Tìm m để bất phương trình nghiệm đúng với mọi x

Tìm tham số m để bất phương trình có nghiệm đúng với mọi x thuộc R

Tìm m để bất phương trình có nghiệm đúng với mọi x thuộc R môn Toán lớp 10 tổng hợp các dạng bài tập và hướng dẫn chi tiết về bất phương trình phổ biến trong các kì thi, bài kiểm tra trong chương trình trọng tâm Toán 10 nhằm giúp các bạn nắm vững kiến thức cơ bản, nâng cao kĩ năng tư duy bài tập. Chúc các bạn ôn tập hiệu quả!

Để tiện trao đổi, chia sẻ kinh nghiệm về giảng dạy và học tập các môn học lớp 10, VnDoc mời các thầy cô giáo, các bậc phụ huynh và các bạn học sinh truy cập nhóm riêng dành cho lớp 10 sau: Nhóm Tài liệu học tập lớp 10. Rất mong nhận được sự ủng hộ của các thầy cô và các bạn.

Tìm m để bất phương trình nghiệm đúng với mọi x thuộc R

Bản quyền thuộc về VnDoc.
Nghiêm cấm mọi hình thức sao chép nhằm mục đích thương mại

Phương pháp: Đối với các bài toán tìm điều kiện để bất phương trình nghiệm đúng với mọi x hay bất phương trình vô nghiệm ta sử dụng các lập luận như sau: (ta xét với bất phương trình bậc hai một ẩn)

  • f(x) > 0 vô nghiệm ⇔ f(x) ≤ 0 nghiệm đúng với ∀x ∈ \mathbb{R} . Nghĩa là \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {a < 0} \\ 
  {\Delta  \leqslant 0} 
\end{array}} \right.
  • f(x) < 0 vô nghiệm ⇔ f(x) ≥ 0 nghiệm đúng với ∀x ∈ \mathbb{R}. Nghĩa là \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {a > 0} \\ 
  {\Delta  \leqslant 0} 
\end{array}} \right.
  • f(x) ≥ 0 vô nghiệm ⇔ f(x) < 0 nghiệm đúng với ∀x ∈ \mathbb{R}. Nghĩa là \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {a < 0} \\ 
  {\Delta  < 0} 
\end{array}} \right.
  • f(x) ≤ 0 vô nghiệm ⇔ f(x) > 0 nghiệm đúng với ∀x ∈ \mathbb{R}. Nghĩa là \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {a > 0} \\ 
  {\Delta  < 0} 
\end{array}} \right.

Ví dụ 1: Cho bất phương trình (m - 1)x2 + 2mx - 3 > 0. Tìm giá trị của m để bất phương trình nghiệm đúng với mọi x thuộc \mathbb{R}.

Hướng dẫn giải

Đặt (m - 1)x2 + 2mx - 3 = f(x)

TH1: m - 1 = 0 ⇒ m = 1. Thay m = 1 vào bất phương trình ta được: 2x - 3 > 0⇒ x > \frac{3}{2} (Loại)

TH2: m - 1 ≠ 0 ⇔ m ≠ 1

Để bất phương trình f(x) > 0 nghiệm đúng với mọi x \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {a > 0} \\ 
  {\Delta  < 0} 
\end{array}} \right.

\Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {m - 1 > 0} \\ 
  {4{m^2} + 12m - 12 < 0} 
\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {m > 1} \\ 
  {m \in \left( {\dfrac{{ - 3 - \sqrt {21} }}{2};\dfrac{{ - 3 + \sqrt {21} }}{2}} \right)} 
\end{array} \Leftrightarrow m \in \emptyset } \right.} \right.

Vậy không có giá trị nào của m để bất phương trình có nghiệm đúng với mọi x thuộc \mathbb{R}.

Ví dụ 2: Tìm m để các bất phương trình sau đúng với mọi x thuộc \mathbb{R}.

a. (m - 3)x2 + (m + 1)x + 2 < 0

b. (m - 1)x2 + (m - 3)x + 4 > 0

Hướng dẫn giải

a. Đặt (m - 3)x2 + (m + 1)x + 2 = f(x)

TH1: m - 3 = 0 ⇔ m = 3. Thay m = 3 vào bất phương trình ta được: 2x + 2 < 0 ⇔ x < -1 (Loại)

TH2: m - 3 ≠ 0 ⇔ m ≠ 3

Để bất phương trình f(x) < 0 nghiệm đúng với mọi x \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {a < 0} \\ 
  {\Delta  < 0} 
\end{array}} \right.

\Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {m - 3 < 0} \\ 
  {{m^2} - 6m + 25 < 0} 
\end{array}} \right.

Ta có: m2 - 6m + 25 = (m - 3)2 + 16 ≥ 16,∀m

Vậy không có giá trị nào của m để bất phương trình có nghiệm đúng với mọi x thuộc \mathbb{R}

b. Đặt  (m - 1)x2 + (m - 3)x + 4 = f(x)

TH1: m - 1 = 0 ⇔ m = 1. Thay m = 1 vào bất phương trình ta được: -2x + 4 > 0 ⇔ x < 2 (Loại)

TH2: m - 1 ≠ 0 ⇔ m ≠ 1

Để bất phương trình f(x) > 0 nghiệm đúng với mọi x \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {a > 0} \\ 
  {\Delta  < 0} 
\end{array}} \right.

\Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {m - 1 > 0} \\ 
  {{m^2} - 6m + 25 < 0} 
\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {m > 1} \\ 
  {m \in \left( {11 - 4\sqrt 6 ;11 + 4\sqrt 6 } \right)} 
\end{array}} \right.} \right. \Leftrightarrow m \in \left( {11 - 4\sqrt 6 ;11 + 4\sqrt 6 } \right)

Vậy m \in \left( {11 - 4\sqrt 6 ;11 + 4\sqrt 6 } \right) thì bất phương trình có nghiệm đúng với mọi x thuộc \mathbb{R}.

Bài tập tự rèn luyện

Bài 1: Tìm m để bất phương trình có nghiệm đúng với mọi x thuộc \mathbb{R}: (m - 5)x² - 2x + m + 1 > 0

Bài 2: Tìm m để các bất phương trình sau có nghiệm đúng với mọi x

a. {x^2} + 2\left( {m - 1} \right)x + m + 4 > 0b. {x^2} + \left( {m + 1} \right)x + 2m + 7 > 0
c. m{x^2} + \left( {m - 1} \right)x + m - 1 < 0d. \left( {m + 2} \right){x^2} - 2\left( {m - 1} \right)x + 4 > 0

Bài 3: Cho bất phương trình: \frac{{2m{x^2} + 2\left( {m - 1} \right)x + 7m + 9}}{{{x^2} + 1}} \geqslant 1

Tìm m để bất phương trình có nghiệm đúng với mọi x thuộc \mathbb{R}.

Bài 4: Tim m để các bất phương trình sau nghiệm đúng với mọi x.

a. {x^2} - 2\left( {m - 2} \right)x + 2\left( {{m^2} - 2x + 2} \right) > 0

b. m{x^2} + \left( {m - 1} \right)x + m - 1 \leqslant 0

c. \left( {m - 1} \right){x^2} - 2\left( {m + 1} \right) + 3\left( {m - 2} \right) \geqslant 0

Bài 5: Xác định m để đa thức sau: (3m + 1)x² - (3m + 1)x + m + 4 luôn dương với mọi x.

Bài 6: Tìm m để phương trình: (m2 + m + 1)x2 + (2m - 3)x + m - 5 = 0 có 2 nghiệm dương phân biệt

Bài 7: Tìm giá trị tham số để bất phương trình sau nghiệm luôn đúng với mọi x:

a. 5x2 - x + m > 0

b. mx2 - 10x - 5 < 0

c. m(m+2)x2 - 2mx + 2 > 0

d. (m + 1)x2 - 2(m - 1)x + 3m - 3 < 0

---------------------------------------------------------------

Mời bạn đọc tham khảo thêm một số tài liệu liên quan đến bài học:

Trên đây là Tìm m để bất phương trình có nghiệm đúng với mọi x VnDoc.com giới thiệu tới quý thầy cô và bạn đọc. Ngoài ra VnDoc mời độc giả tham khảo thêm tài liệu ôn tập một số môn học: Tiếng anh lớp 10, Vật lí lớp 10, Ngữ văn lớp 10 ,...

Đánh giá bài viết
12 33.208
0 Bình luận
Sắp xếp theo
Chuyên đề Toán 10 Xem thêm