Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm

Tuyển tập đề thi vào lớp 10 các trường Chuyên - Năng khiếu năm học 2013-2014

Tuyển tập đề thi vào lớp 10 các trường Chuyên - Năng khiếu năm học 2013-2014 là tài liệu tham khảo dành cho các bạn học sinh tham khảo luyện đề, chuẩn bị cho kì thi tuyển sinh vào lớp 10. Tài liệu giúp các bạn tự kiểm tra ôn tập kiến thức môn Toán lớp 9, sẵn sàng cho các kì thi quan trọng sắp tới

Đề thi vào lớp 10

SỞ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐHSP HÀ NỘI

KỲ THI TUYỂN SINH VÀO LỚP 10
TRƯỜNG THPT CHUYÊN ĐẠI HỌC SƯ PHẠM HÀ NỘI
NĂM HỌC 2013 - 2014

ĐỀ THI MÔN: TOÁN (VÒNG 1)
Thời gian làm bài:120 phút, không kể thời gian giao đề.

Câu 1: (2,5 điểm)

1. Cho biểu thức:

Tuyển tập đề thi vào lớp 10 các trường Chuyên - Năng khiếu năm học 2013-2014

với a > 0, b > 0, a ≠ b. Chứng minh giá trị của biểu thức Q không phụ thuộc vào a và b.

2. Các số thức a, b, c thỏa mãn a + b + c = 0.

Chứng minh đẳng thức: (a2 + b2 + c2)2 = 2(a4 + b4 + c4).

Câu 2: (2,0 điểm)

Cho parabol (P): y = x2 và đường thẳng (tham số m ≠ 0)

1. Chứng minh rằng với mỗi m ≠ 0, đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt.

2. Gọi A(x1, y1), B(x2, y2) là các giao điểm của (d) và (P). Tìm giá trị nhỏ nhất của biểu thức: M = y12 + y22.

Câu 3: (1,5 điểm)

Giả sử a, b, c là các số thực, a ≠ b sao cho hai phương trình: x2 + ax + 1 = 0, x2 + bx + 1 = 0 có nghiệm chung và hai phương trình x2 + x + a = 0, x2 + cx + b = 0 có nghiệm chung. Tính: a + b + c.

Câu 4: (3,0 điểm)

Cho tam giác ABC không cân, có ba góc nhọn, nội tiếp đường tròn (O). Các đường cao AA1, BB1, CC1 của tam giác ABC cắt nhau tại H, các đường thẳng A1C1 và AC cắt nhau tại điểm D. Gọi X là giao điểm thứ hai của đường thẳng BD với đường tròn (O).

1. Chứng minh: DX.DB = DC1.DA1.

2. Gọi M là trung điểm của cạnh AC. Chứng minh: DH vuông góc BM.

Câu 5: (1,0 điểm)

Các số thực x, y, x thỏa mãn:

Tuyển tập đề thi vào lớp 10 các trường Chuyên - Năng khiếu năm học 2013-2014

Chứng minh: x = y = z.

Chia sẻ, đánh giá bài viết
20
Sắp xếp theo
    🖼️

    Gợi ý cho bạn

    Xem thêm
    🖼️

    Lớp 9

    Xem thêm