Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:
Số chính phương là gì?
Số chính phương là số bằng bình phương của một số nguyên.
Tức là: Nếu n là số chính phương thì n = k2 (k ∈ Z)
Ví dụ: 4 = 22, 9 = 32, 100 = 102
Một số tính chất
Số chính phương tận cùng bằng 1, 4 hoặc 9 thì chữ số hàng chục là chữ số chẵn.
Số chính phương tận cùng bằng 5 thì chữ số hàng chục là 2.
Số chính phương tận cùng bằng 6 thì chữ số hàng chục là chữ số lẻ.
Số chính phương chia hết cho 2 thì chia hết cho 4.
Số chính phương chia hết cho 3 thì chia hết cho 9.
Số chính phương chia hết cho 5 thì chia hết cho 25.
Số chính phương chia hết cho 8 thì chia hết cho 16.
Mọi số chính phương khi chia cho 5, cho 8 chỉ dư 1, 0, 4
Số chính phương chia cho 4 hoặc 3 không bao giờ có số dư là 2
Số chính phương lẻ khi chia 8 luôn dư 1.
Xem thêm...
Một số tính chất
Số chính phương chỉ có thể có chữ số tận cùng bằng 0, 1, 4, 5, 6, 9; không bao giờ có chữ số tận cùng bằng 2, 3, 7, 8.
Khi phân tích ra thừa số nguyên tố, số chính phương chỉ chứa các thừa số nguyên tố với số mũ chẵn.
Số chính phương chỉ có thể có một trong hai dạng 4n hoặc 4n + 1. Không có số chính phương nào có dạng 4n + 2 hoặc 4n + 3 (n ∈ N).
Số chính phương chỉ có thể có một trong hai dạng 3n hoặc 3n + 1. Không có số chính phương nào có dạng 3n + 2 (n ∈ N).
Số chính phương tận cùng bằng 1, 4 hoặc 9 thì chữ số hàng chục là chữ số chẵn.
Số chính phương tận cùng bằng 5 thì chữ số hàng chục là 2.
Số chính phương tận cùng bằng 6 thì chữ số hàng chục là chữ số lẻ.
Số chính phương chia hết cho 2 thì chia hết cho 4.
Số chính phương chia hết cho 3 thì chia hết cho 9.
Số chính phương chia hết cho 5 thì chia hết cho 25.
Số chính phương chia hết cho 8 thì chia hết cho 16.
Mọi số chính phương khi chia cho 5, cho 8 chỉ dư 1, 0, 4
Số chính phương chia cho 4 hoặc 3 không bao giờ có số dư là 2
Số chính phương lẻ khi chia 8 luôn dư 1.
Xem thêm...Ta có: n6 - n 4 + 2n3 + 2n2 = n2. (n4 - n2 + 2n +2)
= n2. [n2(n-1)(n+1) +2(n+1)]
= n2[(n+1)(n3 - n2 + 2)]
= n2(n + 1) . [(n3 + 1) - (n2 - 1)]
= n2(n + 1)2 . (n2 - 2n + 2)
Với nN, n > 1 thì n2 - 2n + 2 = ( n -1)2 + 1 > ( n - 1)2
Và n2 - 2n + 2 = n2 - 2(n - 1) < n2
Vậy (n - 1)2 < n2 - 2n + 2 < n2 => n2 - 2n + 2 không phải là một số chính phương.
Xem thêm...Số chính phương là gì?
Số chính phương là số bằng bình phương của một số nguyên.
Tức là: Nếu n là số chính phương thì n = k2 (k ∈ Z)
Ví dụ: 4 = 22, 9 = 32, 100 = 102
Gọi 5 số tự nhiên liên tiếp đó là n - 2, n - 1, n +1, n + 2 ( n N, n >2).
Ta có (n - 2)2 + ( n - 1)2 + n2 + (n + 1)2 + (n + 2)2 = 5 . (n2 + 2)
Vì n2 không thể tận cùng bởi 3 hoặc 8 do đó n2 + 2 không thể chia hết cho 5
Ta có:
k(k + 1)(k + 2) = k (k + 1)(k + 2). 4
= k(k + 1)(k + 2).
= k(k + 1)(k + 2)(k + 3) -
k(k + 1)(k + 2)(k - 1)
=> 4S =1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + . . . + k(k + 1)(k + 2)(k + 3)
- k(k + 1)(k + 2)(k - 1) = k(k + 1)(k + 2)(k + 3)
=> 4S + 1 = k(k + 1)(k + 2)(k + 3) + 1
Theo kết quả bài 2 => k(k + 1)(k + 2)(k + 3) + 1 là số chính phương.
Xem thêm...# Bài toán về quãng đường nhảy xa của lực sĩ Báo
**Đề bài:**
Lực sĩ Báo thi nhảy xa năm bước. Ba bước đầu của lực sĩ là 605cm, hai bước nhảy cuối cùng của lực sĩ là 580cm.
a) Lực sĩ Báo nhảy được tổng cộng ......... cm
b) Lực sĩ Báo nhảy được tổng cộng ......... m ......... cm
**Giải:**
a) Tính tổng quãng đường lực sĩ Báo nhảy được (tính bằng cm)
Tổng quãng đường = Ba bước đầu + Hai bước cuối
Tổng quãng đường = 605 cm + 580 cm = 1185 cm
b) Chuyển đổi kết quả từ cm sang m và cm
Để chuyển từ cm sang m, ta chia cho 100:
1185 cm = 1185 ÷ 100 = 11,85 m
Viết dưới dạng m và cm:
1185 cm = 11 m 85 cm
**Đáp số:**
a) Lực sĩ Báo nhảy được tổng cộng 1185 cm
b) Lực sĩ Báo nhảy được tổng cộng 11 m 85 cm
Xem thêm...Diện tích hình chữ nhật đó là:3x8=24(cm2)
Diện tích hình vuông đó là:3x3=9(cm2)
Diện tích của hình H là:24+9=33(cm2)
Đ/S:33cm2.
Tỉ số giữa học sinh nữ và học sinh cả lớp là:
25:40=0,625
0,625=62,5%
Đ/S:62,5%
Xem lời giải chi tiết tại Giải Toán 9 KNTT Bài 4: Phương trình quy về phương trình bậc nhất một ẩn
Xem đáp án tại Giải Toán 9 KNTT Bài 4: Phương trình quy về phương trình bậc nhất một ẩn
Xem đáp án chi tiết tại Giải Toán 9 KNTT Bài 3: Giải bài toán bằng cách lập hệ phương trình
Xem đáp án chi tiết tại Giải Toán 9 KNTT Bài 3: Giải bài toán bằng cách lập hệ phương trình
Xem đáp án tại Giải Toán 9 KNTT Bài 3: Giải bài toán bằng cách lập hệ phương trình
Gọi \(x\left( {km/h} \right)\) là vận tốc của xe tải và
\(y\left( {km/h} \right)\) là vận tốc xe khách
\(x,y > 0.\)
Thời gian di chuyển của xe khách từ HCM đến điểm gặp nhau là 1 giờ 40 phút + 40 phút = 2 giờ 20 phút \(= \frac{8}{3}\) (giờ) nên quãng đường xe khách đi được là
\(\frac{8}{3}.y\left( {km} \right).\)
Thời gian di chuyển của xe tải từ Cần Thơ đến điểm gặp nhau là 40 phút \(= \frac{2}{3}\) (giờ) nên quãng đường xe tải đi được là
\(\frac{2}{3}x\left( {km} \right).\)
Vì hai xe di chuyển ngược chiều nên tổng quãng đường hai xe đi được chính là khoảng cách từ HCM đến Cần Thơ nên ta có phương trình: \(\frac{8}{3}y + \frac{2}{3}x = 170\left( {km} \right).\)
Mỗi giờ xe khách đi nhanh hơn xe tải 15km nên ta có phương trình \(y - x = 15\)
Từ đó ta có hệ phương trình: \(\left\{ \begin{array}{l}\frac{8}{3}y + \frac{2}{3}x = 170\\y - x = 15\end{array} \right.\)
Từ phương trình thứ hai ta có \(y = 15 + x\) thế vào phương trình đầu ta được
\(\frac{8}{3}\left( {15 + x} \right) + \frac{2}{3}x = 170\) suy ra
\(\frac{{10}}{3}x + 40 = 170\) nên
\(x = 39\left( {t/m} \right).\)
Với \(x = 39\) ta có
\(y = 15 + 39 = 54\left( {t/m} \right).\)
Vậy vận tốc của xe tải là 39 km/h và vận tốc của xe khách là 54 km/h.
Xem thêm...Xem đáp án tại Giải Toán 9 KNTT Bài 3: Giải bài toán bằng cách lập hệ phương trình
Xem đáp án tại đây nhé Giải Toán 9 Bài 1: Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn
Đáp án chi tiết tại đây Giải Toán 9 Bài 1: Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn
Xem đáp án tại Giải Toán 9 KNTT Bài 1: Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn
a)
Vậy ta có bảng sau:
x |
–1 |
–0,5 |
0 |
0,5 |
1 |
2 |
y = 2x – 1 |
–3 |
–2 |
–1 |
0 |
1 |
3 |
Vậy 6 nghiệm của phương trình đã cho là (–1; –3), (–0,5; –2), (0; –1), (0,5; 1), (1; 1), (2; 3).
b) Ta có y = 2x – 1. Với mỗi giá trị x tùy ý cho trước, ta luôn tìm được một giá trị y tương ứng.
Do đó, phương trình đã cho có vô số nghiệm.
Xem thêm...Xem đáp án tại đây:
Toán 9 Kết nối tri thức Bài 1: Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn