Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm

Các dạng toán về dãy số và phương pháp giải - Ôn hè

Các dạng toán về dãy số và phương pháp giải tổng hợp các kiến thức về dãy số, các loại dãy số và cách giải các dạng toán về dãy số. Các ví dụ và lời giải chi tiết giúp các em học sinh có thể tự luyện tập và kiểm tra lại kiến thức của mình. Hi vọng đây sẽ là tài liệu hữu ích với quý thầy cô và các em học sinh tiểu học trong quá trình giảng dạy và học tập.

Lưu ý: Nếu không tìm thấy nút Tải về bài viết này, bạn vui lòng kéo xuống cuối bài viết để tải về, chi tiết đầy đủ toàn bộ nội dung bài viết.

Để tiện trao đổi, chia sẻ kinh nghiệm về giảng dạy và học tập các môn học lớp 4, VnDoc mời các thầy cô giáo, các bậc phụ huynh và các bạn học sinh truy cập nhóm riêng dành cho lớp 4 sau: Nhóm Tài liệu học tập lớp 4. Và để chuẩn bị cho chương trình học lớp 5, các thầy cô và các em tham khảo: Nhóm Tài liệu học tập lớp 5. Rất mong nhận được sự ủng hộ của các thầy cô và các bạn.

1. Các kiến thức cần nhớ dãy số

Trong dãy số tự nhiên liên tiếp cứ một số chẵn lại đến một số lẻ rồi lại đến một số chẵn… Vì vậy, nếu:

  • Dãy số bắt đầu từ số lẻ và kết thúc là số chẵn thì số lượng các số lẻ bằng số lượng các số chẵn.
  • Dãy số bắt đầu từ số chẵn và kết thúc cũng là số lẻ thì số lượng các số chẵn bằng số lượng các số lẻ.
  • Nếu dãy số bắt đầu từ số lẻ và kết thúc cũng là số lẻ thì số lượng các số lẻ nhiều hơn các số chẵn là 1 số.
  • Nếu dãy số bắt đầu từ số chẵn và kết thúc cũng là số chẵn thì số lượng các số chẵn nhiều hơn các số lẻ là 1 số.

a. Trong dãy số tự nhiên liên tiếp bắt đầu từ số 1 thì số lượng các số trong dãy số chính bằng giá trị của số cuối cùng của số ấy.

b. Trong dãy số tự nhiên liên tiếp bắt đầu từ số khác số 1 thì số lượng các số trong dãy số bằng hiệu giữa số cuối cùng của dãy số với số liền trước số đầu tiên.

2. Các loại dãy số

+ Dãy số cách đều:

- Dãy số tự nhiên.

- Dãy số chẵn, lẻ.

- Dãy số chia hết hoặc không chia hết cho một số tự nhiên nào đó.

+ Dãy số không cách đều.

- Dãy Fibonacci hay tribonacci.

- Dãy có tổng (hiệu) giữa hai số liên tiếp là một dãy số.

+ Dãy số thập phân, phân số:

Dưới đây là 10 dạng Toán về dãy số có phương pháp giải và đáp án chi tiết. Ngoài ra, còn có các bài tập tự luyện cho từng dạng toán này để các em học sinh tham khảo, củng cố kỹ năng giải Toán dãy số.

3. Cách giải các dạng toán về dãy số lớp 5

Dạng 1: Điền thêm số hạng vào sau, giữa hoặc trước một dãy số

Trước hết ta cần xác định lại quy luật của dãy số:

+ Mỗi số hạng (kể từ số hạng thứ 2) bằng số hạng đứng trước nó cộng (hoặc trừ) với một số tự nhiên a.

+ Mỗi số hạng (kể từ số hạng thứ 2) bằng số hạng đứng trước nó nhân (hoặc chia) với một số tự nhiên q khác 0.

+ Mỗi số hạng (kể từ số hạng thứ 3) bằng tổng 2 số hạng đứng liền trước nó.

+ Mỗi số hạng (kể từ số hạng thứ 4) bằng tổng của số hạng đứng trước nó cộng với số tự nhiên d rồi cộng với số thứ tự của số hạng ấy.

+ Số hạng đứng sau bằng số hạng đứng trước nhân với số thứ tự của nó.

+ Mỗi số hạng (kể từ số hạng thứ 2) trở đi đều bằng a lần số liền trước nó.

+ Mỗi số hạng (kể từ số hạng thứ 2) trở đi, mỗi số liền sau bằng a lần số liền trước nó cộng (trừ ) n (n khác 0).

...............................

Các ví dụ:

Bài 1: Điền thêm 3 số hạng vào dãy số sau:

1, 2, 3, 5, 8, 13, 21, 34……

Muốn giải được bài toán trên trước hết phải xác định quy luật của dãy số như sau:

Ta thấy: 1 + 2 = 3 3 + 5 = 8

2 + 3 = 5 5 + 8 = 13

Dãy số trên được lập theo quy luật sau: Kể từ số hạng thứ 3 trở đi mỗi số hạng bằng tổng của hai số hạng đứng liền trước nó.

Ba số hạng tiếp theo là: 21 + 34 = 55; 34 + 55 = 89; 55 + 89 = 144

Vậy dãy số được viết đầy đủ là: 1, 2, 3, 5, 8, 13, 34, 55, 89, 144.

Bài 2: Viết tiếp 3 số hạng vào dãy số sau: 1, 3, 4, 8, 15, 27

Ta nhận thấy: 8 = 1 + 3 + 4 27 = 4 + 8 + 15

15 = 3 + 4 + 8

Từ đó ta rút ra được quy luật của dãy số là: Mỗi số hạng (kể từ số hạng thứ 4) bằng tổng của ba số hạng đứng liền trước nó.

Viết tiếp ba số hạng, ta được dãy số sau: 1, 3, 4, 8, 15, 27, 50, 92, 169.

Bài 3: Tìm số hạng đầu tiên của các dãy số sau biết rằng mỗi dãy số có 10 số hạng.

a)…, …, 32, 64, 128, 256, 512, 1024

b)..., ..., 44, 55, 66, 77, 88, 99, 110

Giải:

a). Ta nhận xét :

Số hạng thứ 10 là: 1024 = 512 x 2

Số hạng thứ 9 là: 512 = 256 x 2

Số hạng thứ 8 là: 256 = 128 x 2

Số hạng thứ 7 là: 128 = 64 x 2

……………………………..

Từ đó ta suy luận ra quy luật của dãy số này là: mỗi số hạng của dãy số gấp đôi số hạng đứng liền trước đó.

Vậy số hạng đầu tiên của dãy là: 1 x 2 = 2.

b). Ta nhận xét:

Số hạng thứ 10 là: 110 = 11 x 10

Số hạng thứ 9 là: 99 = 11 x 9

Số hạng thứ 8 là: 88 = 11 x 8

Số hạng thứ 7 là: 77 = 11 x 7

…………………………..

Từ đó ta suy luận ra quy luật của dãy số là: Mỗi số hạng bằng số thứ tự của số hạng ấy nhân với 11.

Vậy số hạng đầu tiên của dãy là: 1 x 11 = 11.

Bài 4: Tìm các số còn thiếu trong dãy số sau :

a. 3, 9, 27, ..., ..., 729.

b. 3, 8, 23, ..., ..., 608.

Giải:

Muốn tìm được các số còn thiếu trong mỗi dãy số, cần tim được quy luật của mỗi dãy số đó.

a. Ta nhận xét: 3 x 3 = 9

9 x 3 = 27

Quy luật của dãy số là: Kể từ số hạng thứ 2 trở đi, mỗi số hạng gấp 3 lần số liền trước nó.

Vậy các số còn thiếu của dãy số đó là:

27 x 3 = 81; 81 x 3 = 243; 243 x 3 = 729 (đúng).

Vậy dãy số còn thiếu hai số là: 81 và 243.

b. Ta nhận xét: 3 x 3 – 1 = 8; 8 x 3 – 1 = 23.

..........................................

Quy luật của dãy số là: Kể từ số hạng thứ 2 trở đi, mỗi số hạng bằng 3 lần số liền trước nó trừ đi 1. Vì vậy, các số còn thiếu ở dãy số là:

23 x 3 - 1 = 68; 68 x 3 – 1 = 203; 203 x 3 – 1 = 608 (đúng).

Dãy số còn thiếu hai số là: 68 và 203.

Bài 5: Lúc 7h sáng, một người đi từ A đến B và một người đi từ B đến A; cả hai cùng đi đến đích của mình lúc 2h chiều. Vì đường đi khó dần từ A đến B; nên người đi từ A, giờ đầu đi được 15km, cứ mỗi giờ sau đó lại giảm đi 1km. Người đi từ B giờ cuối cùng đi được 15km, cứ mỗi giờ trước đó lại giảm 1km. Tính quãng đường AB.

Giải:

2 giờ chiều là 14h trong ngày.

2 người đi đến đích của mình trong số giờ là:

14 – 7 = 7 giờ.

Vận tốc của người đi từ A đến B lập thành dãy số:

15, 14, 13, 12, 11, 10, 9.

Vận tốc của người đi từ B đến A lập thành dãy số:

9, 10, 11, 12, 13, 14, 15.

Nhìn vào 2 dãy số ta nhận thấy đều có các số hạng giống nhau vậy quãng đường AB là: 9 + 10 + 11 + 12 + 13 + 14 + 15 = 84

Đáp số: 84km.

Bài 6: Điền các số thích hợp vào ô trống sao cho tổng số 3 ô liên tiếp đều bằng 2010

783

998

Giải:

Ta đánh số thứ tự các ô như sau:

783

998

Ô1

Ô2

Ô3

Ô4

Ô5

Ô6

Ô7

Ô8

Ô9

Ô10

Theo điều kiện của đề bài ta có:

783 + Ô7 + Ô8 = 2010.

Ô7 + Ô8 + Ô9 = 2010.

Vậy Ô9 = 783; từ đó ta tính được:

Ô8 = Ô5 = Ô2 = 2010 - (783 + 998) = 229

Ô7 = Ô4 = Ô1 = 998

Ô3 = Ô6 = 783.

Điền các số vào ta được dãy số:

998

229

783

998

229

783

998

229

783

998

Một số lưu ý khi giảng dạy Toán dạng này là: Trước hết phải xác định được quy luật của dãy là dãy tiến, dãy lùi hay dãy số theo chu kỳ. Từ đó mà học sinh có thể điền được các số vào dãy đã cho.

* Bài tập tự luyện:

Bài 1: 13, 19, 25, 31,……,

Dãy số vừa được viết ra

Ba số viết tiếp là ba số nào?

Số nào suy nghĩ thấp cao?

Đố em, đố bạn làm sao kể liền?

Bài 2: Tìm và viết ra các số hạng còn thiếu trong dãy số sau:

a. 7, 10, 13,…, …, 22, 25.

b. 103, 95, 87,…, …, ...., 55, 47.

Bài 3: Điền số thích hợp vào ô trống, sao cho tổng các số ở 3 ô liền nhau bằng:

a. n = 14,5

2,7

8,5

b. n = 23,4

8,7

7,6

Dạng 2: Xác định số A có thuộc dãy đã cho hay không?

Cách giải của dạng toán này:

- Xác định quy luật của dãy;

- Kiểm tra số A có thoả mãn quy luật đó hay không?

Các ví dụ:

Bài 1: Cho dãy số: 2, 4, 6, 8,……

a. Dãy số được viết theo quy luật nào?

b. Số 2009 có phải là số hạng của dãy không? Vì sao?

Giải:

a. Ta nhận thấy: Số hạng thứ 1: 2 = 2 x 1

Số hạng thứ 2: 4 = 2 x 2

Số hạng thứ 3: 6 = 2 x 3

….........

Số hạng thứ n: ? = 2 x n

Quy luật của dãy số là: Mỗi số hạng bằng 2 nhân với số thứ tự của số hạng ấy.

b. Ta nhận thấy các số hạng của dãy là số chẵn, mà số 2009 là số lẻ, nên số 2009 không phải là số hạng của dãy.

Bài 2: Cho dãy số: 2, 5, 8, 11, 14, 17,……

- Viết tiếp 3 số hạng vào dãy số trên?

- Số 2009 có thuộc dãy số trên không? Tại sao?

Giải:

- Ta thấy: 8 – 5 = 3; 11 – 8 = 3; ………

Dãy số trên được viết theo quy luật sau: Kể từ số thứ 2 trở đi, mỗi số hạng bằng số hạng đứng liền trước nó cộng với 3.

Vậy 3 số hạng tiếp theo của dãy số là:

17 + 3 = 20 ; 20 + 3 = 23 ; 23 + 3 = 26

Dãy số được viết đầy đủ là: 2, 5, 8, 11, 14, 17, 20, 23, 26.

- Ta thấy: 2 : 3 = 0 dư 2; 5 : 3 = 1 dư 2; 8 : 3 = 2 dư 2; .....

Vậy đây là dãy số mà mỗi số hạng khi chia cho 3 đều dư 2. Mà:

2009 : 3 = 669 dư 2. Vậy số 2009 có thuộc dãy số trên vì cũng chia cho 3 thì dư 2.

Bài 3: Em hãy cho biết:

a. Các số 60, 483 có thuộc dãy 80, 85, 90,…… hay không?

b. Số 2002 có thuộc dãy 2, 5, 8, 11,…… hay không?

c. Số nào trong các số 798, 1000, 9999 có thuộc dãy 3, 6, 12, 24,…… giải thích tại sao?

Giải:

a. Cả 2 số 60, 483 đều không thuộc dãy đã cho vì:

- Các số hạng của dãy đã cho đều lớn hơn 60.

- Các số hạng của dãy đã cho đều chia hết cho 5, mà 483 không chia hết cho 5.

b. Số 2002 không thuộc dãy đã cho vì mọi số hạng của dãy khi chia cho 3 đều dư 2, mà 2002 chia 3 thì dư 1.

c. Cả 3 số 798, 1000, 9999 đều không thuộc dãy 3, 6, 12, 24,… vì:

- Mỗi số hạng của dãy (kể từ số hạng thứ 2) đều gấp đôi số hạng liền trước nhận nó; cho nên các số hạng (kể từ số hạng thứ 3) có số hạng đứng liền trước là số chẵn, mà 798 chia cho 2 = 399 là số lẻ.

- Các số hạng của dãy đều chia hết cho 3, mà 1000 lại không chia hết cho 3.

- Các số hạng của dãy (kể từ số hạng thứ 2) đều chẵn, mà 9999 là số lẻ.

Bài 4: Cho dãy số: 1; 2,2; 3,4; ……; 13; 14,2.

Nếu viết tiếp thì số 34,6 có thuộc dãy số trên không?

Giải:

- Ta nhận xét: 2,2 - 1 = 1,2; 3,4 - 2,2 = 1,2; 14,2 - 13 = 1,2;……

Quy luật của dãy số trên là: Từ số hạng thứ 2 trở đi, mỗi số hạng đều hơn số hạng liền trước nó là 1,2 đơn vị:

- Mặt khác, các số hạng trong dãy số trừ đi 1 đều chia hết cho 1,2.

Ví dụ: (13 - 1) chia hết cho 1,2

(3,4 - 1) chia hết cho 1,2

Mà: (34,6 - 1) : 1,2 = 28 dư 0.

Vậy nếu viết tiếp thì số 34,6 cũng thuộc dãy số trên.

Bài 5: Cho dãy số: 1996, 1993, 1990, 1987,……, 55, 52, 49.

Các số sau đây có phải là số hạng của dãy không?

100, 123, 456, 789, 1900, 1436, 2009?

Giải:

Nhận xét: Đây là dãy số cách đều 3 đơn vị.

Trong dãy số này, số lớn nhất là 1996 và số bé nhất là 49. Do đó, số 2009 không phải là số hạng của dẫy số đã cho vì lớn hơn 1996.

Các số hạng của dãy số đã cho là số khi chia cho 3 thì dư 1. Do đó, số 100 và số 1900 là số hạng của dãy số đó.

Các số 123, 456, 789 đều chia hết cho 3 nên các số đó không phải là số hạng của dãy số đã cho.

Số 1436 khi chia cho 3 thì dư 2 nên không phải là số hạng của dãy số đã cho.

* Bài tập lự luyện:

Bài 1: Cho dãy số: 1, 4, 7, 10,…

a. Nêu quy luật của dãy.

b. Số 31 có phải là số hạng của dãy không?

c. Số 2009 có thuộc dãy này không? Vì sao?

Bài 2: Cho dãy số: 1004, 1010, 1016,…, 2012.

Hỏi số 1004 và 1760 có thuộc dãy số trên hay không?

Bài 3: Cho dãy số: 1, 7, 13, 19,…,

a. Nêu quy luật của dãy số rồi viết tiếp 3 số hạng tiếp theo.

b. Trong 2 số 1999 và 2009 thì số nào thuộc dãy số? Vì sao?

Bài 4: Cho dãy số: 3, 8, 13, 18,……

Có số tự nhiên nào có chữ số tận cùng là 6 mà thuộc dãy số trên không?

Bài 5: Cho dãy số: 1, 3, 6, 10, 15,……, 45, 55,……

a. Số 1997 có phải là số hạng của dãy số này hay không?

b. Số 561 có phải là số hạng của dãy số này hay không?

Dạng 3: Tìm số số hạng của dãy

* Cách giải ở dạng này là:

Đối với dạng toán này, ta thường sử dụng phương pháp giải toán khoảng cách (toán trồng cây). Ta có công thức sau:

Số các số hạng của dãy = số khoảng cách + 1.

Đặc biệt, nếu quy luật của dãy là : Mỗi số hạng đứng sau bằng số hạng liền trước cộng với số không đổi d thì:

Số các số hạng của dãy = (Số hạng lớn nhất – Số hạng nhỏ nhất ) : d + 1.

Các ví dụ:

Bài 1: Cho dãy số 11; 14; 17;.....;65; 68.

Hãy xác định dãy số trên có bao nhiêu số hạng?

Lời giải:

Ta có: 14 - 11= 3; 17 - 14 = 3;....

Vậy quy luật của dãy số đó là mỗi số hạng đứng liền sau bằng số hạng đứmg liền trước nó cộng với 3. Số các số hạng của dãy số đó là:

(68 - 11) : 3 + 1 = 20 (số hạng)

Bài 2: Cho dãy số: 2, 4, 6, 8, 10,……, 1992

Hãy xác định dãy số trên có bao nhiêu số hạng?

Giải:

Ta thấy: 4 – 2 = 2 ; 8 – 6 = 2

6 – 4 = 2 ; ………

Vậy, quy luật của dãy số là: Mỗi số hạng đứng sau bằng một số hạng đứng trước cộng với 2. Nói các khác: Đây là dãy số chẵn hoặc dãy số cách đều 2 đơn vị.

Dựa vào công thức trên:

(Số hạng cuối – số hạng đầu) : khoảng cách + 1

Ta có: Số các số hạng của dãy là:

(1992 - 2) : 2 + 1 = 996 (số hạng).

Bài 3: Cho 1, 3, 5, 7, ……… là dãy số lẻ liên tiếp đầu tiên; hỏi 1981 là số hạng thứ bao nhiêu trong dãy số này? Giải thích cách tìm?

(Đề thi học sinh giỏi bậc tiểu học 1980 – 1981)

Giải:

Ta thấy:

Số hạng thứ nhất bằng: 1 = 1 + 2 x 0

Số hạng thứ hai bằng: 3 = 1 + 2 x 1

Số hạng thứ ba bằng: 5 = 1 + 2 x 2

………

Còn số hạng cuối cùng: 1981 = 1 + 2 x 990

Vì vậy, số 1981 là số hạng thứ 991 trong dãy số đó.

Bài 4: Cho dãy số: 3, 18, 48, 93, 153,…

a. Tìm số hạng thứ 100 của dãy.

b. Số 11703 là số hạng thứ bao nhiêu của dãy?

Giải:

a. Số hạng thứ nhất: 3 = 3 + 15 x 0

Số hạng thứ hai: 18 = 3 + 15 x 1

Số hạng thứ ba: 48 = 3 + 15 x 1 + 15 x 2

Số hạng thứ tư: 93 = 3 + 15 x 1 + 15 X 2 + 15 x 3

Số hạng thứ năm: 153 = 3 + 15 x 1 + 15 x 2 + 15 x 3 + 15 x 4

………

Số hạng thứ n: 3 + 15 x1 + 15 x 2 +15 x 3 + …… + 15 x (n - 1)

Vậy số hạng thứ 100 của dãy là:

3 + 15 x 1 + 15 x 2 + …… + 15 x (100 - 1)

= 3 + 15 x (1 + 2 + 3 + …… + 99) (Đưa về một số nhân với một tổng.

= 3 + 15 x (1 + 99) x 99 : 2 = 74253

b. Gọi số 11703 là số hạng thứ n của dãy:

Theo quy luật ở phần a ta có:

3 + 15 x 1 + 15 x 2 + 15 x 3 + …… x (n – 1) = 11703

3 + 15 x (1 + 2 + 3 + ……+ (n – 1)) = 11703

3 + 15 x (1 + n – 1) x (n – 1) : 2 = 11703

15 x n x (n – 1) = (11703 – 3) x 2 = 23400

n x (n – 1) = 23400 : 15 = 1560

Nhận xét: Số 1560 là tích của hai số tự nhiên liên tiếp 39 và 40 (39 x 40 = 1560)

Vậy, n = 40, số 11703 là số hạng thứ 40 của dãy.

Bài 5: Trong các số có ba chữ số, có bao nhiêu số chia hết cho 4?

Lời giải:

Ta nhận xét : Số nhỏ nhất có ba chữ số chia hết cho 4 là 100 và số lớn nhất có ba chữ số chia hết cho 4 là 996. Như vậy các số có ba chữ số chia hết cho 4 lập thành một dãy số có số hạng nhỏ nhất là 100, số hạng lớn nhất là 996 và mỗi số hạng của dãy (kể từ số hạng thứ hai ) bằng số hạng đứng liền trước cộng với 4.

Vậy số các số có ba chữ số chia hết cho 4 là:

(996 – 100) : 4 = 225 (số)

* Bài tập tự luyện:

Bài 1: Cho dãy số: 3, 8, 13, 23, ……,2008

Tìm xem dãy số có bao nhiêu số hạng ?

Bài 2: Tìm số số hạng của các dãy số sau:

a. 1, 4, 7, 10, ……,1999.

b. 1,1 ; 2,2 ; 3,3 ; ... ; 108,9 ; 110,0.

Bài 3: Xét dãy số: 100, 101, ………, 789.

Dãy này có bao nhiêu số hạng?

Bài 4: Có bao nhiêu số khi chia cho 4 thì dư 1 mà nhỏ hơn 2010 ?

Bài 5: Người ta trồng cây hai bên đường của một đoạn đường quốc lộ dài 21km. Hỏi phải dùng bao nhiêu cây để đủ trồng trên đoạn đường đó ? Biết rằng cây nọ trồng cách cây kia 5m.

Dạng 4: Tìm số hạng thứ n của dãy số

Bài toán 1: Cho dãy số: 1, 3, 5, 7,............Hỏi số hạng thứ 100 của dãy số là số nào

Giải:

Số khoảng cách từ số đầu đến số hạng thứ 100 là:

98 - 1 = 99

Mỗi khoảng cách là

3 - 1 = 5 - 3 = 2

Số hạng thứ 100 là

1 + 99 x 2 = 199

Công thức tổng quát:

Số hạng thứ n = số đầu + khoảng cách x (Số số hạng - 1)

Bài toán 2: Tìm số hạng thứ 100 của các dãy số được viết theo quy luật:

a) 3, 8, 15, 24, 35,… (1)

b) 3, 24, 63, 120, 195,… (2)

c) 1, 3, 6, 10, 15,…. (3)

Giải: a) Dãy (1) có thể viết dưới dạng: 1x3, 2x4, 3x5, 4x6, 5x7,…

Mỗi số hạng của dãy (1) là tích của hai thừa số, thừa số thứ hai lớn hơn thừa số thứ nhất 2 đơn vị. Các thừa số thứ nhất làm thành một dãy: 1, 2, 3, 4, 5, …; Dãy này có số hạng thứ 100 là 100.

Số hạng thứ 100 của dãy (1) bằng: 100x102 = 10200.

b) Dãy (2) có thể viết dưới dạng: 1x3, 4x6, 7x9, 10x12, 13x15,…

Mỗi số hạng của dãy (2) là tích của hai thừa số, thừa số thứ hai lớn hơn thừa số thứ nhất 2 đơn vị. Các thừa số thứ nhất làm thành một dãy: 1, 4, 7, 10, 13, …; Số hạng thứ 100 của dãy 1, 4, 7, 10, 13,… là: 1 + (100 – 1 ) x 3 = 298.

Số hạng thứ 100 của dãy (2) bằng: 298 x 300 = 89400.

c) Dãy (3) có thể viết dưới dạng:

Phương pháp giải dãy số

Số hạng thứ 100 của dãy (3) bằng:

Phương pháp giải dãy số

Dạng 5: Tìm số chữ số của dãy khi biết số số hạng

Bài toán 1: Cho dãy số: 1, 2, 3,.......150. Hỏi để viết dãy số này người ta phải dùng bao nhiêu chữ số

Giải:

Dãy số đã cho có: (9 - 1) : 1 + 1 = 9 số có 1 chữ số.

Có (99 - 10 ) : 1 + 1 = 90 số có 2 chữ số

Có (150 - 100) : 1 + 1 = 51 số có 3 chữ số.

Vậy số chữ số cần dùng là:

9 x 1 + 90 x 2 + 51 x 3 = 342 chữ số

Bài toán 2: Một quyển sách có 234 trang. Hỏi để đánh số trang quyển sách đó người ta phải dùng bao nhiêu chữ số.

Giải:

Để đánh số trang quyển sách đó người ta phải viết liên tiếp các số tự nhiên từ 1 đến 234 thành dãy số. Dãy số này có

(9 - 1) : 1 + 1 = 9 số có 1 chữ số

Có: (99 - 10) : 1 + 1 = 90 số có 2 chữ số

Có: (234 - 100) : 1 + 1 = 135 số có 3 chữ số

Vậy người ta phải dùng số chữ số là:

9 x 1 + 90 x 2 + 135 x 3 = 594 chữ số

* Bài tập tự luyện:

Bài 1: Một bạn học sinh viết liên tiếp các số tự nhiên từ 101 đến 2009 thành 1 số rất lớn. Hỏi số đó có bao nhiêu chữ số

Bài 2: Trường Tiểu học Thành Công có 987 học sinh. Hỏi để ghi số thứ tự học sinh trường đó người ta phải dùng bao nhiêu chữ số

Bài 3: Cần bao nhiêu chữ số để đánh số trang của một cuốn sách có tất cả là:

a) 752 trang.

b) 1251 trang.

Dạng 6: Tìm số số hạng khi biết số chữ số

Bài toán 1: Để đánh số trang 1 quyển sách người ta dùng hết 435 chữ số. Hỏi quyển sách đó có bao nhiêu trang?

Giải:

Để đánh số trang quyển sách đó, người ta phải viết liên tiếp các số tự nhiên bắt đầu từ 1 thành dãy số. Dãy số này có

9 số có 1 chữ số

có 90 số có 2 chữ số

Để viết các số này cần số chữ số là

9 x 1 + 90 x 2 = 189 chữ số

Số chữ số còn lại là:

435 - 189 = 246 chữ số

Số chữ số còn lại này dùng để viết tiếp các số có 3 chữ số bắt đầu từ 100. Ta viết được

246 : 3 = 82 số

Số trang quyển sách đó là

99 + 82 = 181 (trang)

Bài toán 2:

Để đánh số trang một cuốn sách người ta phải dùng tất cả 600 chữ số. Hỏi quyển sách đó có bao nhiêu trang?

Giải: 99 trang đầu cần dùng 9x1 + 90x2 = 189 chữ số.

999 trang đầu cần dùng: 9x1 + 90x2 + 900x3 = 2889 chữ số

Vì: 189 < 600 < 2889 nên trang cuối cùng phải có 3 chữ số. Số chữ số để đánh số các trang có 3 chữ số la: 600 - 189 = 411 (chữ số)

Số trang có 3 chữ số là 411: 3 = 137 trang.

Vậy quyển sách có tất cả là: 99 + 137 = 236 trang.

Bài toán 3: Để ghi thứ tự các nhà trên một đường phố, người ta dùng các số chẵn 2, 4, 6, 8 . . . để ghi các nhà ở dãy phải và các số lẻ 1, 3, 5, 7 . . . để ghi các nhà ở dãy trái của đường phố đó. Hỏi số nhà cuối cùng của dãy chẵn trên đường phố đó là bao nhiêu, biết rằng khi đánh thứ tự các nhà của dãy này, người ta đã dùng 367 lượt chữ số cả thảy.

Giải:

Số nhà có số thứ tự ghi bằng 1 chữ số chẵn là: (8 - 2) : 2 + 1 = 4 (nhà)

Số nhà có số thứ tự ghi bằng 2 chữ số chẵn là: (98 - 10) : 2 + 1 = 45 (nhà)

Số lượt chữ số để đánh số thự tự các nhà có 1 và 2 chữ số là:

4 + 45 2 = 94 (lượt)

Số lượt chữ số để đánh số thứ tự nhà có 3 chữ số là: 367 - 94 = 273 (lượt)

Số nhà có số thứ tự 3 chữ số là: 273 : 3 = 91 (nhà)

Tổng số nhà của dãy chẵn là: 4 + 45 + 91 = 140 (nhà)

Số nhà cuối cùng của dãy chẵn là: (140 - 1) 2 + 2 = 280.

Dạng 7: Tìm chữ số thứ n của dãy

Bài toán 1: Cho dãy số 1, 2, 3,..... Hỏi chữ số thứ 200 là chữ số nào?

Giải:

Dãy số đã cho có 9 số có 1 chữ số

Có 90 số có 2 chữ số

Để viết các số này cần

9 x 1 + 90 x 2 = 189 chữ số

Số chữ số còn lại là

200 - 189 = 11 chữ số

Số chữ số còn lại này dùng để viết các số có 3 chữ số bắt đầu từ 100. Ta viết được

11 : 3 = 3 số (dư 2 chữ số)

Nên có 3 số có 3 chữ số được viết liên tiếp đến

99 + 3 = 102

Còn dư 2 chữ số dùng để viết tiếp số 103 nhưng chỉ viết được 10. Vậy chữ số thứ 200 của dãy là chữ số 0 của số 103.

Bài toán 2: Cho dãy số 2, 4, 6, 8, ..... Hỏi chữ số thứ 2010 của dãy là chữ số nào?

Giải:

Dãy số đã cho có 4 số có 1 chữ số

Có (98 - 10) : 2 + 1 = 45 số có 2 chữ số

Có (998 - 100) : 2 + 1 = 450 số có 3 chữ số

Để viết các số này cần:

4 x 1 + 45 x 2 + 450 x 3 = 1444 chữ số

Số chữ số còn lại là:

2010 - 1444 = 566 chữ số

Số chữ số còn lại này dùng để viết các số có 4 chữ số bắt đầu từ 1000. Ta viết được:

566 : 4 = 141 số (dư 2 chữ số)

Nên có 141 số có 4 chữ số được viết , số có 4 chữ số thứ 141 là:

(141 - 1) x 2 + 1000 = 1280

Còn dư 2 chữ số dùng để viết tiếp số 1282 nhưng mới chỉ viết được 12. Vậy chữ số thứ 2010 của dãy là chữ số 2 hàng trăm của số 1282.

Bài toán 3: Tìm chữ số thứ 2010 ở phần thập phân của số thập phân bằng phân số \frac{1}{7}\(\frac{1}{7}\).

Giải:

Số thập phân bằng phân số \frac{1}{7}\(\frac{1}{7}\) là: 1 : 7 = 0,14285714285......

Đây là số thập phân vô hạn tuần hoàn. Ta thấy cứ 6 chữ số thì lập thành 1 nhóm 142857. Với 2010 chữ số thì có số nhóm là:

2010 : 6 = 335 (nhóm). Vậy chữ số thứ 2010 ở phần thập phân của số thập phân bằng phân số \frac{1}{7}\(\frac{1}{7}\) là chữ số 7.

Bài toán 4: Cho 1 số có 2 chữ số, một dãy số được tạo nên bằng cách nhân đôi chữ số hàng đơn vị của số này rồi cộng với chữ số hàng chục, ghi lại kết quả; tiếp tục như vậy với số vừa nhận được ... (Ví dụ có thể là dãy: 59, 23, 8, 16, 13, ... ). Tìm số thứ 2010 của dãy nếu số thứ nhất là 14.

Giải:

Ta lập được dãy các số như sau:

14, 9, 18, 17, 15, 11, 3, 6, 12, 5, 10, 1, 2, 4, 8, 16, 13, 7, 14, 9, 18, 17, 15, .....

Ta thấy cứ hết 18 số thì dãy các số lại được lặp lại như dãy 18 số đầu.

Với 2010 số thì có số nhóm là:

2010 : 18 = 111 nhóm (dư 12 số)

12 số đó là các số của nhóm thứ 112 lần lượt là: 14, 9, 18, 17, 15, 11, 3, 6, 12, 5, 10, 1. Vậy số thứ 2010 của dãy là số 1.

* Bài tập tự luyện:

Bài 1: Cho dãy số: 2, 5, 8, 11,.......Hãy tìm chữ số thứ 200 của dãy số đó.

Bài 2: Cho dãy số: 2, 4, 6, 8, ..... Bạn Minh tìm được chữ số thứ 2010 của dãy là chữ số 0, hỏi bạn tìm đúng hay sai?

Bài 3: Bạn Minh đang viết phân số dưới dạng số thập phân. Thấy bạn Thông sang chơi, Minh liền đố: Đố bạn tìm được chữ số thứ 100 ở phần thập phân của số thập phân mà tớ đang viết. Thông nghĩ 1 tí rồi trả lời ngay: đó là chữ số 6. Em hãy cho biết bạn Thông trả lời đúng hay sai?

Dạng 8: Tìm số hạng thứ n khi biết tổng của dãy số

Bài toán 1: Cho dãy số: 1, 2, 3, ......., n. Hãy tìm số n biết tổng của dãy số là 136

Giải:

Áp dụng công thức tính tổng ta có :

1 + 2 + 3 +........+ n = \frac{(1+n) \times n}{2}\(\frac{(1+n) \times n}{2}\)=136

Do đó: (1 + n ) \times\(\times\) n = 136 x 2

= 17 x 8 x 2

= 16 x 17

Vậy n = 16

Bài toán 2: Cho dãy số: 21, 22, 23, ......, n

Tìm n biết: 21 + 22 + 23 + ..........+ n = 4840

Giải:

Nếu cộng thêm vào tổng trên tổng của các số tự nhiên liên tiếp từ 1 đến 20 ta có tổng sau:

1 + 2 + 3 +..........+ 21 + 22 + 23 +.........+ n

Áp dụng công thức tính tổng ta có

(1 + n) x n : 2 = 1 + 2 + ....+ 20 + 4840

= (1 + 20) x 20 : 2 + 4840

= 210 + 4840 = 5050

(1+ n) x n = 5050 x 2

= 10100

= 101 x 100

Vậy n = 100

* Bài tập tự luyện:

Bài 1: Cho biết: 1 + 2 + 3 +........+ n = 345. Hãy tìm số n.

Bài 2: Tìm số n biết rằng

98 + 102 +........+ n = 15050

Bài 3: Cho dãy số 10, 11, 12, 13, …, x. Tìm x để tổng của dãy số trên bằng 5106

Dạng 9: Tính tổng của dãy số

Các bài toán được trình bày ở chuyên đề này được phân ra hai dạng chính, đó là:

Dạng thứ nhất: Dãy số với các số hạng là số nguyên, phân số (hoặc số thập phân) cách đều

Dạng thứ hai: Dãy số với các số hạng không cách đều.

Dạng 1: Dãy số mà các số hạng cách đều

Xuất phát từ một bài Toán như sau:

Tính: A = 1 + 2 + 3 + ... + 98 + 99 + 100

Ta thấy tổng A có 100 số hạng, ta chia thành 50 nhóm, mỗi nhóm có tổng là 101 như sau:

A = (1 + 100) + (2 + 99) + (3 + 98) + ... + (50 + 51) = 101 + 101 + ... + 101 = 50 x 101 = 5050.

Đây là bài Toán mà lúc lên 7 tuổi nhà Toán học Gauxơ đã tính rất nhanh tổng các số Tự nhiên từ 1 đến 100 trước sự ngạc nhiên của thầy giáo và các bạn bè cùng lớp.

Như vậy bài toán trên là cơ sở đầu tiên để chúng ta tìm hiểu và khai thác thêm rất nhiều các bài tập tương tự, được đưa ra ở nhiều dạng khác nhau, được áp dụng ở nhiều thể loại toán khác nhau nhưng chủ yếu là: tính toán, tìm số, so sánh, chứng minh. Để giải quyết được các dạng toán đó chúng ta cần phải nắm được quy luật của dãy số, tìm được số hạng tổng quát, ngoài ra cần phải kết hợp những công cụ giải toán khác nhau nữa.

Cách giải:

Nếu số hạng của dãy số cách đều nhau thì tổng của hai số hạng cách đều đầu và số hạng cuối trong dãy số đó bằng nhau. Vì vậy:

Tổng các số hạng của dãy bằng tổng của một cặp hai số hạng cách đầu số hạng đầu và cuối nhân với số hạng của dãy chia cho 2.

Viết thành sơ đồ:

Tổng của dãy số cách đều = (số đầu + số cuối) x (số số hạng : 2)

Từ sơ đồ trên ta suy ra:

Số đầu của dãy = tổng x 2 : số số hạng – số hạng cuối.

Số cuối của dãy = tổng x 2 : số số hạng – số đầu.

Sau đây là một số bài tập được phân thành các thể loại, trong đó đã phân thành hai dạng trên:

Bài 1: Tính tổng của 19 số lẻ liên tiếp đầu tiên.

Giải:

19 số lẻ liên tiếp đầu tiên là:

1, 3, 5, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37.

Ta thấy: 1 + 37 = 38 ; 5 + 33 = 38

1 + 35 = 38 ; 7 + 31 = 38

Nếu ta sắp xếp các cặp số từ hai đầu số vào, ta được các cặp số đều có tổng số là 38.

Số cặp số là:

19 : 2 = 9 (cặp số) dư một số hạng.

Số hạng dư này là số hạng ở chính giữa dãy số và là số 19. Vậy tổng của 19 số lẻ liên tiếp đầu tiên là:

39 x 9 + 19 = 361

Đáp số: 361.

Nhận xét: Khi số số hạng của dãy số lẻ (19) thì khi sắp cặp số sẽ dư lại số hạng ở chính gữa vì số lẻ không chia hết cho 2, nên dãy số có nhiều số hạng thì việc tìm số hạng còn lại sẽ rất khó khăn.

Vậy ta có thể làm cách 2 như sau:

Ta bỏ lại số hạng đầu tiên là số 1 thì dãy số có: 19 - 1 = 18 (số hạng)

Ta thấy: 3 + 37 = 40 ; 7 + 33 = 40

5 + 35 = 40 ; 9 + 31 = 40

……… ………

Khi đó, nếu ta sắp xếp các cặp số từ 2 đầu dãy số gồm 18 số hạng vào thì được các cặp số có tổng là 40.

Số cặp số là: 18 : 2 = 9 (cặp số)

Tổng của 19 số lẻ liên tiếp đầu tiên là:

1 + 40 x 9 = 361

Chú ý: Khi số hạng là số lẻ, ta để lại một số hạng ở 2 đầu dãy số (số đầu, hoặc số cuối) để còn lại một số chẵn số hạng rồi sắp cặp; lấy tổng của mỗi cặp nhân với số cặp rồi cộng với số hạng đã để lại thì được tổng của dãy số.

Bài 2: Tính tổng của số tự nhiên từ 1 đến n.

Giải:

Ghép các số: 1, 2, ……, n – 1, n thành từng cặp (không sắp thứ tự) : 1 với n, 2 với (n – 1), 3 với (n – 2), ……

Khi n chẵn, ta có S = n x (n + 1) : 2

Khi n lẻ, thì n – 1 chẵn và ta có:

1 + 2 + …… + (n – 1) = (n – 1) x n : 2

Từ đó ta cũng có:

S = (n – 1) x n : 2 + n

= (n - 1) x n : 2 + 2 x n : 2

= [(n – 1) x n + 2 x n] : 2

= (n – 1 + 2) x n : 2

= n x (n + 1) : 2

Khi học sinh đã làm quen và thực hiện thành thạo thì hướng dẫn học sinh áp dụng công thức luôn mà không cần nhóm thành các cặp số có tổng bằng nhau.

Tổng của dãy số cách đều = (số đầu + số cuối) x số số hạng : 2

Bài 3: Tính E = 10,11 + 11,12 + 12,13 + ...+ 98,99 + 100

Lời giải

Ta có thể đưa các số hạng của tổng trên về dạng số tự nhiên bằng cách nhân cả hai vế với 100, khi đó ta có:

100 x E = 1011 + 1112 + 1213 + ... + 9899 + 1000

Áp dụng công thức tính tổng ta tính được tổng là E = 4954,95

Hoặc giải như sau:

Ta thấy: 11,12 - 10,11 = 12,13 - 11,12 = ... = 1,01

Vậy đây là dãy số cách đều 1,01 đơn vị.

Dãy số có số số hạng là : (100 - 10,11) : 1,01 + 1 = 90 số hạng

Tổng của dãy số là : (10,11 + 100) x 90 : 2 = 4954,95

Bài 4: Cho dãy số: 1, 2, 3, …… 195. Tính tổng các chữ số trong dãy?

Giải:

Ta viết lại dãy số và bổ sung thêm các số: 0, 196, 197, 198, 199 vào dãy: 0, 1, 2, 3, ……, 9

10, 11, 12, 13, ……, 19

.....................

90, 91, 92, 93, ……, 99

100, 101, 102, 103, ……, 109

.............

Vì có 200 số và mỗi dòng có 10 số, nên có 200 : 10 = 20 (dòng)

Tổng các chữ số hàng đơn vị trong mỗi dòng là:

1 + 2 + 3 + …… + 9 = 9 x 10 : 2 = 45

Vậy tổng các chữ số hàng đơn vị là:

45 x 20 = 900

Tổng các chữ số hàng chục trong 10 dòng đầu đều bằng tổng các chữ số hàng chục trong 10 dòng sau và bằng:

1 x 10 + 2 x 10 + …… + 9 x 10 = (1 + 2 + …… + 9) x 10 = 45 x 10 = 450

Vậy tổng các chữ số hàng chục là:

450 x 2 = 900

Ngoài ra dễ thấy tổng các chữ số hàng trăm là: 10 x 10 = 100.

Vậy tổng các chữ số của dãy số này là:

900 + 900 + 100 = 1900

Từ đó suy ra tổng các chữ số của dãy ban đầu là:

1900 – (1 + 9 + 6 + 1 + 9 + 7 + 1 + 9 + 8 + 1 + 9 + 9) = 1830

Trong Toán học nói riêng và trong khoa học nói chung, chúng ta thường nhờ vào suy luận quy nạp không hoàn toàn mà phát hiện ra những kết luận (gọi là giả thuyết) nào đó. Sau đó chúng ta sử dụng suy luận diễn dịch hoặc quy nạp hoàn toàn để kiểm tra sự đúng đắn của kết luận đó. Khi dạy học tiểu học, điều nói trên cũng được lưu ý.

Các dạng toán về dãy số và phương pháp giải được VnDoc sưu tầm, chọn lọc giúp các em họ sinh ôn luyện dạng toán dãy số từ cơ bản đến nâng cao. Các em tham khảo các dạng đề thi học kì 1 lớp 4, đề thi học kì 2 theo Thông tư 22 chương trình học lớp 4 mới nhất được cập nhật. Mời các em học sinh, các thầy cô cùng các bậc phụ huynh tham khảo đề thi, bài tập mới nhất.

Tham khảo các dạng Toán tiểu học khác:

Chia sẻ, đánh giá bài viết
266
Sắp xếp theo
    🖼️

    Gợi ý cho bạn

    Xem thêm
    🖼️

    Lớp 5

    Xem thêm