Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Chương 2 Tọa độ của vectơ trong không gian

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng cao
    Tìm số phần tử của tập hợp các điểm M

    Trong không gian tọa độ Oxyz, cho hai điểm A(1;0;0), B(5;6;0)M là điểm thay đổi trên mặt cầu (S):x^{2} + y^{2} + z^{2} = 1. Tập hợp các điểm M trên mặt cầu (S) thỏa mãn 3MA^{2} + MB^{2} = 48 có bao nhiêu phần tử?

    Hướng dẫn:

    Mặt cầu (S):x^{2} + y^{2} + z^{2} =
1 có tâm O(0;0;0), bán kính R = 1.

    Ta tìm điểm I(x;y;z) thỏa mãn 3\overrightarrow{IA} + \overrightarrow{IB} =
\overrightarrow{0}.

    \overrightarrow{IA} = (1 - x\ ;\  - y\
;\  - z), \overrightarrow{IB} = (5
- x\ ;\ 6 - y\ ;\  - z); 3\overrightarrow{IA} + \overrightarrow{IB} =
\overrightarrow{0}

    \Leftrightarrow \left\{ \begin{matrix}
3(1 - x) + 5 - x = 0 \\
3( - y) + 6 - y = 0 \\
3( - z) - z = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- 4x + 8 = 0 \\
- 4y + 6 = 0 \\
- 4z = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = \frac{3}{2} \\
z = 0 \\
\end{matrix} ight.\  \Leftrightarrow I\left( 2;\frac{3}{2};0
ight).

    Suy ra IA = \frac{\sqrt{13}}{2}, IB = \frac{3\sqrt{13}}{2}.

    Do đó 3MA^{2} + MB^{2} = 48
\Leftrightarrow 3{\overrightarrow{MA}}^{2} + {\overrightarrow{MB}}^{2} =
48

    \Leftrightarrow 3\left(
\overrightarrow{MI} + \overrightarrow{IA} ight)^{2} + \left(
\overrightarrow{MI} + \overrightarrow{IB} ight)^{2} = 48

    \Leftrightarrow 4MI^{2} + 3IA^{2} +
IB^{2} + 2\overrightarrow{MI}\left( 3\overrightarrow{IA} +
\overrightarrow{IB} ight) = 48

    \Leftrightarrow 4MI^{2} + 3IA^{2} +
IB^{2} = 48 \Leftrightarrow MI = \frac{3}{2}.

    Ta thấy OI = \frac{5}{2} nên điểm I nằm ngoài mặt cầu (S). Ta có OI
= R + MI = OM + MI, suy ra có một điểm M thuộc đoạn OI thỏa mãn đề bài.

  • Câu 2: Vận dụng
    Tính diện tích thiết diện

    Cho hình chóp S.ABCSA = SB = SC = a, \widehat{ASB} = \widehat{BSC} = \widehat{CSA} =
\alpha. Gọi (\beta) là mặt phẳng đi qua A và các trung điểm của SB,SC. Tính diện tích thiết diện của hình chóp cắt bởi mặt phẳng (\beta).

    Hướng dẫn:

    Hinh vẽ minh họa

    Gọi B',C' lần lượt là trung điểm của SB,SC. Thiết diện là tam giác AB'C'.

    Theo bài tập 5 thì S_{AB'C'} =
\frac{1}{2}\sqrt{AB'^{2}AC'^{2} - \left(
\overrightarrow{AB'}.\overrightarrow{AC'}
\right)^{2}}

    Ta có \overrightarrow{AB'} =
\overrightarrow{SB'} - \overrightarrow{SA} =
\frac{1}{2}\overrightarrow{SB} - \overrightarrow{SA}

    \Rightarrow AB'^{2} =
\frac{1}{4}SB^{2} + SA^{2} -
\overrightarrow{SA}\overrightarrow{SB}

    = \frac{a^{2}}{4}(5 -
4cos\alpha).

    Tính tương tự, ta có

    \overrightarrow{AB'}\overrightarrow{AC'} =
\frac{a^{2}}{4}(4 - 3cos\alpha).

    Vậy S_{AB'C'} =
\frac{1}{2}\sqrt{\frac{a^{4}}{16}(5 - 4cos\alpha)^{2} -
\frac{a^{4}}{16}(4 - 3cos\alpha)^{2}}

    = \frac{a^{2}}{8}\sqrt{7cos^{2}\alpha -
16cos\alpha + 9}.

  • Câu 3: Nhận biết
    Tính tích vô hướng

    Cho hai véc tơ \overrightarrow{a} = (1; -
2;3), \overrightarrow{b} = ( -
2;1;2). Khi đó, tích vô hướng \left( \overrightarrow{a} + \overrightarrow{b}
\right).\overrightarrow{b} bằng

    Hướng dẫn:

    Ta có:

    \overrightarrow{a} + \overrightarrow{b} =
( - 1; - 1;5)

    \Rightarrow \left(
\overrightarrow{a} + \overrightarrow{b} ight).\overrightarrow{b} = -
1.( - 2) + ( - 1).1 + 5.2 = 11.

  • Câu 4: Thông hiểu
    Tìm đẳng thức sai

    Cho hình hộp ABCD.A_{1}B_{1}C_{1}D_{1}. Chọn đẳng thức sai?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có : \overrightarrow{BA} +
\overrightarrow{DD_{1}} + \overrightarrow{BD_{1}} = \overrightarrow{BA}
+ \overrightarrow{BB_{1}} + \overrightarrow{BD_{1}} =
\overrightarrow{BA_{1}} + \overrightarrow{BD_{1}} eq
\overrightarrow{BC} nên D sai.

    Do \overrightarrow{BC} =
\overrightarrow{B_{1}C_{1}}\overrightarrow{BA} =
\overrightarrow{B_{1}A_{1}} nên \overrightarrow{BC} + \overrightarrow{BA} =
\overrightarrow{B_{1}C_{1}} + \overrightarrow{B_{1}A_{1}}. A đúng

    Do \overrightarrow{AD} +
\overrightarrow{D_{1}C_{1}} + \overrightarrow{D_{1}A_{1}} =
\overrightarrow{AD} + \overrightarrow{D_{1}B_{1}} =
\overrightarrow{A_{1}D_{1}} + \overrightarrow{D_{1}B_{1}} =
\overrightarrow{A_{1}B_{1}} = \overrightarrow{DC} nên

    \overrightarrow{AD} +
\overrightarrow{D_{1}C_{1}} + \overrightarrow{D_{1}A_{1}} =
\overrightarrow{DC} nên B đúng.

    Do \overrightarrow{BC} +
\overrightarrow{BA} + \overrightarrow{BB_{1}} = \overrightarrow{BD} +
\overrightarrow{DD_{1}} = \overrightarrow{BD_{1}} nên C đúng.

  • Câu 5: Vận dụng cao
    Tính thể tích khối tứ diện

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(a;0;0),B(0;b;0),C(0;0;c), trong đó a > 0,b > 0,c > 0\frac{1}{a} + \frac{2}{b} + \frac{3}{c} =
7. Biết mặt phẳng (ABC) tiếp xúc với mặt cầu (S):(x - 1)^{2} + (y -
2)^{2} + (y - 3)^{2} = \frac{72}{7}. Thể tích của khối tứ diện OABC là.

    Hướng dẫn:

    Cách 1:

    Ta có : (ABC):\frac{x}{a} + \frac{y}{b} +
\frac{z}{c} = 1 \Leftrightarrow bcx + acy + abz - abc = 0.

    Theo bài ra có: \frac{1}{a} + \frac{2}{b}
+ \frac{3}{c} = 7 \Leftrightarrow bc + 2ca + 3ab = 7abc.

    Mặt phẳng (ABC) tiếp xúc với mặt cầu (S) \Rightarrow d\left( I;(ABC) \right)
= R

    \Leftrightarrow \frac{|bc + 2ca + 3ab -
abc|}{\sqrt{b^{2}c^{2} + c^{2}a^{2} + a^{2}b^{2}}} =
\sqrt{\frac{72}{7}}

    \Leftrightarrow \frac{1}{36}\left(
\frac{1}{a^{2}} + \frac{1}{b^{2}} + \frac{1}{c^{2}} \right) =
\frac{7}{72} \Leftrightarrow \frac{1}{a^{2}} + \frac{1}{b^{2}} +
\frac{1}{c^{2}} = \frac{7}{2}.

    Ta có \frac{1}{a} + \frac{2}{b} +
\frac{3}{c} = 7

    \Leftrightarrow 7 = \left( \frac{1}{a} +
2.\frac{1}{b} + 3.\frac{1}{c} \right)^{2} \leq (1 + 4 + 9)\left(
\frac{1}{a^{2}} + \frac{1}{b^{2}} + \frac{1}{c^{2}}
\right).

    Dấu bằng xảy ra \Leftrightarrow \left\{\begin{matrix}a = 2b = 3c \\\frac{1}{a} + \frac{2}{b} + \frac{3}{c} = 7\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix} a = 2 \\b = 1 \\c = \frac{2}{3}\end{matrix} \right..

    VậyV_{OABC} = \frac{1}{6}abc =
\frac{1}{6}.2.1.\frac{2}{3} = \frac{2}{9}.

    Cách 2:

    Ta có (ABC):\frac{x}{a} + \frac{y}{b} +
\frac{z}{c} = 1\frac{1}{a} +
\frac{2}{b} + \frac{3}{c} = 7 suy ra M\left( \frac{1}{7};\frac{2}{7};\frac{3}{7}\right)\in (ABC).

    Lại có M\left(
\frac{1}{7};\frac{2}{7};\frac{3}{7} \right) \in (S) nên (ABC) tiếp xúc với (S) tại M.

    Suy ra (ABC):\frac{x}{2} + \frac{y}{1} +
\frac{z}{\frac{2}{3}} = 1 nên V_{OABC} = \frac{1}{6}abc =
\frac{1}{6}.2.1.\frac{2}{3} = \frac{2}{9}.

  • Câu 6: Thông hiểu
    Tính độ dài đoạn thẳng

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm M(3; - 2;1),N(1;0; - 3). Gọi M';N' lần lượt là hình chiếu của M;N lên mặt phẳng (Oxy). Khi đó độ dài đoạn thẳng M'N' bằng:

    Hướng dẫn:

    M';N' lần lượt là hình chiếu của M;N lên mặt phẳng (Oxy) nên M'(3; - 2;0),N'(1;0;0) suy ra \overrightarrow{M'N'} = ( -
2;2;0)

    \Rightarrow M'N' =
2\sqrt{2}.

  • Câu 7: Vận dụng
    Định tọa độ điểm M

    Trong không gian Oxyzcho A(4; - 2;6), B(2;4;2),M
\in (\alpha)\ :\ x + 2y - 3z - 7 = 0 sao cho\overrightarrow{MA}.\overrightarrow{MB} nhỏ nhất. Tọa độ của M bằng

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi I là trung điểm AB \Rightarrow I(3;1;4).

    Gọi H là hình chiếu của I xuống mặt phẳng (\alpha).

    Ta có \overrightarrow{MA}.\overrightarrow{MB} = \left(
\overrightarrow{MI} + \overrightarrow{IA} ight).\left(
\overrightarrow{MI} + \overrightarrow{IB} ight)

    = MI^{2} + \overrightarrow{MI}.\left(
\overrightarrow{IA} + \overrightarrow{IB} ight) - IA^{2} = MI^{2} -
IA^{2}.

    Do IA không đổi nên \overrightarrow{MA}.\overrightarrow{MB} nhỏ nhất khi MI nhỏ nhất \Leftrightarrow MI = IH \Leftrightarrow M \equiv
H.

    Gọi \Delta là đường thẳng đi qua I và vuông góc với mặt phẳng (\alpha).

    Khi đó \Delta nhận \overrightarrow{n_{(\alpha)}} = (1;2; -
3)làm vectơ chỉ phương.

    Do đó \Delta có phương trình \left\{ \begin{matrix}
x = 3 + t \\
y = 1 + 2t \\
z = 4 - 3t \\
\end{matrix} ight..

    H \in \Delta \Leftrightarrow H(3 + t;1 +
2t;4 - 3t).

    H \in (\alpha) \Leftrightarrow (3 + t) +
2(1 + 2t) - 3(4 - 3t) - 7 = 0

    \Leftrightarrow t = 1 \Leftrightarrow
H(4;3;1).

    Vậy M(4;3;1).

  • Câu 8: Thông hiểu
    Tìm tọa độ điểm D

    Trong không gian với hệ trục tọa độ Oxyz, cho A(0;\  - 1;\ 1), B( - 2;\ 1;\  - 1), C( - 1;\ 3;\ 2). Biết rằng ABCD là hình bình hành, khi đó tọa độ điểm D

    Hướng dẫn:

    Gọi D(x;\ y;\ z), ta có ABCD là hình bình hành nên \overrightarrow{BA} =
\overrightarrow{CD}

    \Leftrightarrow \left\{ \begin{matrix}
\begin{matrix}
x + 1 = 2 \\
y - 3 = - 2 \\
\end{matrix} \\
z - 2 = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 1 \\
z = 4 \\
\end{matrix} ight..

    Vậy D(1;\ 1;\ 4).

  • Câu 9: Nhận biết
    Xác định tọa độ điểm A

    Trong không gian Oxyz, cho \overrightarrow{AO} = \overrightarrow{i} -
2\overrightarrow{j} + 3\overrightarrow{k}. Tọa độ của điểm A

    Hướng dẫn:

    Ta có: \overrightarrow{AO} =
\overrightarrow{i} - 2\overrightarrow{j} + 3\overrightarrow{k} = (1; -
2;3)

    Khi đó A( - 1;2; - 3)

  • Câu 10: Nhận biết
    Xác định cosin góc giữa hai vectơ

    Trong không gian Oxyz, cho \overrightarrow{a} = ( - 3\ ;\ 4\ ;\ 0), \overrightarrow{b} = (5\ ;\ 0\ ;\
12). Côsin của góc giữa \overrightarrow{a}\overrightarrow{b} bằng

    Hướng dẫn:

    Ta có:

    \cos\left( \overrightarrow{a}\ ;\ \
\overrightarrow{b} ight) =
\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}
ight|.\left| \ \overrightarrow{b} ight|}

    = \frac{- 3.5 + 4.0 + 0.12}{\sqrt{( - 3)^{2} +
4^{2} + 0^{2}}.\sqrt{5^{2} + 0^{2} + 12^{2}}} = \frac{-
3}{13}.

  • Câu 11: Thông hiểu
    Tìm tọa độ điểm D

    Trong không gian Oxyz, cho các điểm A(1;2; - 3),B(2;5;7),C( - 3;1;4). Xác định tọa độ điểm D sao cho tứ giác ABCD là hình bình hành?

    Hướng dẫn:

    Giả sử điểm D(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{AB} =
\overrightarrow{DC}

    \Leftrightarrow \left\{ \begin{matrix}
1 = - 3 - x \\
3 = 1 - y \\
20 = 4 - z \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 4 \\
y = - 2 \\
z = - 6 \\
\end{matrix} ight.. Vậy tọa độ điểm D( - 4; - 2; - 6).

  • Câu 12: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Trong không gian tọa độ Oxyz, cho hai mặt phẳng \left( P_{1} ight):x +
2y - z - 5 = 0\left( P_{2}
ight): - 2x + y + z - 4 = 0

    a) Vectơ có tọa độ (1\ ;\ 2\ ;1) là một vectơ pháp tuyến của mặt phẳng \left(
P_{1} ight). Sai||Đúng

    b) Vectơ có toạ độ ( - 2;\ 1\ ;\
1) là một vectơ pháp tuyến của mặt phẳng \left( P_{2} ight). Đúng||Sai

    c) Côsin của góc giữa hai vectơ {\overrightarrow{n}}_{1} = (1;\ 2\ ;\  -
1){\overrightarrow{n}}_{2} = (
- 2\ ;\ 1\ ;\ 1) bằng -
\frac{1}{6}. Đúng||Sai

    d) Góc giữa hai mặt phẳng \left( P_{1}
ight)\left( P_{2}
ight) bằng 100{^\circ}. Sai||Đúng

    Đáp án là:

    Trong không gian tọa độ Oxyz, cho hai mặt phẳng \left( P_{1} ight):x +
2y - z - 5 = 0\left( P_{2}
ight): - 2x + y + z - 4 = 0

    a) Vectơ có tọa độ (1\ ;\ 2\ ;1) là một vectơ pháp tuyến của mặt phẳng \left(
P_{1} ight). Sai||Đúng

    b) Vectơ có toạ độ ( - 2;\ 1\ ;\
1) là một vectơ pháp tuyến của mặt phẳng \left( P_{2} ight). Đúng||Sai

    c) Côsin của góc giữa hai vectơ {\overrightarrow{n}}_{1} = (1;\ 2\ ;\  -
1){\overrightarrow{n}}_{2} = (
- 2\ ;\ 1\ ;\ 1) bằng -
\frac{1}{6}. Đúng||Sai

    d) Góc giữa hai mặt phẳng \left( P_{1}
ight)\left( P_{2}
ight) bằng 100{^\circ}. Sai||Đúng

    a) \overrightarrow{n_{\left( P_{1}
ight)}} = (1;2; - 1) nên mệnh đề sai

    b) \overrightarrow{n_{\left( P_{1}
ight)}} = ( - 2;1;1) nên mệnh đề đúng

    c) \cos\left(
\overrightarrow{n_{1}},\overrightarrow{n_{2}} ight) = \frac{1.( - 2) +
2.1 + ( - 1)1}{\sqrt{6}\sqrt{6}} = - \frac{1}{6} mệnh đề đúng

    d) Góc hai mặt phẳng không thể tù nên mệnh đề sai

  • Câu 13: Thông hiểu
    Tìm câu sai

    Cho hình tứ diện ABCD có trọng tâm G. Mệnh đề nào sau đây sai.

    Hướng dẫn:

    Theo giả thuyết trên thì với O là một điểm bất kỳ ta luôn có:

    \overrightarrow{OG} = \frac{1}{4}\left(
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} +
\overrightarrow{OD} ight).

    Ta thay điểm O bởi điểm A thì ta có:

    \overrightarrow{AG} = \frac{1}{4}\left(
\overrightarrow{AA} + \overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD} ight)

    \Leftrightarrow \overrightarrow{AG} =
\frac{1}{4}\left( \overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD} ight)

    Do vậy \overrightarrow{AG} =
\frac{2}{3}\left( \overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD} ight) là sai.

  • Câu 14: Thông hiểu
    Tìm tọa độ điểm D theo yêu cầu

    Trong không gian Oxyz, cho ba điểm A( - 1\ ;\ 0\ ;\ 2), B(2\ ;\ 1\ ;\  - 3)C(1\ ;\  - 1\ ;\ 0). Tìm tọa độ điểm D sao cho ABCD là hình bình hành.

    Hướng dẫn:

    Gọi D(a\ ;\ b\ ;\ c); \overrightarrow{AB} = (3\ ;\ 1\ ;\  - 5); \overrightarrow{AC} = (2\ ;\  - 1\ ;\  -
2)

    \frac{3}{2} eq \frac{1}{-
1} nên \overrightarrow{AB} không cùng phương \overrightarrow{AC}
\Rightarrow tồn tại hình bình hành ABCD.

    Suy ra ABCD là hình bình hành khi \overrightarrow{AB} =
\overrightarrow{DC}

    \Leftrightarrow \left\{ \begin{matrix}
3 = 1 - a \\
1 = - 1 - b \\
- 5 = - c \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 2 \\
b = - 2 \\
c = 5 \\
\end{matrix} ight..

    Vậy D( - 2\ ;\  - 2\ ;\ 5).

  • Câu 15: Nhận biết
    Xác định mệnh đề không chính xác

    Cho tứ diện đều ABCD. Mệnh đề nào sau đây sai?

    Hướng dẫn:

    Vì tứ diện ABCD là tứ diện đều nên có các cặp cạnh đối vuông góc

    Suy ra \overrightarrow{AC}.\overrightarrow{BD} =
\overrightarrow{AD}.\overrightarrow{BC} =
\overrightarrow{AB}.\overrightarrow{CD} =
\overrightarrow{0}

    Vậy mệnh đề chưa chính xác là: \overrightarrow{AD}.\overrightarrow{CD} =
\overrightarrow{AC}.\overrightarrow{DC} =
\overrightarrow{0}.

  • Câu 16: Thông hiểu
    Chọn đáp án đúng

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm A(1;2; - 1),B(2; - 1;3),C( - 3;5;1). Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành?

    Hướng dẫn:

    Giả sử điểm D(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{AB} =
\overrightarrow{DC}

    \Leftrightarrow \left\{ \begin{matrix}
2 - 1 = - 3 - x \\
- 1 - 2 = 5 - y \\
3 - ( - 1) = 1 - z \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 4 \\
y = 8 \\
z = - 3 \\
\end{matrix} ight.. Vậy tọa độ điểm D( - 4;8; - 3).

  • Câu 17: Nhận biết
    Tìm tọa độ điểm M

    Trong không gian Oxyz giả sử \overrightarrow{OM} = 2\overrightarrow{i} +
3\overrightarrow{j} - \overrightarrow{k}, khi đó tọa độ điểm M

    Hướng dẫn:

    Ta có:

    \overrightarrow{OM} = 2\overrightarrow{i}
+ 3\overrightarrow{j} - \overrightarrow{k} = (2;3; - 1) hay M(2;3; - 1)

  • Câu 18: Vận dụng
    Xét tính đúng sai của các nhận định

    Trong không gian Oxyz, cho hình lập phương ABCD.A'B'C'D' có cạnh bằng 4, đỉnh A trùng với gốc O, các điểm B,D,A' lần lượt nằm trên các tia Ox,Oy,Oz.

    a. Tọa độ của điểm D là: (4;0;0) Sai||Đúng

    b. Tọa độ của vec tơ C là: (0;4;0) Sai||Đúng

    c. Tọa độ của vec tơ A' là: (0;0;4) Đúng||Sai

    d. Tọa độ của vec tơ C' là: (4;4;4) Đúng||Sai

    Đáp án là:

    Trong không gian Oxyz, cho hình lập phương ABCD.A'B'C'D' có cạnh bằng 4, đỉnh A trùng với gốc O, các điểm B,D,A' lần lượt nằm trên các tia Ox,Oy,Oz.

    a. Tọa độ của điểm D là: (4;0;0) Sai||Đúng

    b. Tọa độ của vec tơ C là: (0;4;0) Sai||Đúng

    c. Tọa độ của vec tơ A' là: (0;0;4) Đúng||Sai

    d. Tọa độ của vec tơ C' là: (4;4;4) Đúng||Sai

    Hình vẽ minh họa

    (a) Tọa độ của điểm D là: (4;0;0)

    Do \overrightarrow{OD} cùng hướng với \overrightarrow{j}\left| \overrightarrow{OD} \right| = OD = 4
= 4\left| \overrightarrow{j} \right| nên \overrightarrow{OD} = 4\overrightarrow{j} hay \overrightarrow{OD} =
0\overrightarrow{i} + 4\overrightarrow{j} +
0\overrightarrow{k}.

    Suy ra: D(0;4;0).

    » Chọn SAI.

    (b) Tọa độ của vec tơ C là: (0;4;0)

    Do \overrightarrow{OB} cùng hướng với \overrightarrow{i}\left| \overrightarrow{OB} \right| = OB = 4
= 4\left| \overrightarrow{i} \right| nên \overrightarrow{AB} = 4\overrightarrow{i} hay \overrightarrow{OB} =
4\overrightarrow{i} + 0\overrightarrow{j} +
0\overrightarrow{k}.

    Theo quy tắc hình bình hành, ta có: \overrightarrow{OC} = \overrightarrow{OB} +
\overrightarrow{OD} = 4\overrightarrow{i} + 4\overrightarrow{j} +
0\overrightarrow{k}.

    Suy ra: C(4;4;0).

    » Chọn SAI.

    (c) Tọa độ của vec tơ A' là: (0;0;4)

    Do \overrightarrow{OA'} cùng hướng với \overrightarrow{k}\left| \overrightarrow{OA'} \right| =
OA' = 4 = 4\left| \overrightarrow{k} \right| nên \overrightarrow{OA'} =
4\overrightarrow{k} hay \overrightarrow{OA'} = 0\overrightarrow{i} +
0\overrightarrow{j} + 4\overrightarrow{k}.

    Suy ra: A'(0;0;4).

    » Chọn ĐÚNG.

    (d) Tọa độ của vec tơ C' là: (4;4;4).

    Theo quy tắc hình hộp, ta có: \overrightarrow{OC'} = \overrightarrow{OB} +
\overrightarrow{OD} + \overrightarrow{OA'} = 4\overrightarrow{i} +
4\overrightarrow{j} + 4\overrightarrow{k}.

    Suy ra: C'(4;4;4)

    » Chọn ĐÚNG.

  • Câu 19: Vận dụng
    Ghi đáp án đúng vào chỗ trống

    Một kho chứa hàng có dạng hình lăng trụ đứng ABFPE.DCGQH với ABFE là hình chữ nhật

    EFP là tam giác cân tại P. Gọi T là trung điểm của DC. Các kích thước của kho chứa lần lượt là AB = 6m;AE = 5m; AD =
8m; QT = 7m. Người ta mô hình hoá nhà kho bằng cách chọn hệ trục toạ độ có gốc toạ độ là điểm O thuộc đoạn AD sao cho OA
= 2m và các trục toạ độ tương ứng như hình vẽ dưới đây.

    Để lắp camera quan sát trong nhà kho tại vị trí trung điểm của FG và đầu thu dữ liệu đặt tại vị trí O, người ta thiết kế đường dây cáp nối từ O đến K sau đó nối thẳng đến camera, rồi nối lại từ camera đến thẳng điểm Q. Độ dài đoạn cáp nối tối thiểu bằng bao nhiêu mét (làm tròn đến hàng phần chục và đầu dây nối không đáng kể ).

    Đáp án: 16,7

    Đáp án là:

    Một kho chứa hàng có dạng hình lăng trụ đứng ABFPE.DCGQH với ABFE là hình chữ nhật

    EFP là tam giác cân tại P. Gọi T là trung điểm của DC. Các kích thước của kho chứa lần lượt là AB = 6m;AE = 5m; AD =
8m; QT = 7m. Người ta mô hình hoá nhà kho bằng cách chọn hệ trục toạ độ có gốc toạ độ là điểm O thuộc đoạn AD sao cho OA
= 2m và các trục toạ độ tương ứng như hình vẽ dưới đây.

    Để lắp camera quan sát trong nhà kho tại vị trí trung điểm của FG và đầu thu dữ liệu đặt tại vị trí O, người ta thiết kế đường dây cáp nối từ O đến K sau đó nối thẳng đến camera, rồi nối lại từ camera đến thẳng điểm Q. Độ dài đoạn cáp nối tối thiểu bằng bao nhiêu mét (làm tròn đến hàng phần chục và đầu dây nối không đáng kể ).

    Đáp án: 16,7

    Với hệ trục toạ độ đã chọn ta có O(0;0;0), K(0;0;5), F(2;6;5), G(
- 6;6;5), Q( - 6;3;7).

    Gọi I là trung điểm của FG, ta có I(
- 2;6;5)

    Do đó OK = 5; \overrightarrow{KI} = ( - 2;6;0) \Rightarrow KI =
\sqrt{4 + 36} = 2\sqrt{10}; \overrightarrow{IQ} = ( - 4; - 3;2) \Rightarrow IQ
= \sqrt{16 + 9 + 4} = \sqrt{29}.

    Vậy độ dài đoạn cáp nối tối thiểu là: OK
+ KI + IQ = 5 + 2\sqrt{10} + \sqrt{29} \approx 16,7\ m.

  • Câu 20: Nhận biết
    Chọn mệnh đề đúng

    Cho \overrightarrow{a}\overrightarrow{b} là hai vectơ cùng hướng và đều khác vectơ \overrightarrow{0}. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Do \overrightarrow{a}\overrightarrow{b} là hai vectơ cùng hướng nên \left(
\overrightarrow{a},\overrightarrow{b} ight) = 0^{0} \Rightarrow
\cos\left( \overrightarrow{a},\overrightarrow{b} ight) =
1.

    Vậy \overrightarrow{a}.\overrightarrow{b}
= \left| \overrightarrow{a} ight|.\left| \overrightarrow{b}
ight|.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (30%):
    2/3
  • Thông hiểu (40%):
    2/3
  • Vận dụng (20%):
    2/3
  • Vận dụng cao (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo