Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169

Đề thi tuyển sinh lớp 10 THPT chuyên ĐH Khoa học tự nhiên năm 2011 - 2012

Lớp: Lớp 10
Loại File: PDF
Phân loại: Tài liệu Tính phí

Nhằm giúp các bạn học sinh lớp 9 chuẩn bị thi vào lớp 10, VnDoc.com xin giới thiệu tới bạn đọc: Đề thi tuyển sinh lớp 10 THPT chuyên ĐH Khoa học tự nhiên năm 2011 - 2012.

Đề thi tuyển sinh lớp 10 trường chuyên ĐH Khoa học tự nhiên:

ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN

ĐỀ CHÍNH THỨC

KỲ THI TUYỂN SINH LỚP 10 THPT CHUYÊN
NĂM HỌC 2011 - 2012

Môn: TOÁN (Vòng 1)
Thời gian làm bài: 120 phút (không kể thời gian giao đề)

Câu I.

1) Giải hệ phương trình:

2) Giải phương trình:

Câu II.

1) Chứng minh rằng không tồn tại các bộ ba số nguyên (x, y, z) thỏa mãn đẳng thức: x4 + y4 = 7z4 + 5

2) Tìm tất cả các cặp số nguyên (x, y) thỏa mãn đẳng thức: (x + 1)4 - (x - 1)4 = y3

Câu III.

Cho hình bình hành ABCD với góc BAD < 90o . Đường phân giác của góc  BCD cắt đường tròn ngoại tiếp tam giác BCD tại O khác C. Kẻ đường thẳng (d) đi qua A và vuông góc với CO. Đường thẳng (d) lần lượt cắt các đường thẳng CB, CD tại E, F.

1) Chứng minh rằng ∆OBE = ∆ODC.

2) Chứng minh rằng O là tâm đường tròn ngoại tiếp tam giác CEF.

3) Gọi giao điểm của OC và BD là I, chứng minh rằng IB.BE.EI = ID.DF.FI

Câu IV.

Với , x y là những số thực dương, tìm giá trị nhỏ nhất của biểu thức:

Môn: TOÁN (Vòng 2)
Thời gian làm bài: 150 phút (không kể thời gian giao đề)

Câu I.

1) Giải phương trình:

2) Giải hệ phương trình:

Câu II.

1) Với mỗi số thực a ta gọi phần nguyên của a là số nguyên lớn nhất không vượt quá a và ký hiệu là [a]. Chứng minh rằng với mọi số nguyên dương n, biểu thức không biểu diễn được dưới dạng lập phương của một số nguyên dương.

2) Với x, y, z là các số thực dương thỏa mãn đẳng thức xy + yz + zx = 5, tìm giá trị nhỏ nhất của biểu thức:

Câu III.

Cho hình thang ABCD với BC song song AD. Các góc BAD và CDA là các góc nhọn. Hai đường chéo AC và BD cắt nhau tại I. P là điểm bất kỳ trên đoạn thẳng BC (P không trùng với B, C). Giả sử đường tròn ngoại tiếp tam giác BIP cắt đoạn thẳng PA tại M khác P và đường tròn ngoại tiếp tam giác CIP cắt đoạn thẳng PD tại N khác P.

1) Chứng minh rằng năm điểm A, M, I, N, D cùng nằm trên một đường tròn. Gọi đường tròn này là (K).

2) Giả sử các đường thẳng BM và CN cắt nhau tại Q, chứng minh rằng Q cũng nằm trên đường tròn (K)

3) Trong trường hợp P, I, Q thẳng hàng, chứng minh rằng

Câu IV.

Giả sử A là một tập con của tập các số tự nhiên ℕ. Tập A có phần tử nhỏ nhất là 1, phần tử lớn nhất là 100 và mỗi x thuộc A (x ≠ 1) luôn tồn tại a, b cũng thuộc A sao cho x = a + b (a có thể bằng b). Hãy tìm một tập A có số phần tử nhỏ nhất.

Chọn file muốn tải về:
Đóng Chỉ thành viên VnDoc PRO/PROPLUS tải được nội dung này!
Đóng
79.000 / tháng
Đặc quyền các gói Thành viên
PRO
Phổ biến nhất
PRO+
Tải tài liệu Cao cấp 1 Lớp
30 lượt tải tài liệu
Xem nội dung bài viết
Trải nghiệm Không quảng cáo
Làm bài trắc nghiệm không giới hạn
Mua cả năm Tiết kiệm tới 48%
15

Có thể bạn quan tâm

Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Lớp 10

Xem thêm
🖼️

Gợi ý cho bạn

Xem thêm