Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm

Giải Toán 10 Bài 1: Không gian mẫu và biến cố CTST

VnDoc.com xin gửi tới bạn đọc bài viết Giải Toán 10 Bài 1: Không gian mẫu và biến cố CTST. Mời các bạn cùng tham khảo chi tiết bài viết dưới đây nhé.

Bài 1 trang 80 SGK Toán 10 Chân trời sáng tạo tập 2

Chọn ngẫu nhiên một số nguyên dương nhỏ hơn 100.

a. Hãy mô tả không gian mẫu.

b. Gọi A là biến cố "Số được chọn là số chính phương". Hãy viết tập hợp mô tả biến cố A.

c. Gọi B là biến cố "Số được chọn chia hết cho 4." Hãy tính số các kết quả thuận lợi cho B.

Gợi ý đáp án

a. Ω = {1; 2; 3; 4; 5; 6;...; 98; 99}

b. A = {1; 4; 9; 16; 25; 36; 49; 64; 81}

c. B = {4; 8; 12; 16; 20; 24; 28; 32; 36; 40; 44; 48; 52; 56; 60; 64; 68; 72; 76; 80; 84; 88; 92; 96}

Vậy có 24 kết quả thuận lợi cho B.

Bài 2 trang 80 SGK Toán 10 Chân trời sáng tạo tập 2

Trong hộp có 3 tấm thẻ được đánh số từ 1 đến 3. Hãy xác định không gian mẫu của các phép thử:

a. Lấy 1 thẻ từ hộp, xem số, trả thẻ vào hộp rồi lấy lại tiếp 1 thẻ từ hộp;

b. Lấy 1 thẻ từ hợp, xem số, bỏ ra ngoài rồi lại lấy tiếp 1 thẻ từ hộp;

c. Lấy đồng thời hai thẻ từ hộp.

Gợi ý đáp án

a. Do hai tấm thẻ được lấy lần lượt nên cần tính đến thứ tự lấy thẻ. Khi đó, không gian mẫu của phép thử là:

Ω = {(1; 1), (1; 2), (1; 3), (2; 1), (2; 2), (2; 3), (3; 1), (3; 2), (3; 3)}

b. Do hai tấm thẻ được lấy lần lượt nên cần tính đến thứ tự lấy thẻ. Khi đó, không gian mẫu của phép thử là:

Ω = {(1; 2), (1; 3), (2; 1), (2; 3), (3; 1), (3; 2)}

c. Do mỗi lần lấy thẻ không tính đến thứ tự lần lượt nên không gian mẫu của phép thử là:

Ω = {(1; 2), (1; 3), (2; 3)}

Bài 3 trang 80 SGK Toán 10 Chân trời sáng tạo tập 2

Gieo hai con xúc xắc. Hãy tính số các kết quả thuận lợi cho biến cố:

a. "Số chấm xuất hiện trên hai con xúc xắc hơn kém nhau 3 chấm";

b. "Tích số chấm xuất hiện trên hai con xúc xắc chia hết cho 5";

c. "Tổng số chấm xuất hiện trên hai con xúc xắc là số lẻ"

Gợi ý đáp án

a. Gọi A là biến cố " Số chấm xuất hiện trên hai con xúc xắc hơn kém nhau 3 chấm".

Ta có: A = {(1; 4), (2; 5), (3; 6), (4; 1), (5; 2), (6; 3)}

Vậy có 6 kết quả thuận lợi cho biến cố A.

b. Tích số chấm xuất hiện trên hai con xúc xắc chia hết cho 5 nghĩa là các cặp (i; j) thỏa mãn ij chia hết cho 5.

Khi đó các cặp số (i; j) thỏa mãn điều kiện trên là: (1; 5); (2; 5); (3; 5); (4; 5); (5; 5); (6; 5); (5; 1); (5; 2); (5; 3); (5; 4); (5; 6).

Vậy có 11 kết quả thuận lợi cho biến cố đã cho.

c. Gọi C là biến cố "Tổng số chấm xuất hiện trên hai con xúc xắc là số lẻ":

Ta có: C = {(1; 2), (1; 4), (1; 6), (2; 1), (2; 3), (2; 5), (3; 2), (3; 4), (3; 6), (4; 1), (4; 3), (4; 5), (5; 2), (5; 4), (5; 6), (6; 1), (6; 3), (6; 5)}

Vậy có 18 kết quả thuận lợi cho biến cố C.

Bài 4 trang 80 SGK Toán 10 Chân trời sáng tạo tập 2

Xếp 4 viên bi xanh và 5 viên bi trắng có các kích thước khác nhau thành một hàng ngang một cách ngẫu nhiên. Hãy tính số các kết quả thuận lợi cho các biến cố:

a."Không có hai viên bi trắng nào xếp liền nhau";

b. "Bốn viên bi xanh được xếp liền nhau".

Gợi ý đáp án

a. Xếp 4 viên bi xanh tạo thành một hàng ngang, có 4! cách.

4 viên bi xanh sẽ tạo ra 5 khoảng trống, xếp 5 viên bi trắng vào 5 khoảng trống này. Khi đó, số cách xếp 5 viên bi trắng là 5! cách.

Vậy số kết quả thuận lợi cho biến cố "Không có hai viên bi trắng nào xếp liền nhau" là: 4!. 5! = 2880.

b. Coi 4 viên bi xanh là một nhóm thì có 4! cách xếp.

Xếp nhóm 4 viên bi xanh này với 5 viên bi trắng thì có 6! cách xếp.

Vậy số kết quả thuận lợi cho biến cố "Bốn viên bi xanh được xếp liền nhau" là: 4!. 6! = 17 280.

Trên đây VnDoc.com vừa gửi tới bạn đọc bài viết Giải Toán 10 Bài 1: Không gian mẫu và biến cố CTST. Bài viết đã hướng dẫn bạn đọc trả lời các câu hỏi trong SGK Toán 10 CTST. Mời các bạn cùng tham khảo thêm tài liệu học tập môn Ngữ văn 10 CTST...

Chia sẻ, đánh giá bài viết
1
Sắp xếp theo
    🖼️

    Gợi ý cho bạn

    Xem thêm
    🖼️

    Toán 10 Chân trời sáng tạo tập 2

    Xem thêm