Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm

Giải Toán 10 Bài 2: Đường thẳng trong mặt phẳng tọa độ CTST

VnDoc.com xin gửi tới bạn đọc bài viết Giải Toán 10 Bài 2: Đường thẳng trong mặt phẳng tọa độ CTST. Mời bạn đọc cùng tham khảo chi tiết bài viết dưới đây nhé.

Bài 1 trang 57 SGK Toán 10 Chân trời sáng tạo tập 2

Lập phương trình tham số và phương trình tổng quát của đường thẳng d trong mỗi trường hợp sau:

a. d đi qua điểm A(-1; 5) và có vectơ chỉ phương \vec{u} = (2; 1)\(\vec{u} = (2; 1)\)

b. d đi qua điểm B(4; -2) và có vectơ pháp tuyến là \vec{n} = (3; -2)\(\vec{n} = (3; -2)\)

c. d đi qua P(1; 1) và có hệ số góc k = -2

d. d đi qua hai điểm Q(3; 0) và R(0; 2)

Gợi ý đáp án

a. Ta có \vec{u} = (2; 1)\(\vec{u} = (2; 1)\) là vectơ chỉ phương của d nên d nhận \vec{n} = (1; -2)\(\vec{n} = (1; -2)\) là vectơ pháp tuyến.

Phương trình tham số của đường thẳng d đi qua A(-1; 5) và nhận \vec{u} = (2; 1)\(\vec{u} = (2; 1)\) là vectơ chỉ phương là: \left\{\begin{matrix} x = -1 + 2t\\ y = 5 + t\end{matrix}\right.\(\left\{\begin{matrix} x = -1 + 2t\\ y = 5 + t\end{matrix}\right.\)

Phương trình tổng quát của đường thẳng d đi qua A(-1; 5) và nhận \vec{n} = (1; -2)\(\vec{n} = (1; -2)\) là vectơ pháp tuyến là:

1(x + 1) - 2(y - 5) = 0 \Leftrightarrow x - 2y + 11 = 0\(1(x + 1) - 2(y - 5) = 0 \Leftrightarrow x - 2y + 11 = 0\)

b. Phương trình tổng quát của d đi qua B(4; -2) và nhận \vec{n} = (3; -2)\(\vec{n} = (3; -2)\) là vectơ pháp tuyến là:

3(x - 4) - 2(y + 2) = 0 \Leftrightarrow 3x - 2y - 16 = 0\(3(x - 4) - 2(y + 2) = 0 \Leftrightarrow 3x - 2y - 16 = 0\)

Ta có \vec{n} = (3; -2)\(\vec{n} = (3; -2)\) là vectơ pháp tuyến của d nên d nhận \vec{u} = (2; 3)\(\vec{u} = (2; 3)\) là vectơ chỉ phương.

Phương trình tham số của d đi qua B(4; -2) và nhận \vec{u} = (2; 3)\(\vec{u} = (2; 3)\) làm vectơ chỉ phương là:

\left\{\begin{matrix}x = 4 + 2t\\ y = -2 + 3t\end{matrix}\right.\(\left\{\begin{matrix}x = 4 + 2t\\ y = -2 + 3t\end{matrix}\right.\)

c. Ta có: d là đồ thị của hàm số bậc nhất y = kx + y_{0}\(y = kx + y_{0}\)

Vì hệ số góc k = -2 nên ta có: y = -2x + y_{0}\(y = -2x + y_{0}\)

Lại có d đi qua P(1; 1) nên thay tọa độ P vào hàm số bậc nhất ta được:1 = -2. 1 + y_{0} \Rightarrow y_{0} = 3\(1 = -2. 1 + y_{0} \Rightarrow y_{0} = 3\)

\Rightarrow\(\Rightarrow\) Phương trình tổng quát của d là: y = -2x + 3 \Leftrightarrow 2x + y - 3 = 0\(y = -2x + 3 \Leftrightarrow 2x + y - 3 = 0\)

Ta có: d nhận \vec{n} = (2; 1)\(\vec{n} = (2; 1)\) là vectơ pháp tuyến \Rightarrow \vec{u} = (1; -2)\(\Rightarrow \vec{u} = (1; -2)\) là vectơ chỉ phương của d.

\Rightarrow\(\Rightarrow\)Phương trình tham số của d đi qua P(1; 1) và nhận \vec{u} = (1; -2)\(\vec{u} = (1; -2)\) làm vectơ chỉ phương là: \left\{\begin{matrix}x = 1 + t\\ y = 1 -2t\end{matrix}\right.\(\left\{\begin{matrix}x = 1 + t\\ y = 1 -2t\end{matrix}\right.\)

d. Ta có:\vec{QR} = (-3; 2)\(\vec{QR} = (-3; 2)\) là vectơ chỉ phương của d\Rightarrow d\(\Rightarrow d\) nhận \vec{n} = (2; 3)\(\vec{n} = (2; 3)\) là vectơ pháp tuyến.

Phương trình tham số của d đi qua Q(3; 0) và nhận \vec{QR} = (-3; 2)\(\vec{QR} = (-3; 2)\) làm vectơ chỉ phương là:

\left\{\begin{matrix}x = 3 - 3t\\ y = 2t\end{matrix}\right.\(\left\{\begin{matrix}x = 3 - 3t\\ y = 2t\end{matrix}\right.\)

Phương trình tổng quát của d đi qua Q(3; 0) và nhận \vec{n} = (2; 3)\(\vec{n} = (2; 3)\) làm vectơ pháp tuyến là:

2(x - 3) + 3(y - 0) = 0 \Leftrightarrow 2x + 3y - 6 = 0\(2(x - 3) + 3(y - 0) = 0 \Leftrightarrow 2x + 3y - 6 = 0\)

Bài 2 trang 57 SGK Toán 10 Chân trời sáng tạo tập 2

Cho tam giác ABC, biết A(2; 5), B(1; 2) và C(5; 4).

a. Lập phương trình tổng quát của đường thẳng BC.

b. Lập phương trình tham số của trung tuyến AM

c. Lập phương trình của đường cao AH.

Gợi ý đáp án

Vẽ hình

Giải Toán 10 Bài 2

a. Ta có 2(x - 3) + 3(y - 0) = 0 \Leftrightarrow 2x + 3y - 6 = 0\(2(x - 3) + 3(y - 0) = 0 \Leftrightarrow 2x + 3y - 6 = 0\) nhận \vec{n} = (2; -4)\(\vec{n} = (2; -4)\) là vectơ pháp tuyến.

Phương trình tổng quát của đường thẳng BC đi qua B(1; 2) và nhận \vec{n} = (2; -4)\(\vec{n} = (2; -4)\) làm vectơ pháp tuyến là:

2(x - 1) - 4(y - 2) = 0 \Leftrightarrow 2x - 4y + 6 = 0 \Leftrightarrow x - 2y + 3 = 0\(2(x - 1) - 4(y - 2) = 0 \Leftrightarrow 2x - 4y + 6 = 0 \Leftrightarrow x - 2y + 3 = 0\)

b. Ta có M là trung điểm của BC \Rightarrow M(\frac{1 + 5}{2}; \frac{2 + 4}{2}) \Rightarrow M(3; 3)\(BC \Rightarrow M(\frac{1 + 5}{2}; \frac{2 + 4}{2}) \Rightarrow M(3; 3)\)

Phương trình tham số của trung tuyến AM đi qua A(2; 5) và nhận \vec{AM} = (1; -2)\(\vec{AM} = (1; -2)\)làm vectơ chỉ phương là:

\left\{\begin{matrix}x = 2 + t\\ y = 5 - 2t\end{matrix}\right.\(\left\{\begin{matrix}x = 2 + t\\ y = 5 - 2t\end{matrix}\right.\)

c. Phương trình đường cao AH đi qua A(2; 5) và nhận \vec{BC} = (4; 2)\(\vec{BC} = (4; 2)\) là vectơ pháp tuyến là:

4(x - 2) + 2(y - 5) = 0 \Leftrightarrow 4x + 2y - 18 = 0 \Leftrightarrow 2x + y - 9 = 0\(4(x - 2) + 2(y - 5) = 0 \Leftrightarrow 4x + 2y - 18 = 0 \Leftrightarrow 2x + y - 9 = 0\)

Bài 3 trang 57 SGK Toán 10 Chân trời sáng tạo tập 2

Lập phương trình tham số và phương trình tổng quát của đường thẳng \Delta\(\Delta\) trong mỗi trường hợp sau:

a. \Delta\(\Delta\) đi qua A(2; 1) và song song với đường thẳng 3x + y + 9 = 0;

b. \Delta\(\Delta\) đi qua B(-1; 4) và vuông góc với đường thẳng 2x - y - 2 = 0.

Gợi ý đáp án

a. Vì \Delta\(\Delta\) song song với đường thẳng 3x + y + 9 = 0 nên \Delta\(\Delta\) nhận \vec{n} = (3; 1)\(\vec{n} = (3; 1)\) làm vectơ pháp tuyến và \vec{u} = (1; -3)\(\vec{u} = (1; -3)\) làm vectơ chỉ phương.

\Rightarrow\(\Rightarrow\) Phương trình tổng quát đường thẳng \Delta\(\Delta\)đi qua A(2; 1) và nhận \vec{n} = (3; 1)\(\vec{n} = (3; 1)\) làm vectơ pháp tuyến là:

3(x - 2) + 1(y - 1) = 0 \Leftrightarrow 3x + y - 7 = 0\(3(x - 2) + 1(y - 1) = 0 \Leftrightarrow 3x + y - 7 = 0\)

Phương trình tham số của \Delta\(\Delta\) đi qua A(2; 1) và nhận \vec{u} = (1; -3)\(\vec{u} = (1; -3)\) làm vectơ chỉ phương là:

\left\{\begin{matrix}x = 2 + t\\ y = 1 - 3t\end{matrix}\right.\(\left\{\begin{matrix}x = 2 + t\\ y = 1 - 3t\end{matrix}\right.\)

b. Vì \Delta\(\Delta\) vuông góc với đường thẳng 2x - y - 2 = 0 nên \Delta\(\Delta\) nhận \vec{u} = (2; -1)\(\vec{u} = (2; -1)\) làm vectơ chỉ phương và \vec{n} = (1; 2)\(\vec{n} = (1; 2)\) làm vectơ pháp tuyến.

\Rightarrow\(\Rightarrow\) Phương trình tổng quát đường thẳng \Delta\(\Delta\) đi qua B(-1; 4) và nhận \vec{n} = (1; 2)\(\vec{n} = (1; 2)\)làm vectơ pháp tuyến là:

1(x + 1) + 2(y - 4) = 0 \Leftrightarrow x + 2y - 7 = 0\(1(x + 1) + 2(y - 4) = 0 \Leftrightarrow x + 2y - 7 = 0\)

Phương trình tham số của \Delta\(\Delta\) đi qua B(-1; 4) và nhận \vec{u} = (2; -1)\(\vec{u} = (2; -1)\) làm vectơ chỉ phương là: \left\{\begin{matrix}x = -1 + 2t\\ y = 4 - t\end{matrix}\right.\(\left\{\begin{matrix}x = -1 + 2t\\ y = 4 - t\end{matrix}\right.\)

Bài 4 trang 57 SGK Toán 10 Chân trời sáng tạo tập 2

Xét vị trí tương đối của các cặp dường thẳng d_{1} và d_{2}\(d_{1} và d_{2}\)sau đây:

a. d_{1}: x - y + 2 = 0 và d_{2}: x + y + 4 = 0\(a. d_{1}: x - y + 2 = 0 và d_{2}: x + y + 4 = 0\)

b. d_{1}: \left\{\begin{matrix}x = 1 + 2t\\ y = 3 + 5t\end{matrix}\right. và d_{2}: 5x - 2y + 9 = 0\(b. d_{1}: \left\{\begin{matrix}x = 1 + 2t\\ y = 3 + 5t\end{matrix}\right. và d_{2}: 5x - 2y + 9 = 0\)

c. d_{1}: \left\{\begin{matrix}x = 2 - t\\ y = 5 + 3t\end{matrix}\right.\(c. d_{1}: \left\{\begin{matrix}x = 2 - t\\ y = 5 + 3t\end{matrix}\right.\)d_{2}: 3x + y - 11 = 0.\(d_{2}: 3x + y - 11 = 0.\)

Gợi ý đáp án

a. Ta có d_{1}\(d_{1}\)d_{2}\(d_{2}\) có các vectơ pháp tuyến lần lượt là \vec{n_{1}} = (1; -1) và \vec{n_{2}} = (1; 1).\(\vec{n_{1}} = (1; -1) và \vec{n_{2}} = (1; 1).\)

Ta có: \vec{n_{1}}. \vec{n_{2}} = 1. 1 + 1. (-1) = 0 \Rightarrow \vec{n_{1}} \perp\vec{n_{2}}. Do đó, d_{1} \perp d_{2}.\(\vec{n_{1}}. \vec{n_{2}} = 1. 1 + 1. (-1) = 0 \Rightarrow \vec{n_{1}} \perp\vec{n_{2}}. Do đó, d_{1} \perp d_{2}.\)

Tọa độ M là giao điểm của d_{1} và d_{2}\(d_{1} và d_{2}\) là nghiệm của hệ phương trình:

\left\{\begin{matrix}x - y + 2 = 0\\ x + y + 4 = 0\end{matrix}\right. \Leftrightarrow \left\{\begin{matrix}x = -3\\ y = -1\end{matrix}\right.\(\left\{\begin{matrix}x - y + 2 = 0\\ x + y + 4 = 0\end{matrix}\right. \Leftrightarrow \left\{\begin{matrix}x = -3\\ y = -1\end{matrix}\right.\)

Vậy d_{1}\(d_{1}\) vuông góc với d_{2}\(d_{2}\) và cắt nhau tại M(-3; -1).

b. Ta có \vec{u_{1}} = (2; 5)\(\vec{u_{1}} = (2; 5)\) là vectơ chỉ phương của d_{1} \Rightarrow \vec{n_{1}} = (5; -2)\(d_{1} \Rightarrow \vec{n_{1}} = (5; -2)\) là vectơ pháp tuyến của d_{1}.\(d_{1}.\)

\vec{n_{2}} = (5; -2)\(\vec{n_{2}} = (5; -2)\) là vectơ pháp tuyến của d_{2}.\(d_{2}.\)

Ta có: \vec{n_{1}} = \vec{n{2}}\(\vec{n_{1}} = \vec{n{2}}\) nên \vec{n_{1}} và \vec{n_{2}}\(\vec{n_{1}} và \vec{n_{2}}\) là hai vectơ cùng phương. Do đó, d_{1} và d_{2}\(d_{1} và d_{2}\) song song hoặc trùng nhau.

Lấy điểm M(1; 3) \in d_{1}\(M(1; 3) \in d_{1}\), thay tọa độ của M vào phương trình d_{2},\(d_{2},\) ta được: 5. 1 - 2. 3 + 9 \neq 0

\Rightarrow M \notin d_{2}.\(5. 1 - 2. 3 + 9 \neq 0 \Rightarrow M \notin d_{2}.\)

Vậy d_{1} // d_{2}.\(d_{1} // d_{2}.\)

c. \vec{u_{1}} = (-1; 3)\(\vec{u_{1}} = (-1; 3)\) là vectơ chỉ phương của d_{1} \Rightarrow\vec{n_{1}} = (3; 1)\(d_{1} \Rightarrow\vec{n_{1}} = (3; 1)\) là vectơ pháp tuyến của d_{1}.\(d_{1}.\)

\Rightarrow\(\Rightarrow\) Phương trình tổng quát của d đi qua điểm A(2; 5) và nhận \vec{n_{1}} = (3; 1)\(\vec{n_{1}} = (3; 1)\) là vectơ pháp tuyến là:

3(x - 2) + 1(y - 5) = 0 \Leftrightarrow 3x + y - 11 = 0\(3(x - 2) + 1(y - 5) = 0 \Leftrightarrow 3x + y - 11 = 0\)

Ta có: \vec{n_{2}} = (3; 1)\(\vec{n_{2}} = (3; 1)\) là vectơ pháp tuyến của d_{2}.\(d_{2}.\)

Ta có: \vec{n_{1}} = \vec{n_{2}}\(\vec{n_{1}} = \vec{n_{2}}\) nên \vec{n_{1}} và \vec{n_{2}}\(\vec{n_{1}} và \vec{n_{2}}\) là hai vectơ cùng phương. Do đó, d_{1}\(d_{1}\)d_{2}\(d_{2}\) song song hoặc trùng nhau.

Lấy điểm N(2; 5) \in d_{1},\(N(2; 5) \in d_{1},\) thay tọa độ của N vào phương trình d_{2}\(d_{2}\), ta được: 3. 2 + 5 - 11 = 0

\Rightarrow N \in d_{2}.\(\Rightarrow N \in d_{2}.\)

Vậy d_{1} \equiv d_{2}\(d_{1} \equiv d_{2}\)

Bài 5 trang 58 SGK Toán 10 Chân trời sáng tạo tập 2

Cho đường thẳng d có phương trình tham số \left\{\begin{matrix}x = 2 - t\\ y = 5 + 3t\end{matrix}\right.\(\left\{\begin{matrix}x = 2 - t\\ y = 5 + 3t\end{matrix}\right.\)

Tìm giao điểm của d với hai trục tọa độ

Gợi ý đáp án

Giao điểm A của d và trục Ox là nghiệm của hệ phương trình:\left\{\begin{matrix}x = 2 - t\\ 0 = 5 + 3t\end{matrix}\right. \Rightarrow \left\{\begin{matrix} t = -\frac{5}{3}\\ x = \frac{11}{3} \end{matrix}\right.\(\left\{\begin{matrix}x = 2 - t\\ 0 = 5 + 3t\end{matrix}\right. \Rightarrow \left\{\begin{matrix} t = -\frac{5}{3}\\ x = \frac{11}{3} \end{matrix}\right.\)

\Rightarrow A = (\frac{11}{3}; 0)\(\Rightarrow A = (\frac{11}{3}; 0)\)

Giao điểm B của d và trục Oy là nghiệm của hệ phương trình:

\left\{\begin{matrix} 0 = 2 - t\\ y = 5 + 3t\end{matrix}\right. \Rightarrow \left\{\begin{matrix} t = 2\\ y = 11 \end{matrix}\right.\(\left\{\begin{matrix} 0 = 2 - t\\ y = 5 + 3t\end{matrix}\right. \Rightarrow \left\{\begin{matrix} t = 2\\ y = 11 \end{matrix}\right.\)

\Rightarrow B = (0; 11)\(\Rightarrow B = (0; 11)\)

Vậy d cắt hai trục tọa độ tại các điểm A(\frac{11}{3}; 0)\(A(\frac{11}{3}; 0)\) và B(0; 11).

Bài 6 trang 58 SGK Toán 10 Chân trời sáng tạo tập 2

Tìm số đo góc xen giữa hai đường thẳng d_{1}\(d_{1}\)d_{2}\(d_{2}\) trong các trường hợp sau:

a. d_{1}: x - 2y + 3 = 0 và d_{2}: 3x - y - 11 = 0\(a. d_{1}: x - 2y + 3 = 0 và d_{2}: 3x - y - 11 = 0\)

b. d_{1}: \left\{\begin{matrix}x = t\\ y = 3 + 5t\end{matrix}\right. và d_{2}: x + 5y - 5 = 0\(b. d_{1}: \left\{\begin{matrix}x = t\\ y = 3 + 5t\end{matrix}\right. và d_{2}: x + 5y - 5 = 0\)

c. d_{1}: \left\{\begin{matrix}x = 3 + 2t\\ y = 7 + 4t\end{matrix}\right. và d_{2}: \left\{\begin{matrix}x = t\(d_{1}: \left\{\begin{matrix}x = 3 + 2t\\ y = 7 + 4t\end{matrix}\right. và d_{2}: \left\{\begin{matrix}x = t'\\ y = -9 + 2t'\end{matrix}\right.\)

Gợi ý đáp án

a. Ta có: cos(d_{1}, d_{2}) = \frac{|1.3 + (-2).(-1)}{\sqrt{1^{2} + (-2)^{2}}. \sqrt{3^{2} + (-1)^{2}}} = \frac{\sqrt{2}}{2} \Rightarrow (d_{1}, d_{2}) = 45^{\circ}\(cos(d_{1}, d_{2}) = \frac{|1.3 + (-2).(-1)}{\sqrt{1^{2} + (-2)^{2}}. \sqrt{3^{2} + (-1)^{2}}} = \frac{\sqrt{2}}{2} \Rightarrow (d_{1}, d_{2}) = 45^{\circ}\)

b. Ta có\vec{n_{1}} = (5; -1) và \vec{n_{2}} = (1; 5)\(\vec{n_{1}} = (5; -1) và \vec{n_{2}} = (1; 5)\) lần lượt là vectơ pháp tuyến của d_{1} và d_{2}\(d_{1} và d_{2}\)

Ta có: \vec{n_{1}}. \vec{n_{2}} = 5. 1 + (-1). 5 \Rightarrow \vec{n_{1}} \perp \vec{n_{2}} \Rightarrow (d_{1}, d_{2}) = 90^{\circ}.\(\vec{n_{1}}. \vec{n_{2}} = 5. 1 + (-1). 5 \Rightarrow \vec{n_{1}} \perp \vec{n_{2}} \Rightarrow (d_{1}, d_{2}) = 90^{\circ}.\)

c. Hai đường thẳng d_{1}\(d_{1}\)d_{2}\(d_{2}\) lần lượt có vectơ chỉ phương là \vec{u_{1}} = (2; 4) và \vec{u_{2}} = (1; 2).\(\vec{u_{1}} = (2; 4) và \vec{u_{2}} = (1; 2).\)

Ta có: \vec{u_{1}} = 2\vec{u_{2}} \Rightarrow \vec{u_{1}} // \vec{u_{2}} \Rightarrow (d_{1}, d_{2}) = 0^{\circ}.\(\vec{u_{1}} = 2\vec{u_{2}} \Rightarrow \vec{u_{1}} // \vec{u_{2}} \Rightarrow (d_{1}, d_{2}) = 0^{\circ}.\)

Bài 7 trang 58 SGK Toán 10 Chân trời sáng tạo tập 2

Tính khoảng cách từ điểm M đến đường thẳng \Delta\(\Delta\) trong các trường hợp sau:

a. M(1; 2) và \Delta: 3x - 4y + 12 = 0;\(\Delta: 3x - 4y + 12 = 0;\)

b. M(4; 4) và \Delta: \left\{\begin{matrix}x = t\\ y = -t\end{matrix}\right.;\(\Delta: \left\{\begin{matrix}x = t\\ y = -t\end{matrix}\right.;\)

c. M(0; 5) và \Delta: \left\{\begin{matrix}x = t\\ y = \frac{-19}{4}\end{matrix}\right.;\(\Delta: \left\{\begin{matrix}x = t\\ y = \frac{-19}{4}\end{matrix}\right.;\)

d. M(0; 0) và \Delta: 3x + 4y - 25 = 0\(\Delta: 3x + 4y - 25 = 0\)

Gợi ý đáp án

a. d(M; \Delta) = \frac{|3. 1 - 4. 2 + 12}{\sqrt{3^{2} + 4^{2}}} = \frac{7}{5}\(a. d(M; \Delta) = \frac{|3. 1 - 4. 2 + 12}{\sqrt{3^{2} + 4^{2}}} = \frac{7}{5}\)

b. Phương trình tổng quát của \Delta đi qua điểm O(0; 0) và nhận \vec{n} = (1; 1)\(\vec{n} = (1; 1)\) làm vectơ pháp tuyến là:

x + y = 0

d(M; \Delta) = \frac{|4 + 4|}{\sqrt{1^{2} + 1^{2}}} = \frac{8\sqrt{2}}{2}\(d(M; \Delta) = \frac{|4 + 4|}{\sqrt{1^{2} + 1^{2}}} = \frac{8\sqrt{2}}{2}\)

c. Phương trình tổng quát của \Delta\(\Delta\) đi qua điểm A(0; \frac{-19}{4})\(A(0; \frac{-19}{4})\) và nhận \vec{n} = (0; 1)\(\vec{n} = (0; 1)\) làm vectơ pháp tuyến là:

0(x - 0) + (y - \frac{-19}{4}) = 0 \Leftrightarrow y + \frac{19}{4} = 0\(0(x - 0) + (y - \frac{-19}{4}) = 0 \Leftrightarrow y + \frac{19}{4} = 0\)

d(M; \Delta) = \frac{|5 + \frac{19}{4}|}{1} = \frac{39}{4}\(d(M; \Delta) = \frac{|5 + \frac{19}{4}|}{1} = \frac{39}{4}\)

d. d(M; \Delta) = \frac{|3. 0 + 4. 0 - 25|}{\sqrt{3^{2} + 4^{2}}} = 5\(d. d(M; \Delta) = \frac{|3. 0 + 4. 0 - 25|}{\sqrt{3^{2} + 4^{2}}} = 5\)

Bài 8 trang 58 SGK Toán 10 Chân trời sáng tạo tập 2

Tính khoảng cách giữa hai đường thẳng:

\Delta: 3x + 4y - 10 = 0\(\Delta: 3x + 4y - 10 = 0\)

\Delta\(\Delta': 6x + 8y - 1 = 0.\)

Gợi ý đáp án

Ta có: \frac{3}{6} = \frac{4}{8} \neq \frac{-10}{-1} \Rightarrow \Delta // \Delta\(\frac{3}{6} = \frac{4}{8} \neq \frac{-10}{-1} \Rightarrow \Delta // \Delta'\)

Lấy điểm M(2; 1) \in \Delta\(M(2; 1) \in \Delta\)

\Rightarrow d(\Delta; \Delta\(\Rightarrow d(\Delta; \Delta') = d(M; \Delta') = \frac{|6. 2 + 8. 1-1|}{\sqrt{6^{2} + 8^{2}}} = \frac{19}{10}\)

Bài 9 trang 58 SGK Toán 10 Chân trời sáng tạo tập 2

Trong mặt phẳng Oxy, cho điểm S(x; y) di động trên đường thẳng d:

12x - 5y + 16 = 0

Tính khoảng cách ngắn nhất từ điểm M(5; 10) đến điểm S.

Gợi ý đáp án

Khoảng cách ngắn nhất từ điểm M đến điểm S chính là khoảng cách từ điểm M đến đường thẳng d.

Ta có: d(M; d) = \frac{|12. 5 - 5. 10 + 1|}{\sqrt{12^{2} + (-5)^{2}}} = 2\(d(M; d) = \frac{|12. 5 - 5. 10 + 1|}{\sqrt{12^{2} + (-5)^{2}}} = 2\)

Vậy khoảng cách ngắn nhất từ M đến S là 2.

Bài 10 trang 58 SGK Toán 10 Chân trời sáng tạo tập 

Một người đang viết chương trình cho trò chơi bóng đá rô bốt. Gọi A(-1; 1), B(9; 6), C(5; -3) là ba vị trí trên màn hình.

a. Viết phương trình các đường thẳng AB, AC, BC.

b. Tính góc hợp bởi hai đường thẳng AB và AC.

c. Tính khoảng cách từ điểm A đến đường thẳng BC.

Gợi ý đáp án

a. Ta có: \vec{AB} = (10; 5), \vec{AC} = (6; -4), \vec{BC} = (-4; -9)\(\vec{AB} = (10; 5), \vec{AC} = (6; -4), \vec{BC} = (-4; -9)\)

Phương trình đường thẳng AB đi qua điểm A(-1; 1) và nhận \vec{n_{1}} = (5; -10)\(\vec{n_{1}} = (5; -10)\) là vectơ pháp tuyến là:

5(x + 1) - 10(y - 1) = 0 \Leftrightarrow 5x - 10y + 15 = 0 \Leftrightarrow x - 2y + 3 = 0\(5(x + 1) - 10(y - 1) = 0 \Leftrightarrow 5x - 10y + 15 = 0 \Leftrightarrow x - 2y + 3 = 0\)

Phương trình đường thẳng AC đi qua điểm A(-1; 1) và nhận \vec{n_{2}} = (4; 6)\(\vec{n_{2}} = (4; 6)\) là vectơ pháp tuyến là:

4(x + 1) + 6(y - 1) = 0 \Leftrightarrow 4x + 6y - 2 = 0 \Leftrightarrow 2x + 3y - 1 = 0\(4(x + 1) + 6(y - 1) = 0 \Leftrightarrow 4x + 6y - 2 = 0 \Leftrightarrow 2x + 3y - 1 = 0\)

Phương trình đường thẳng BC đi qua điểm B(9; 6) và nhận \vec{n_{3}} = (9; -4)\(\vec{n_{3}} = (9; -4)\) là vectơ pháp tuyến là:

9(x - 9) - 4(y - 6) = 0 \Leftrightarrow 9x - 4y - 57 = 0\(9(x - 9) - 4(y - 6) = 0 \Leftrightarrow 9x - 4y - 57 = 0\)

b. cos(AB, AC) = \frac{|1. 2 + (-2).3|}{\sqrt{1^{2} + (-2)^{2}}. \sqrt{2^{2} + 3^{2}}} = \frac{4}{\sqrt{65}} \Rightarrow (AB, AC) \approx 60^{\circ}15\(b. cos(AB, AC) = \frac{|1. 2 + (-2).3|}{\sqrt{1^{2} + (-2)^{2}}. \sqrt{2^{2} + 3^{2}}} = \frac{4}{\sqrt{65}} \Rightarrow (AB, AC) \approx 60^{\circ}15'.\)

c. d(A; BC) = \frac{|9. (-1) - 4. 1 - 57|}{\sqrt{9^{2} + (-4)^{2}}} = \frac{70}{\sqrt{97}}\(c. d(A; BC) = \frac{|9. (-1) - 4. 1 - 57|}{\sqrt{9^{2} + (-4)^{2}}} = \frac{70}{\sqrt{97}}\)

Trên đây VnDoc.com vừa gửi tới bạn đọc bài viết Giải Toán 10 Bài 2: Đường thẳng trong mặt phẳng tọa độ CTST. Hi vọng qua bài viết này bạn đọc có thêm tài liệu để học tập tốt hơn môn Toán 10 CTST. Mời các bạn cùng tham khảo thêm tài liệu học tập môn Ngữ văn 10 CTST...

Chia sẻ, đánh giá bài viết
1
Sắp xếp theo
🖼️

Gợi ý cho bạn

Xem thêm
🖼️

Toán 10 Chân trời sáng tạo tập 2

Xem thêm