Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm

Tập nghiệm của bất phương trình

Tập nghiệm của bất phương trình môn Toán lớp 10 vừa được VnDoc.com sưu tầm và xin gửi tới bạn đọc cùng tham khảo. Mời các bạn cùng theo dõi bài viết dưới đây.

Tài liệu do VnDoc.com biên soạn và đăng tải, nghiêm cấm các hành vi sao chép với mục đích thương mại.

Tìm tập nghiệm của bất phương trình 

1. Tập nghiệm S của bất phương trình là gì?

Trước hết ta xét đến định nghĩa bất phương trình một ẩn

- Bất phương trình một ẩn là một mệnh đề chứa biến x so sánh hai hàm số f(x) và g(x) trên trường số thực dưới một trong các dạng

f(x) < g(x), f(x) > g(x); f(x) ≥ g(x); f(x) ≤ g(x)

- Giao của hai tập xác định của các hàm số f(x) và g(x) được gọi là tập xác định của bất phương trình.

- Nếu với giá trị x =a, f(a) > 0 là bất đẳng thức đúng thì ta nói rằng a nghiệm đúng bất phương trình f(x) > 0, hay a là nghiệm của bất phương trình.

Tập hợp tất cả các nghiệm của bất phương trình được gọi là tập nghiệm hay lời giải của bất phương trình, đôi khi nó cũng được gọi là miền đúng của bất phương trình. Trong nhiều tài liệu người ta cũng gọi tập nghiệm của bất phương trình là nghiệm của bất phương trình.

Ví dụ Bất phương trình 4.x + 2 > 0 nghiệm đúng với mọi số thực x > -0.5. Tập nghiệm của bất phương trình là { x ∈ R | x > -0.5 } = (0.5; \infty\(\infty\))

Phân loại bất phương trình:

- Các bất phương trình đại số bậc k là các bất phương trình trong đó f(x) là đa thức bậc k.

- Các bất phương trình vô tỷ là các bất phương trình có chứa phép khai căn

- Các bất phương trình mũ là các bất phương trình có chứa hàm mũ (chứa biến trên lũy thừa.

- Các bất phương trình logarit là các bất phương trình có chứa hàm logarit (chứa biến trong dấu logarit).

2. Bài tập ví dụ minh họa

Bài tập 1: Tìm tập nghiệm S của bất phương trình \sqrt {{x^2} - 5x - 6}  + 2{x^2} > 10x + 15\(\sqrt {{x^2} - 5x - 6} + 2{x^2} > 10x + 15\)

Hướng dẫn giải

Điều kiện xác định: {x^2} - 5x - 6 \geqslant 0 \Leftrightarrow x \in \left( { - \infty ; - 1} \right] \cup \left[ {6; + \infty } \right)\({x^2} - 5x - 6 \geqslant 0 \Leftrightarrow x \in \left( { - \infty ; - 1} \right] \cup \left[ {6; + \infty } \right)\)

Bất phương trình tương đương:
\begin{matrix}
  \sqrt {{x^2} - 5x - 6}  + 2{x^2} > 10x + 15 \hfill \\
   \Leftrightarrow \sqrt {{x^2} - 5x - 6}  >  - 2{x^2} + 10x + 15 \hfill \\
   \Leftrightarrow \sqrt {{x^2} - 5x - 6}  >  - 2\left( {{x^2} - 5x - 6} \right) + 3\left( * \right) \hfill \\ 
\end{matrix}\(\begin{matrix} \sqrt {{x^2} - 5x - 6} + 2{x^2} > 10x + 15 \hfill \\ \Leftrightarrow \sqrt {{x^2} - 5x - 6} > - 2{x^2} + 10x + 15 \hfill \\ \Leftrightarrow \sqrt {{x^2} - 5x - 6} > - 2\left( {{x^2} - 5x - 6} \right) + 3\left( * \right) \hfill \\ \end{matrix}\)
Đặt \sqrt {{x^2} - 5x - 6}  = t;\left( {t \geqslant 0} \right)\(\sqrt {{x^2} - 5x - 6} = t;\left( {t \geqslant 0} \right)\) (**)

\begin{matrix}
  \left( * \right) \Leftrightarrow t >  - 2{t^2} + 3 \hfill \\
   \Leftrightarrow 2{t^2} + t - 3 > 0 \hfill \\
   \Leftrightarrow t \in \left( { - \infty ; - \dfrac{3}{2}} \right] \cup \left[ {1; + \infty } \right) \hfill \\ 
\end{matrix}\(\begin{matrix} \left( * \right) \Leftrightarrow t > - 2{t^2} + 3 \hfill \\ \Leftrightarrow 2{t^2} + t - 3 > 0 \hfill \\ \Leftrightarrow t \in \left( { - \infty ; - \dfrac{3}{2}} \right] \cup \left[ {1; + \infty } \right) \hfill \\ \end{matrix}\)

Kết hợp với điều kiện (**) \Rightarrow t \in \left[ {1; + \infty } \right)\(\Rightarrow t \in \left[ {1; + \infty } \right)\)

\begin{matrix}
   \Rightarrow \sqrt {{x^2} - 5x - 6}  \geqslant 1 \Leftrightarrow {x^2} - 5x - 6 \geqslant 1 \hfill \\
   \Rightarrow x \in \left( { - \infty ;\dfrac{{5 - \sqrt {53} }}{2}} \right] \cup \left[ {\dfrac{{5 + \sqrt {53} }}{2}; + \infty } \right) \hfill \\ 
\end{matrix}\(\begin{matrix} \Rightarrow \sqrt {{x^2} - 5x - 6} \geqslant 1 \Leftrightarrow {x^2} - 5x - 6 \geqslant 1 \hfill \\ \Rightarrow x \in \left( { - \infty ;\dfrac{{5 - \sqrt {53} }}{2}} \right] \cup \left[ {\dfrac{{5 + \sqrt {53} }}{2}; + \infty } \right) \hfill \\ \end{matrix}\)

Vậy tập nghiệm của bất phương trình là x \in \left( { - \infty ;\frac{{5 - \sqrt {53} }}{2}} \right] \cup \left[ {\frac{{5 + \sqrt {53} }}{2}; + \infty } \right)\(x \in \left( { - \infty ;\frac{{5 - \sqrt {53} }}{2}} \right] \cup \left[ {\frac{{5 + \sqrt {53} }}{2}; + \infty } \right)\)

Bài tập 2: Tìm tập nghiệm của bất phương trình: \frac{{{x^2} - 4}}{{{x^2} - 6x + 8}} \leqslant 0\(\frac{{{x^2} - 4}}{{{x^2} - 6x + 8}} \leqslant 0\)

Hướng dẫn giải

Điều kiện xác định x2 – 6x + 8 ≠ 0 ⟺ x ≠ 2, x ≠ 4

\frac{{{x^2} - 4}}{{{x^2} - 6x + 8}} \leqslant 0 \Leftrightarrow \frac{{\left( {x - 2} \right)\left( {x + 2} \right)}}{{\left( {x - 4} \right)\left( {x - 2} \right)}} \leqslant 0 \Leftrightarrow \frac{{x + 2}}{{x - 4}} \leqslant 0\(\frac{{{x^2} - 4}}{{{x^2} - 6x + 8}} \leqslant 0 \Leftrightarrow \frac{{\left( {x - 2} \right)\left( {x + 2} \right)}}{{\left( {x - 4} \right)\left( {x - 2} \right)}} \leqslant 0 \Leftrightarrow \frac{{x + 2}}{{x - 4}} \leqslant 0\)

Lập bảng xét dấu ta có:

Tập nghiệm của bất phương trình

Từ bảng xét dấu ta kết luận: Tập nghiệm của bất phương trình là: x ∈ [ -2 ; 4)

Bài tập 3: Giải bất phương trình: (x2 + 3x + 1)(x2 + 3x – 3) ≥ 5 (*)

Hướng dẫn giải

Tập xác định D = \mathbb{R}\(\mathbb{R}\)

Đặt x2 + 3x – 3 = t ⟹ x2 + 3x + 1 = t + 4

Bất phương trình (*) ⟺ t(t+4) ≥ 5

⟺ t2 + 4t – 5 ≥ 0

⟺ t ∈ (-∞; -5] ∪ [1; +∞)

\begin{matrix}
   \Rightarrow \left[ {\begin{array}{*{20}{c}}
  {{x^2} + 3x - 3 \leqslant  - 5} \\ 
  {{x^2} + 3x - 3 \geqslant 1} 
\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}
  {{x^2} + 3x + 2 \leqslant 0} \\ 
  {{x^2} + 3x - 4 \geqslant 0} 
\end{array}} \right. \hfill \\
   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}
  {x \in \left[ { - 2; - 1} \right]} \\ 
  {x \in \left( { - \infty  - 4} \right] \cup \left[ {1; + \infty } \right)} 
\end{array}} \right. \Rightarrow x \in \left( { - \infty  - 4} \right] \cup \left[ {1; + \infty } \right) \hfill \\ 
\end{matrix}\(\begin{matrix} \Rightarrow \left[ {\begin{array}{*{20}{c}} {{x^2} + 3x - 3 \leqslant - 5} \\ {{x^2} + 3x - 3 \geqslant 1} \end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}} {{x^2} + 3x + 2 \leqslant 0} \\ {{x^2} + 3x - 4 \geqslant 0} \end{array}} \right. \hfill \\ \Leftrightarrow \left[ {\begin{array}{*{20}{c}} {x \in \left[ { - 2; - 1} \right]} \\ {x \in \left( { - \infty - 4} \right] \cup \left[ {1; + \infty } \right)} \end{array}} \right. \Rightarrow x \in \left( { - \infty - 4} \right] \cup \left[ {1; + \infty } \right) \hfill \\ \end{matrix}\)

Vậy tập nghiệm của bất phương trình là x ∈ (-∞; -4] ∪ [1; +∞)

3. Bài tập tự rèn luyện

Câu 1: Tìm tập nghiệm S của bất phương trình x2- 4 > 0

A. S = (-2 ; 2).B. S = (-∞ ; -2) ∪ (2; +∞)
C. S = (-∞ ; -2] ∪ [2; +∞)D. S = (-∞ ; 0) ∪ (4; +∞)

Câu 2: Tìm tập nghiệm S của bất phương trình x2 – 4x + 4 > 0.

A. S = RB. S = R\{2}
C. S = (2; ∞)D. S =R\{-2}

Câu 3: Tập nghiệm S = (-4; 5) là tập nghiệm của bất phương trình nào sau đây?

A. (x + 4)(x + 5) < 0B. (x + 4)(5x - 25) ≥ 0
C. (x + 4)(x + 25) < 0D. (x - 4)(x - 5) < 0

Câu 4: Cho biểu thức: f(x) = ax2 + bx + c (a ≠ 0) và ∆ = b2 – 4ac. Chọn khẳng định đúng trong các khẳng định dưới đây?

A. Khi ∆ < 0 thì f(x) cùng dấu với hệ số a với mọi x ∈ \mathbb{R}\(\mathbb{R}\).

B. Khi ∆ = 0 thì f(x) trái dấu với hệ số a với mọi x \ne \frac{{ - b}}{{2a}}\(x \ne \frac{{ - b}}{{2a}}\).

C. Khi ∆ < 0 thì f(x) cùng dấu với hệ số a với mọi x \ne \frac{{ - b}}{{2a}}\(x \ne \frac{{ - b}}{{2a}}\).

D. Khi ∆ > 0 thì f(x) trái dấu với hệ số a với mọi x ∈ \mathbb{R}\(\mathbb{R}\).

Câu 5: Tìm tập nghiệm của bất phương trình: -x2 + 2017x + 2018 > 0

A. S = [-1 ; 2018]B. S = (-∞ ; -1) ∪ (2018; +∞)
C. S = (-∞ ; -1] ∪ [2018; +∞)D. S = (-1 ; 2018)

Câu 6: Giải các bất phương trình sau:

a. 4{x^2} - x + 1 > 0\(4{x^2} - x + 1 > 0\)b. {x^2} - x - 6 \leqslant 0\({x^2} - x - 6 \leqslant 0\)
c. - 3{x^2} + x + 4 \geqslant 0\(- 3{x^2} + x + 4 \geqslant 0\)d. \left( { - {x^2} + 3x - 2} \right)\left( {{x^2} - 5x + 6} \right) \geqslant 0\(\left( { - {x^2} + 3x - 2} \right)\left( {{x^2} - 5x + 6} \right) \geqslant 0\)

Câu 7: Tìm tập nghiệm của các bất phương trình sau:

a. \frac{1}{{{x^2} - 4}} < \frac{3}{{3{x^2} + x - 4}}\(\frac{1}{{{x^2} - 4}} < \frac{3}{{3{x^2} + x - 4}}\)b. \frac{{{x^2} + 3x - 1}}{{2 - x}} >  - x\(\frac{{{x^2} + 3x - 1}}{{2 - x}} > - x\)
c. \frac{{3x - 47}}{{3x - 1}} > \frac{{4x - 47}}{{2x - 1}}\(\frac{{3x - 47}}{{3x - 1}} > \frac{{4x - 47}}{{2x - 1}}\)d. x + \frac{9}{{x + 2}} \geqslant 4\(x + \frac{9}{{x + 2}} \geqslant 4\)
e. \frac{{{x^2} + x + 2}}{{2x - 1}} > 0\(\frac{{{x^2} + x + 2}}{{2x - 1}} > 0\)

f. \frac{{\left( {{x^2} - x + 3} \right)\left( {{x^2} - 3x + 2} \right)}}{{{x^2} - 5x + 6}} > 0\(\frac{{\left( {{x^2} - x + 3} \right)\left( {{x^2} - 3x + 2} \right)}}{{{x^2} - 5x + 6}} > 0\)

Câu 8: Tập nghiệm S của bất phương trình 5x-1 = ≥ 5x/2 +3 là:

A. S = (+\infty\(\infty\); 5)

B. S = (-\infty\(\infty\);2)

C. S = (-5/2; +\infty\(\infty\))

D. S = (20/23; + \infty\(\infty\))

Câu 9: Bất phương trình \frac{3x+5}2-1\leq\frac{x+2}3+x\(\frac{3x+5}2-1\leq\frac{x+2}3+x\) có bao nhiêu nghiệm nguyên lớn hơn -10

A. 4

B. 5

C. 9

D. 10

Câu 10: Tổng các nghiệm nguyên của bất phương trình x (2-x) ≥ x (7-x) - 6 (x-1) trên đoạn (-10;10) bằng:

A. 5

B. 6

C. 21

D. 40

Câu 11: Bất phương trình (m-1) x>3 vô nghiệm khi

A. m≠1

B. m<1

C. m=1

D. m>1

--------------------------------------------------------

Trên đây là tài liệu về Cách tìm tập nghiệm S của bất phương trình được VnDoc.com giới thiệu tới quý thầy cô và bạn đọc cùng tham khảo. Hy vọng với tài liệu này các bạn học sinh sẽ nắm chắc kiến thức vận dụng tốt vào giải bài tập từ đó học tốt môn Toán lớp 10.

Chia sẻ, đánh giá bài viết
4
Chọn file muốn tải về:
Chỉ thành viên VnDoc PRO/PROPLUS tải được nội dung này!
79.000 / tháng
Đặc quyền các gói Thành viên
PRO
Phổ biến nhất
PRO+
Tải tài liệu Cao cấp 1 Lớp
Tải tài liệu Trả phí + Miễn phí
Xem nội dung bài viết
Trải nghiệm Không quảng cáo
Làm bài trắc nghiệm không giới hạn
Mua cả năm Tiết kiệm tới 48%
Sắp xếp theo
    🖼️

    Gợi ý cho bạn

    Xem thêm
    🖼️

    Chuyên đề Toán 10

    Xem thêm