Xét tính chẵn lẻ của hàm số
Chuyên đề Toán học lớp 10: Xét tính chẵn lẻ của hàm số được VnDoc sưu tầm và giới thiệu tới các bạn học sinh cùng quý thầy cô tham khảo. Nội dung tài liệu sẽ giúp các bạn học sinh học tốt môn Toán học lớp 10 hiệu quả hơn. Mời các bạn tham khảo.
Chuyên đề: Xét tính chẵn lẻ của hàm số
1. Phương pháp giải.
* Sử dụng định nghĩa
Hàm số y = f(x) xác định trên D
+ Hàm số chẵn
+ Hàm số lẻ
Chú ý: Một hàm số có thể không chẵn cũng không lẻ
Đồ thị hàm số chẵn nhận trục Oy làm trục đối xứng
Đồ thị hàm số lẻ nhận gốc tọa độ O làm tâm đối xứng
* Quy trình xét hàm số chẵn, lẻ.
B1: Tìm tập xác định của hàm số.
B2: Kiểm tra
Nếu ∀ x ∈ D ⇒ -x ∈ D Chuyển qua bước ba
Nếu ∃ x0 ∈ D ⇒ -x0 ∉ D kết luận hàm không chẵn cũng không lẻ.
B3: xác định f(-x) và so sánh với f(x).
Nếu bằng nhau thì kết luận hàm số là chẵn
Nếu đối nhau thì kết luận hàm số là lẻ
Nếu tồn tại một giá trị ∃ x0 ∈ D mà f(-x0 ) ≠± f(x0) kết luận hàm số không chẵn cũng không lẻ.
2. Các ví dụ minh họa.
Ví dụ 1: Xét tính chẵn, lẻ của các hàm số sau:
Hướng dẫn:
a) f(x) = 3x3 + 2∛x
TXĐ: D = R.
Với mọi x ∈ D, ta có -x ∈ D
f(-x) = 3.(-x)3 + 2∛(-x) = -(3x3 + 2∛x) = -f(x)
Do đó f(x) = 3x3 + 2∛x là hàm số lẻ
b)
TXĐ: D = R.
Với mọi x ∈ D, ta có -x ∈ D
Suy ra TXĐ: D = [-5;5]
Với mọi x ∈ [-5;5] ta có -x ∈ [-5;5]
Suy ra TXĐ: D = [-2; 2)
Ta có x0 = -2 ∈ D nhưng -x0 = 2 ∉ D
Vậy hàm sốkhông chẵn và không lẻ.
Ví dụ 2: Tìm m để hàm số sau là hàm số chẵn.
Hướng dẫn:
Giả sử hàm số chẵn suy ra f(-x) = f(x) với mọi x thỏa mãn điều kiện (*)
với mọi x thỏa mãn (*)
⇒ 2(2m2 - 2) x = 0 với mọi x thỏa mãn (*)
⇔ 2m2 - 2 = 0 ⇔ m = ± 1
+ Với m = 1 ta có hàm số là
ĐKXĐ : √(x2+1) ≠1 ⇔ x ≠0
Suy ra TXĐ: D = R\{0}
Dễ thấy với mọi x ∈ R\{0} thì -x ∈ R\{0} và f(-x) = f(x)
Do đólà hàm số chẵn.
+ Với m = -1 ta có hàm số là
TXĐ: D = R
Dễ thấy với mọi x ∈ R thì -x ∈ R và f(-x) = f(x)
Do đólà hàm số chẵn.
Vậy m = ± 1 là giá trị cần tìm.
Với nội dung bài Xét tính chẵn lẻ của hàm số trên đây chúng tôi xin giới thiệu tới các bạn học sinh cùng quý thầy cô nội dung cần nắm vững phương pháp giải, công thức tính chẵn lẻ của một hàm số....
Trên đây VnDoc đã giới thiệu tới các bạn lý thuyết môn Toán học 10: Xét tính chẵn lẻ của hàm số. Để có kết quả cao hơn trong học tập, VnDoc xin giới thiệu tới các bạn học sinh tài liệu Chuyên đề Toán học 10, Giải bài tập Toán lớp 10, Giải VBT Toán lớp 10 mà VnDoc tổng hợp và giới thiệu tới các bạn đọc