Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:
Số chính phương là gì?
Số chính phương là số bằng bình phương của một số nguyên.
Tức là: Nếu n là số chính phương thì n = k2 (k ∈ Z)
Ví dụ: 4 = 22, 9 = 32, 100 = 102
Một số tính chất
Số chính phương tận cùng bằng 1, 4 hoặc 9 thì chữ số hàng chục là chữ số chẵn.
Số chính phương tận cùng bằng 5 thì chữ số hàng chục là 2.
Số chính phương tận cùng bằng 6 thì chữ số hàng chục là chữ số lẻ.
Số chính phương chia hết cho 2 thì chia hết cho 4.
Số chính phương chia hết cho 3 thì chia hết cho 9.
Số chính phương chia hết cho 5 thì chia hết cho 25.
Số chính phương chia hết cho 8 thì chia hết cho 16.
Mọi số chính phương khi chia cho 5, cho 8 chỉ dư 1, 0, 4
Số chính phương chia cho 4 hoặc 3 không bao giờ có số dư là 2
Số chính phương lẻ khi chia 8 luôn dư 1.
Xem thêm...
Một số tính chất
Số chính phương chỉ có thể có chữ số tận cùng bằng 0, 1, 4, 5, 6, 9; không bao giờ có chữ số tận cùng bằng 2, 3, 7, 8.
Khi phân tích ra thừa số nguyên tố, số chính phương chỉ chứa các thừa số nguyên tố với số mũ chẵn.
Số chính phương chỉ có thể có một trong hai dạng 4n hoặc 4n + 1. Không có số chính phương nào có dạng 4n + 2 hoặc 4n + 3 (n ∈ N).
Số chính phương chỉ có thể có một trong hai dạng 3n hoặc 3n + 1. Không có số chính phương nào có dạng 3n + 2 (n ∈ N).
Số chính phương tận cùng bằng 1, 4 hoặc 9 thì chữ số hàng chục là chữ số chẵn.
Số chính phương tận cùng bằng 5 thì chữ số hàng chục là 2.
Số chính phương tận cùng bằng 6 thì chữ số hàng chục là chữ số lẻ.
Số chính phương chia hết cho 2 thì chia hết cho 4.
Số chính phương chia hết cho 3 thì chia hết cho 9.
Số chính phương chia hết cho 5 thì chia hết cho 25.
Số chính phương chia hết cho 8 thì chia hết cho 16.
Mọi số chính phương khi chia cho 5, cho 8 chỉ dư 1, 0, 4
Số chính phương chia cho 4 hoặc 3 không bao giờ có số dư là 2
Số chính phương lẻ khi chia 8 luôn dư 1.
Xem thêm...Ta có: n6 - n 4 + 2n3 + 2n2 = n2. (n4 - n2 + 2n +2)
= n2. [n2(n-1)(n+1) +2(n+1)]
= n2[(n+1)(n3 - n2 + 2)]
= n2(n + 1) . [(n3 + 1) - (n2 - 1)]
= n2(n + 1)2 . (n2 - 2n + 2)
Với nN, n > 1 thì n2 - 2n + 2 = ( n -1)2 + 1 > ( n - 1)2
Và n2 - 2n + 2 = n2 - 2(n - 1) < n2
Vậy (n - 1)2 < n2 - 2n + 2 < n2 => n2 - 2n + 2 không phải là một số chính phương.
Xem thêm...Số chính phương là gì?
Số chính phương là số bằng bình phương của một số nguyên.
Tức là: Nếu n là số chính phương thì n = k2 (k ∈ Z)
Ví dụ: 4 = 22, 9 = 32, 100 = 102
Gọi 5 số tự nhiên liên tiếp đó là n - 2, n - 1, n +1, n + 2 ( n N, n >2).
Ta có (n - 2)2 + ( n - 1)2 + n2 + (n + 1)2 + (n + 2)2 = 5 . (n2 + 2)
Vì n2 không thể tận cùng bởi 3 hoặc 8 do đó n2 + 2 không thể chia hết cho 5
Ta có:
k(k + 1)(k + 2) = k (k + 1)(k + 2). 4
= k(k + 1)(k + 2).
= k(k + 1)(k + 2)(k + 3) -
k(k + 1)(k + 2)(k - 1)
=> 4S =1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + . . . + k(k + 1)(k + 2)(k + 3)
- k(k + 1)(k + 2)(k - 1) = k(k + 1)(k + 2)(k + 3)
=> 4S + 1 = k(k + 1)(k + 2)(k + 3) + 1
Theo kết quả bài 2 => k(k + 1)(k + 2)(k + 3) + 1 là số chính phương.
Xem thêm...# Bài toán về quãng đường nhảy xa của lực sĩ Báo
**Đề bài:**
Lực sĩ Báo thi nhảy xa năm bước. Ba bước đầu của lực sĩ là 605cm, hai bước nhảy cuối cùng của lực sĩ là 580cm.
a) Lực sĩ Báo nhảy được tổng cộng ......... cm
b) Lực sĩ Báo nhảy được tổng cộng ......... m ......... cm
**Giải:**
a) Tính tổng quãng đường lực sĩ Báo nhảy được (tính bằng cm)
Tổng quãng đường = Ba bước đầu + Hai bước cuối
Tổng quãng đường = 605 cm + 580 cm = 1185 cm
b) Chuyển đổi kết quả từ cm sang m và cm
Để chuyển từ cm sang m, ta chia cho 100:
1185 cm = 1185 ÷ 100 = 11,85 m
Viết dưới dạng m và cm:
1185 cm = 11 m 85 cm
**Đáp số:**
a) Lực sĩ Báo nhảy được tổng cộng 1185 cm
b) Lực sĩ Báo nhảy được tổng cộng 11 m 85 cm
Xem thêm...Diện tích hình chữ nhật đó là:3x8=24(cm2)
Diện tích hình vuông đó là:3x3=9(cm2)
Diện tích của hình H là:24+9=33(cm2)
Đ/S:33cm2.
Tỉ số giữa học sinh nữ và học sinh cả lớp là:
25:40=0,625
0,625=62,5%
Đ/S:62,5%
Xem đáp án tại đây: Toán 9 Kết nối tri thức Bài 3: Giải bài toán bằng cách lập hệ phương trình
Gọi x (tấn), y (tấn) lần lượt là năng suất của giống lúa cũ và mới trên 1 ha. (x, y > 0).
7 ha giống lúa mới thu hoạch được 7y (tấn thóc)
Do 7 ha giống lúa mới cho thu hoạch nhiều hơn 8 ha giống lúa cũ là 2 tấn thóc nên ta có phương trình:
7y - 8x = 2 (1)
100 ha giống lúa cũ thu hoạch được 100x (tấn)
60 ha giống lúa mới thu hoạch được 60y (tấn)
Do tổng số thóc thu hoạch cả vụ trên 160 ha là 860 tấn nên ta có phương trình:
100x + 60y = 860 hay 5x + 3y = 43 (2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{ {\begin{array}{*{20}{1}} 7y - 8x = 2 \\ 5x +3y= 43\end{array}} \right.\) hay
\(\left\{ {\begin{array}{*{20}{1}} -8x+7y = 2 \\ 5x +3y= 43\end{array}} \right.\) (1)
Nhân cả hai vế phương trình thứ nhất với 5 và phương trình thứ hai với 8 của hệ ta được
\(\left\{ {\begin{array}{*{20}{1}} -40x+35y = 10 \\ 40x +24y= 344\end{array}} \right.\)
Cộng từng vế hai phương trình của hệ mới, ta được
59y = 354, suy ra y = 6
Thế y = 6 vào phương trình thứ nhất của hệ (1), ta được - 8x + 7 . 6 = 2, suy ra x = 5.
Các giá trị x = 5 và y = 6 thỏa mãn điều kiện của ẩn.
Vậy năng suất của giống lúa cũ và mới trên 1 ha lần lượt là: 5 tấn thóc và 6 tấn thóc.
Xem thêm...Mặt Trời cần số giây để tiêu thụ một lượng khí hdrogen có khối lượng bằng khối lượng Trái Đất là:
(60. 1020) : ( 6. 106) = (6.10.1020): (6.106) = 6.1021 : 6 : 106 = (6: 6).(1021:106) = 1021-6 = 1015 (giây)
Đáp số: 1015 giây
Vậy Mặt Trời cần 1015 giây để tiêu thụ một lượng khí hydrogen
Giải:
Phân tích 14 thành tổng 2 chữ số ta được:
14 = 9 + 5 = 8 + 6 = 7 + 7
Vậy các số có hai chữ số có tổng các chữ số bằng 14 là: 95, 59, 86, 68, 77
Phân số cần lớn hơn \(\frac{5}{7}\) và bé hơn
\(\frac{6}{7}\) là phân số
\(\frac{11}{14}\) vì:
\(\frac{5}{7}=\frac{10}{14}\) và
\(\frac{6}{7}=\frac{12}{14}\) (nhân cả tử số và mẫu số của 2 phân số trên với 2)
So sánh: \(\frac{10}{14}<\frac{11}{14}<\frac{12}{14}\)
a) Góc ở vị trí so le trong với góc MNB là góc NBC.
b) Góc ở vị trí đồng vị với góc ACB là góc ANM.
c) Cặp góc trong cùng phía là: góc MNB và góc MBC
d) Ta có: MN // BC
=> \(\widehat {AMN} = \widehat {ABC}\) (Hai góc đồng vị)
=> \(\widehat {ANM} = \widehat {ACB}\) (Hai góc đồng vị)
=> \(\widehat {MNB} = \widehat {NBC}\) (Hai góc so le trong)
Ta có thể khẳng định được hai đường thẳng a và b song song với nhau do A^=B^, mà hai góc này ở vị trí đồng vị nên a // b.
Xem đáp án tại đây: Giải Toán 7 Bài 9: Hai đường thẳng song song và dấu hiệu nhận biết