Vậy .
Trong không gian tọa độ cho mặt cầu
và đường thẳng
là giao tuyến của hai mặt phẳng
và
. Đường thẳng
cắt mặt cầu
tại hai điểm phân biệt
thỏa mãn
khi:
Ta có .
Phương trình tham số của là
.
.
(*).
(*) .
Phương trình (*) có hai nghiệm phân biệt khi .
Khi đó .
.
.
Suy ra
.
Cách 2:
Mặt cầu có tâm
,
,
.
Đường thẳng qua
, có VTCP
Yêu cầu đề bài tương đương .
Trong không gian với hệ tọa độ Oxyz, cho lần lượt là các vecto đơn vị nằm trên các trục tọa độ
và
là một vecto tùy ý khác
.
Tính
Đáp án: 1
Trong không gian với hệ tọa độ Oxyz, cho lần lượt là các vecto đơn vị nằm trên các trục tọa độ
và
là một vecto tùy ý khác
.
Tính
Đáp án: 1
Giả sử .
Ta có
Vậy
Cho hình hộp với tâm
.
Ta có mà
nên
sai.
Cho hình chóp có
,
. Gọi
là mặt phẳng đi qua
và các trung điểm của
. Tính diện tích thiết diện của hình chóp cắt bởi mặt phẳng
.
Hinh vẽ minh họa

Gọi lần lượt là trung điểm của
. Thiết diện là tam giác
.
Theo bài tập 5 thì
Ta có
.
Tính tương tự, ta có
.
Vậy
.
Trong không gian , cho các điểm
. Xác định tọa độ điểm
sao cho tứ giác
là hình bình hành?
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Trong không gian , cho vectơ
. Khi đó tọa độ vectơ
là:
Ta có:
Trong không gian với hệ trục tọa độ , cho ba điểm
. Điểm
là đỉnh thứ tư của hình bình hành
. Khi đó giá trị biểu thức
có giá trị bằng bao nhiêu?
Gọi tọa độ điểm
Ta có:
Ta có: là hình bình hành
suy ra điểm
Khi đó .
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: