Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm

Giải Toán 10 Bài tập cuối chương 10 CTST

Giải Toán 10 Bài tập cuối chương 10 CTST được VnDoc.com sưu tầm và xin gửi tới bạn đọc. Mời các bạn cùng theo dõi bài viết dưới đây nhé.

Bài 1 trang 86 SGK Toán 10 Chân trời sáng tạo tập 2

Chọn ngẫu nhiên một số nguyên dương có ba chữ số:

a. Hãy mô tả không gian mẫu.

b. Tính xác suất biến cố "Số được chọn là lập phương của một số nguyên".

c. Tính xác suất của biến cố "Số được chọn chia hết cho 5".

Gợi ý đáp án

a. \Omega\(\Omega\) = {100; 101; 102; 103; ...; 997; 998; 999}

b. Số phần tử của không gian mẫu là: n(\Omega) = 900\(n(\Omega) = 900\)

Gọi B là biến cố "Số được chọn là lập phương của một số nguyên".

Ta có: 1^{3} = 1; 2^{3} = 8; 3^{3} = 27; 4^{3} = 64; 5^{3} = 125;\(1^{3} = 1; 2^{3} = 8; 3^{3} = 27; 4^{3} = 64; 5^{3} = 125;\)

6^{3} = 216; 7^{3} = 343; 8^{3} = 512; 9^{3} = 729; 10^{3} = 10000.\(6^{3} = 216; 7^{3} = 343; 8^{3} = 512; 9^{3} = 729; 10^{3} = 10000.\)

\Rightarrow B = {125; 216; 343; 512; 729} \Rightarrow n(B) = 5\(\Rightarrow B = {125; 216; 343; 512; 729} \Rightarrow n(B) = 5\)

\Rightarrow\(\Rightarrow\) Xác suất của B là: P(B) = \frac{5}{900} = \frac{1}{180}.\(P(B) = \frac{5}{900} = \frac{1}{180}.\)

c. Gọi C là biến cố "Số được chọn là số chia hết cho 5".

\Rightarrow C = {100; 105; 110; 115; ...; 990; 995} \Rightarrow n(C) = \frac{995 - 100}{5} + 1 = 180\(\Rightarrow C = {100; 105; 110; 115; ...; 990; 995} \Rightarrow n(C) = \frac{995 - 100}{5} + 1 = 180\)

\Rightarrow\(\Rightarrow\) Xác suất của C là: P(C) = \frac{180}{900} = \frac{1}{5}.\(P(C) = \frac{180}{900} = \frac{1}{5}.\)

Bài 2 trang 86 SGK Toán 10 Chân trời sáng tạo tập 2

Gieo bốn đồng xu cân đối và đồng chất. Xác định biến cố đối của mỗi biến cố sau và tính xác suất của nó.

a. "Xuất hiện ít nhất ba mặt sấp";

b. "Xuất hiện ít nhất một mặt ngửa".

Gợi ý đáp án

a. Gọi A là biến cố "Xuất hiện ít nhất ba mặt sấp".

\Rightarrow\(\Rightarrow\) Biến cố đối của biến cố A là \bar{A}:\(\bar{A}:\) "Xuất hiện ít nhất hai mặt ngửa".

Tổng số kết quả có thể xảy ra của phép thử là: n(\Omega) = 2^{4} = 16\(n(\Omega) = 2^{4} = 16\)

Ta có A = {NSSS; SNSS; SSNS; SSSN; SSSS} \Rightarrow n(A) = 5\(A = {NSSS; SNSS; SSNS; SSSN; SSSS} \Rightarrow n(A) = 5\)

Xác suất của A là: P(A) = \frac{5}{16}\(P(A) = \frac{5}{16}\)

b. Gọi B là biến cố "Xuất hiện ít nhất một mặt ngửa".

\Rightarrow\(\Rightarrow\) Biến cố đối của biến cố B là \bar{B}\(\bar{B}\) "Không xuất hiện mặt ngửa nào".

\Rightarrow \bar{B} = {SSSS} \Rightarrow n(\bar{B}) = 1\(\Rightarrow \bar{B} = {SSSS} \Rightarrow n(\bar{B}) = 1\)

Xác suất để xảy ra biến cố B là: P(B) = 1 - P(\bar{B}) = 1 - \frac{1}{16} = \frac{15}{16}.\(P(B) = 1 - P(\bar{B}) = 1 - \frac{1}{16} = \frac{15}{16}.\)

Bài 3 trang 86 SGK Toán 10 Chân trời sáng tạo tập 2

Gieo ba con xúc xắc cân đối và đồng chất. Tính xác suất của mỗi biến cố sau:

a. "Tổng số chấm xuất hiện nhỏ hơn 5";

b. "Tích số chấm xuất hiện chia hết cho 5".

Gợi ý đáp án

a. Số các kết quả có thể xảy ra của phép thử trên là n(\Omega) = 6^{3} = 216\(n(\Omega) = 6^{3} = 216\)

Gọi A là biến cố "Tổng số chấm xuất hiện nhỏ hơn 5".

Vì số chấm nhỏ nhất trên mỗi xúc xắc là 1, nên tổng số chấm xuất hiện trên sau khi thực hiện phép thử luôn lớn hơn hoặc bằng 3.

Ta có: 3 = 1 + 1 + 1

4 = 1 + 1 + 2 = 1 + 2 + 1 = 2 + 1 + 1

\Rightarrow A = {(1; 1; 1), (1; 1; 2), (1; 2; 1), (2; 1; 1)} \Rightarrow n(A) = 4\(\Rightarrow A = {(1; 1; 1), (1; 1; 2), (1; 2; 1), (2; 1; 1)} \Rightarrow n(A) = 4\)

\Rightarrow\(\Rightarrow\) Xác suất của biến cố A là: P(A) = \frac{4}{216} = \frac{1}{54}.\(P(A) = \frac{4}{216} = \frac{1}{54}.\)

b. Gọi B là biến cố "Tích số chấm xuất hiện chia hết cho 5".

\Rightarrow\(\Rightarrow\) Biến cố đối của biến cố B là \bar{B}\(\bar{B}\)"Tích số chấm xuất hiện không chia hết cho 5".

Để tích số chấm không chia hết cho 5 thì kết quả của phép thử không được xuất hiện mặt 5 chấm \Rightarrow\(\Rightarrow\) Số kết quả thuận lợi cho \bar{B} = 5^{3} = 125\(\bar{B} = 5^{3} = 125\)

\Rightarrow\(\Rightarrow\) Xác suất của biến cố B là P(B) = 1 - P(\bar{B}) = 1 - \frac{125}{216} = \frac{91}{216}.\(P(B) = 1 - P(\bar{B}) = 1 - \frac{125}{216} = \frac{91}{216}.\)

Bài 4 trang 86 SGK Toán 10 Chân trời sáng tạo tập 2

Hộp thứ nhất chứa 4 viên bi xanh, 3 viên bi đỏ. Hộp thứ hai chứa 5 viên bi xanh, 2 viên bi đỏ. Các viên có kích thước và khối lượng như nhau. Lấy ra ngẫu nhiên từ mỗi hộp 2 viên bi. Tính xác suất của mỗi biến cố sau:

a. "Bốn viên bi lấy ra có cùng màu";

b. "Trong 4 viên bi lấy ra có đúng 1 viên bi xanh";

c. "Trong 4 viên bi lấy ra có đủ cả bi xanh và bi đỏ".

Gợi ý đáp án

a. Số kết quả có thể xảy ra của phép thử trên là:

Gọi A là biến cố "Bốn viên bi lấy ra có cùng màu".

Số các kết quả thuận lợi cho A là n(A) = C_{4}^{2}.C_{5}^{2} + C_{3}^{2}.C_{2}^{2} = 63\(n(A) = C_{4}^{2}.C_{5}^{2} + C_{3}^{2}.C_{2}^{2} = 63\)

Xác suất của biến cố A là: P(A) = \frac{63}{441} = \frac{1}{7}\(P(A) = \frac{63}{441} = \frac{1}{7}\)

b. Gọi B là biến cố "Trong 4 viên bi lấy ra có đúng 1 viên bi xanh".

Số các kết quả thuận lợi cho B là: n(B) = C_{4}^{1}.C_{3}^{1}.C_{2}^{2} + C_{3}^{2}.C_{5}^{1}.C_{2}^{1} = 42\(n(B) = C_{4}^{1}.C_{3}^{1}.C_{2}^{2} + C_{3}^{2}.C_{5}^{1}.C_{2}^{1} = 42\)

Xác suất của biến cố B là: P(B) = \frac{42}{441} = \frac{2}{21}.\(P(B) = \frac{42}{441} = \frac{2}{21}.\)

c. Gọi C là biến cố "Trong bốn viên lấy ra có đủ cả bi xanh và bi đỏ".

\Rightarrow\(\Rightarrow\) Biến cố đối của biến cố C là "Bốn viên bi lấy ra có cùng màu".

Theo phần a, ta tính được P(\bar{C}) = \frac{1}{7}\(P(\bar{C}) = \frac{1}{7}\)

\Rightarrow\(\Rightarrow\) Xác suất của biến cố C là: P(C) = 1 - P(\bar{C}) = 1 - \frac{1}{7} = \frac{6}{7}\(P(C) = 1 - P(\bar{C}) = 1 - \frac{1}{7} = \frac{6}{7}\).

Bài 5 trang 86 SGK Toán 10 Chân trời sáng tạo tập 2

Một nhóm học sinh được chia vào 4 tổ, mỗi tổ có 3 học sinh. Chọn ra ngẫu nhiên từ nhóm đó 4 học sinh. Tính xác suất của mỗi biến cố sau:

a. "Bốn bạn thuộc 4 tổ khác nhau";

b. "Bốn bạn thuộc 2 tổ khác nhau".

Gợi ý đáp án

a. Số phần tử của không gian mẫu là: n(\Omega) = C_{12}^{4} = 495.\(n(\Omega) = C_{12}^{4} = 495.\)

Gọi A là biến cố "Bốn bạn thuộc 4 tổ khác nhau" \Rightarrow n(A) = C_{3}^{1}. C_{3}^{1}. C_{3}^{1}. C_{3}^{1} = 81\(\Rightarrow n(A) = C_{3}^{1}. C_{3}^{1}. C_{3}^{1}. C_{3}^{1} = 81\)

Xác suất của biến cố A là: P(A) = \frac{81}{495} = \frac{9}{55}\(P(A) = \frac{81}{495} = \frac{9}{55}\)

b. Gọi B là biến cố "Bốn bạn thuộc hai tổ khác nhau".

Ta có, chọn 2 tổ trong 4 tổ có C_{4}^{2}\(C_{4}^{2}\) cách chọn.

  • Trường hợp 1: Chọn mỗi tổ 2 người, có C_{3}^{2}.C_{3}^{2}\(C_{3}^{2}.C_{3}^{2}\) cách.
  • Trường hợp 2: Chọn một tổ 3 người, một tổ 1 người, ta có 2.C_{3}^{1}. C_{3}^{3}\(2.C_{3}^{1}. C_{3}^{3}\) cách.

\Rightarrow\(\Rightarrow\) Số kết quả thuận lợi cho biến cố B là: n(B) = C_{4}^{2}. C_{3}^{2}. C_{3}^{2} + C_{4}^{2}. 2. C_{3}^{3}. C_{3}^{1} = 90\(n(B) = C_{4}^{2}. C_{3}^{2}. C_{3}^{2} + C_{4}^{2}. 2. C_{3}^{3}. C_{3}^{1} = 90\)

Xác suất của biến cố B là: P(B) = \frac{90}{495} = \frac{2}{11}.\(P(B) = \frac{90}{495} = \frac{2}{11}.\)

Bài 6 trang 86 SGK Toán 10 Chân trời sáng tạo tập 2

Một cơ thể có kiểu gen là AaBbDdEe, các cặp alen nằm trên các cặp nhiễm sắc thể tương đồng khác nhau. Chọn ngẫu nhiên một giao tử của cơ thể sau khi giảm phân. Giả sử tất cả các giao tử sinh ra có sức sống như nhau. Tính xác suất để giao tử được chọn mang đầy đủ các alen trội.

Gợi ý đáp án

Tổng số giao tử được tạo ra sau khi giảm phân là n\left( \Omega  \right) = {2^8}\(n\left( \Omega \right) = {2^8}\)

Giao tử được chọn mang đầy đủ các alen trội khi giao tử có kiểu gen luôn có các alen A, B, D, E

Số kết quả thuận lợi cho việc chọn giao tử mang đầy đủ gen trội là n = 1.2.1.2.1.2.1.2 = {2^4}\(n = 1.2.1.2.1.2.1.2 = {2^4}\)

Suy ra xác suất để giao tử được chọn mang đầy đủ các alen trội là P = \frac{{{2^4}}}{{{2^8}}} = \frac{1}{{16}}\(P = \frac{{{2^4}}}{{{2^8}}} = \frac{1}{{16}}\)

Bài 7 trang 86 SGK Toán 10 Chân trời sáng tạo tập 2

Sắp xếp 5 tấm thẻ cùng loại được đánh số từ 1 đến 5 một cách ngẫu nhiên để tạo thành một số tự nhiên a có 5 chữ số. Tính xác suất của mỗi biến cố sau:

a. "a là số chẵn";

b. "a chia hết cho 5";

c. "a \geq 32 000";\("a \geq 32 000";\)

d. "Trong các chữ số của a không có 2 chữ số lẻ nào đứng cạnh nhau".

Gợi ý đáp án

a. Số phần tử của không gian mẫu là: n(\Omega) = 5! = 120\(n(\Omega) = 5! = 120\)

Vì a là số chẵn nên có hai cách chọn ra chữ số hàng đơn vị là 2 hoặc 4, xếp 4 chỗ còn lại có 4! cách.

\Rightarrow\(\Rightarrow\) Số phần tử có lợi cho biến cố "a là số chẵn" là: n = 2.4! = 48

\Rightarrow\(\Rightarrow\) Xác suất của biến cố "a là số chẵn" là: P = \frac{48}{120} = \frac{2}{5}\(P = \frac{48}{120} = \frac{2}{5}\)

b. a chia hết cho 5 nên chữ số hàng đơn vị nhận giá trị 5, có 1 cách xếp hàng đơn vị. 4 chỗ còn lại có 4! cách.

\Rightarrow\(\Rightarrow\) Số phần tử thuận lợi cho biến cố "a là số chia hết cho 5" là: n = 4! = 24

\Rightarrow\(\Rightarrow\) Xác suất của biến cố "a là số chia hết cho 5" là: P = \frac{24}{120} = \frac{1}{5}\(P = \frac{24}{120} = \frac{1}{5}\)

c.

  • Trường hợp 1: Chọn chữ số hàng chục nghìn là 4 hoặc 5, có 2!. 4! = 48 (cách chọn).
  • Trường hợp 2: Chọn chữ số hàng chục nghìn là 3, thì chữ số hàng nghìn có 3 cách chọn (2, 4 , 5), 3 số còn lại có 3! cách xếp \Rightarrow Có tất cả: 1.3.3! = 18

\Rightarrow\(\Rightarrow\) Số phần tử thuận lợi cho biến cố "a \geq 32 000\(a \geq 32 000\)" là: n = 48 + 18 = 66

\Rightarrow\(\Rightarrow\) Xác suất của biến cố "a \geq 32 000"\(a \geq 32 000"\) là: P = \frac{66}{120} = \frac{11}{20}.\(P = \frac{66}{120} = \frac{11}{20}.\)

d. Số a không có hai chữ số lẻ nào đứng cạnh nhau có dạng: x2x4x hoặc x4x2x

\Rightarrow\(\Rightarrow\) Số phần tử thuận lợi cho biến cố "Trong các chữ số của a không có 2 chữ số lẻ nào đứng cạnh nhau" là: n = 2. 3! = 12

\Rightarrow\(\Rightarrow\) Xác suất của biến cố trên là: P = \frac{12}{120} = \frac{1}{10}.\(P = \frac{12}{120} = \frac{1}{10}.\)

Bài 8 trang 86 SGK Toán 10 Chân trời sáng tạo tập 2

Lớp 10A có 20 bạn nữ, 25 bạn nam. Lớp 10B có 24 bạn nữ, 21 bạn nam. Chọn ngẫu nhiên từ mỗi lớp ra hai bạn đi tập văn nghệ. Tính xác suất của mỗi biến cố sau:

a. "Trong 4 bạn được chọn có ít nhất 1 bạn nam";

b. "Trong 4 bạn được chọn có đủ cả nam và nữ".

Gợi ý đáp án

Tổng số khả năng có thể xảy ra của phép thử là n\left( \Omega  \right) = C_{45}^2.C_{45}^2\(n\left( \Omega \right) = C_{45}^2.C_{45}^2\)

a) Gọi A là biến cố “Trong 4 bạn được chọn có ít nhất 1 bạn nam”, ta có biến cố đối \overline A\(\overline A\): “Trong 4 bạn được chọn không có bạn nam nào”

\overline A\(\overline A\) xảy ra khi các bạn được chọn đều là nữ. Số kết quả thuận lợi cho biến cố \overline A\(\overline A\)n\left( {\overline A } \right) = C_{20}^2.C_{24}^2\(n\left( {\overline A } \right) = C_{20}^2.C_{24}^2\)

Xác suất của biến cố \overline A\(\overline A\)P\left( {\overline A } \right) = \frac{{n\left( {\overline A } \right)}}{{n\left( \Omega  \right)}} = \frac{{C_{20}^2.C_{24}^2}}{{C_{45}^2.C_{45}^2}} = \frac{{874}}{{16335}}\(P\left( {\overline A } \right) = \frac{{n\left( {\overline A } \right)}}{{n\left( \Omega \right)}} = \frac{{C_{20}^2.C_{24}^2}}{{C_{45}^2.C_{45}^2}} = \frac{{874}}{{16335}}\)

Suy ra, xác suất của biến cố A là P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{{874}}{{16335}} = \frac{{15461}}{{16335}}\(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{{874}}{{16335}} = \frac{{15461}}{{16335}}\)

b) Gọi A là biến cố “Trong 4 bạn được chọn có đủ cả nam và nữ” ta có biến cố đối \overline A\(\overline A\): “Trong 4 bạn được chọn đều là nữ hoặc đều là nam”

\overline A\(\overline A\) xảy ra khi các bạn được chọn đều là nữ hoặc nam. Số kết quả thuận lợi cho biến cố \overline A\(\overline A\)n\left( {\overline A } \right) = C_{20}^2.C_{24}^2 + C_{25}^2.C_{21}^2\(n\left( {\overline A } \right) = C_{20}^2.C_{24}^2 + C_{25}^2.C_{21}^2\)

Xác suất của biến cố \overline A\(\overline A\)P\left( {\overline A } \right) = \frac{{n\left( {\overline A } \right)}}{{n\left( \Omega  \right)}} = \frac{{C_{20}^2.C_{24}^2 + C_{25}^2.C_{21}^2}}{{C_{45}^2.C_{45}^2}} = \frac{{1924}}{{16335}}\(P\left( {\overline A } \right) = \frac{{n\left( {\overline A } \right)}}{{n\left( \Omega \right)}} = \frac{{C_{20}^2.C_{24}^2 + C_{25}^2.C_{21}^2}}{{C_{45}^2.C_{45}^2}} = \frac{{1924}}{{16335}}\)

Suy ra, xác suất của biến cố A là P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{{1924}}{{16335}} = \frac{{14411}}{{16335}}\(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{{1924}}{{16335}} = \frac{{14411}}{{16335}}\)

Bài 9 trang 86 SGK Toán 10 Chân trời sáng tạo tập 2

Trong hộp có 5 bóng xanh, 6 bóng đỏ và 2 bóng vàng. Các bóng có kích thước và khối lượng như nhau. Lấy 2 bóng từ hộp, xem màu, trả lại hộp rồi lại lấy tiếp 1 bóng nữa từ hộp. Tính xác suất của mỗi biến cố sau:

a. "Ba bóng lấy ra cùng màu";

b. "Bóng lấy ra lần 2 là bóng xanh";

c. "Ba bóng lấy ra có 3 màu khác nhau".

Gợi ý đáp án

a. Số kết quả có thể xảy ra của phép thử là: n(\Omega) = C_{13}^{2}.13 = 1014\(n(\Omega) = C_{13}^{2}.13 = 1014\)

Gọi A là biến cố "Ba bóng lấy ra cùng màu".

Số kết quả thuận lợi cho biến cố A là:

n(A) = C_{5}^{2}.5 + C_{6}^{2}.6 + C_{2}^{2}.2 = 142\(n(A) = C_{5}^{2}.5 + C_{6}^{2}.6 + C_{2}^{2}.2 = 142\)

Xác suất của biến cố A là: P(A) = \frac{142}{1014} = \frac{71}{507}.\(P(A) = \frac{142}{1014} = \frac{71}{507}.\)

b. Gọi B là biến cố "Bóng lấy ra lần 2 là bóng xanh".

Số kết quả thuận lợi cho biến cố B là: n(B) = C_{13}^{2}.5 = 390\(n(B) = C_{13}^{2}.5 = 390\)

Xác suất của biến cố B là: P(B) = \frac{390}{1014} = \frac{5}{13}.\(P(B) = \frac{390}{1014} = \frac{5}{13}.\)

c. Gọi C là biến cố "Ba bóng lấy ra có 3 màu khác nhau".

Số kết quả thuận lợi cho biến cố C là: n(C) = C_{5}^{1}. C_{6}^{1}.2 + C_{5}^{1}. C_{2}^{1}. 6 + C_{6}^{1}. C_{2}^{1}.5 = 180\(n(C) = C_{5}^{1}. C_{6}^{1}.2 + C_{5}^{1}. C_{2}^{1}. 6 + C_{6}^{1}. C_{2}^{1}.5 = 180\)

Xác suất của biến cố C là: P(C) = \frac{180}{1014} = \frac{30}{169}.\(P(C) = \frac{180}{1014} = \frac{30}{169}.\)

Trên đây VnDoc.com vừa gửi tới bạn đọc bài viết Giải Toán 10 Bài tập cuối chương 10 CTST. Hi vọng qua bài viết này bạn đọc có thêm tài liệu để học tập tốt hơn môn Toán 10 CTST. Mời các bạn cùng tham khảo thêm tài liệu học tập môn Ngữ văn 10 CTST...

Chia sẻ, đánh giá bài viết
1
Chọn file muốn tải về:
Chỉ thành viên VnDoc PRO tải được nội dung này!
79.000 / tháng
Đặc quyền các gói Thành viên
PRO
Phổ biến nhất
PRO+
Tải tài liệu Cao cấp 1 Lớp
Tải tài liệu Trả phí + Miễn phí
Xem nội dung bài viết
Trải nghiệm Không quảng cáo
Làm bài trắc nghiệm không giới hạn
Mua cả năm Tiết kiệm tới 48%
Sắp xếp theo
    🖼️

    Gợi ý cho bạn

    Xem thêm
    🖼️

    Toán 10 Chân trời sáng tạo tập 2

    Xem thêm