Giải SBT Toán 6 Bài ôn tập cuối chương 1 Cánh Diều
Giải SBT Toán 6 Bài ôn tập cuối chương 1 sách Cánh Diều. Các em học sinh có thể tham khảo đối chiếu với bài của mình đã làm. Các lời giải dưới đây bám sát chương trình học cho các em học sinh cùng theo dõi.
>> Bài trước: Giải SBT Toán 6 Bài 13: Bội chung và bội chung nhỏ nhất
Bài ôn tập cuối chương 1
- Bài 128 trang 37 SBT Toán 6 tập 1
- Bài 129 trang 37 SBT Toán 6 tập 1
- Bài 130 trang 37 SBT Toán 6 tập 1
- Bài 131 trang 37 SBT Toán 6 tập 1
- Bài 132 trang 37 SBT Toán 6 tập 1
- Bài 133 trang 38 SBT Toán 6 tập 1
- Bài 134 trang 38 SBT Toán 6 tập 1
- Bài 135 trang 38 SBT Toán 6 tập 1
- Bài 136 trang 38 SBT Toán 6 tập 1
- Bài 137 trang 38 SBT Toán 6 tập 1
- Bài 138 trang 38 SBT Toán 6 tập 1
- Bài 139 trang 38 SBT Toán 6 tập 1
- Bài 140 trang 38 SBT Toán 6 tập 1
Bài 128 trang 37 SBT Toán 6 tập 1
Thực hiện các phép tính sau:
a) 56:4+4.(40 – 25) + 2 000: 2 – 15. 12
b) 140. (53 – 53: 52) – 36:34 – 15.11.(12 – 9)
c) 784: {300:[536 – (23.3.29 – 174)+50]+62}
d) 34 567 – [4.(73 – 69)3 -82. (102 – 98)]2
e) 527 + {[2 . (2.23 + 32 +42 – 52) +6780]3 : 332}
Đáp án
a) 56:4+4.(40 – 25) + 2 000: 2 – 15. 12
= 14 + 4. 15 +1 000 – 180
= 14+60+1 000 – 180
= 894;
b) 140. (53 – 53: 52) – 36:34 – 15.11.(12 – 9)
= 140. (53 – 5) – 32 – 15.11.3
= 140.(125 – 5) – 9 – 165.3
= 140. 120 – 9 – 495
= 16 800 – 9 – 495
= 16 296;
c) 784: {300:[536 – (23.3.29 – 174)+50]+62}
= 784 : {300 : [536 – (8.3.29 – 174) +1 ] + 36}
= 784 : {300 : [ 536 – (696 – 174) + 1]+36}
= 784 : {300 : [536 – 522 +1] +36}
= 784 : (300: 15 +36)
= 784: (20+36)
= 784 : 56
= 14
d) 34 567 – [4.(73 – 69)3 -82. (102 – 98)]2
= 34 567 – [ 4. 43 – 82 .4]2
= 34 567 – (4.64 – 64.4)2
= 34 567 – 0
= 34 567
e) 527 + {[2 . (2.23 + 32 +42 – 52) +6780]3 : 332}
= 527 + {[2. (16+9+16 – 25) +1]3 : 332}
= 527 + {2. 16+1}3:332
= 527 + (333 :332)
= 527 +33
= 560
Bài 129 trang 37 SBT Toán 6 tập 1
Tìm số tự nhiên x, biết:
a) 225: 15 + 3.(2x +1) = 270;
b) 19.(2+3+4-5+6-7)2 – 9.(7x – 2) =0;
c) 3.(2x +1)3 = 81;
d) (x+1)5 = 243;
e) 2.11x = (32+2)3 : (53 – 25:23).22;
g) 7x+7x+1+7x+2=3.19.343.
Đáp án
a) 225:15 + 3.(2x + 1) = 270
15 + 3.(2x + 1) = 270
3.(2x + 1) = 270 – 15
3.(2x + 1) = 255
2x + 1 = 255:3
2x + 1 = 85
2x = 85 – 1
2x = 84
x = 84:2
x = 42.
Vậy x = 42.
b) 19.(2 + 3 + 4 – 5 + 6 – 7)2 – 9.(7x – 2) = 0
19.32 – 9(7x – 2) = 0
19.9 – 9(7x – 2) = 0
171 – 9.(7x – 2) = 0
9.(7x – 2) = 171
7x – 2 = 19
7x = 19 + 2
7x = 21
x = 21:7
x = 3.
Vậy x = 3.
c) 3.(2x + 1)3 = 81;
(2x + 1)3 = 81:3
(2x + 1)3 = 27
(2x + 1)3 = 33
2x + 1 = 3
2x = 3 – 1
2x = 2
x = 2:2
x = 1.
Vậy x = 1.
d) (x + 1)5 = 243
(x + 1)5 = 35
x + 1 = 3
x = 3 – 1
x = 2.
Vậy x = 2.
e) 2.11x = (32 + 2)3 : (53 – 25:23).22
2.11x = (9 + 2)3 : (125 – 22).22
2.11x = 113 : (125 – 4).22
2.11x = 113 : 121.11.2
2.11x = 113 : 112.11.2
2.11x = 11.11.2
2.11x = 112.2
11x = (112.2):2
11x = 112
x = 2.
Vậy x = 2.
g) 7x + 7x + 1 + 7x + 2 = 3.19.343
7x + 7x.7 + 7x .72 = 3.19.343
7x + 7x.7 + 7x.49 = 3.19.343
7x.(1 + 7 + 49) = 57.343
7x.57 = 57.343
7x = 343
7x = 73
x = 3.
Vậy x = 3.
Bài 130 trang 37 SBT Toán 6 tập 1
Gọi P là tập hợp các số nguyên tố. Chọn kí hiệu “ \(\in\)” , “\(\notin\)” thích hợp cho [?]:
a) 12 [?] P;
b) 23 [?] P;
c) 12 + 17 [?] P;
d) a [?] P với a = 2.4.5 + 13;
e) b [?] với b = 2.3.4.5.37 + 133.37
Đáp án
a) 12 \(\notin\) P
b) 23 \(\in\) P
c) 12 + 17 \(\in\)P (vì 12+17 = 29 là số nguyên tố)
d) a \(\in\) P với a= 2.4.5 + 13 (vì a = 40+13=53 là số nguyên tố)
e) b \(\notin\) P với b = 2.4.5.37 +133.37 (vì b = 40.37 + 133.37 = 37 . (40+133) = 37 . 173 không là số nguyên tố)
Bài 131 trang 37 SBT Toán 6 tập 1
Số tự nhiên A có hai chữ số thỏa mãn A chia cho 9 dư 1 và chia cho 10 dư 3. Khi đó, A chia cho 13 có số dư là bao nhiêu?
Đáp án
Số tự nhiên có hai chữ số chia cho 9 dư 1 là: 10; 19; 28; 37; 46; 55; 64; 73; 82; 91.
Số tự nhiên có hai chữ số chia cho 10 dư 3 là: 13; 23; 33; 43; 53; 63; 73; 83; 93.
Như vậy chỉ có duy nhất số 73 chia cho 9 dư 1 và chia 10 dư 3. Ta thấy 73 chia 13 dư 8.
Vậy A chia cho 13 có số dư là 8.
Bài 132 trang 37 SBT Toán 6 tập 1
Mật khẩu ATM của một ngân hàng gồm năm chữ số, mỗi chữ số có thể nhận các giá trị từ 0 đến 9. Có thể có nhiều nhất bao nhiêu mật khẩu, biết rằng không có mật khẩu nào bắt đầu bằng dãy số 7233?
Đáp án
Nếu không có điều kiện “không có mật khẩu nào bắt đầu bằng dãy số 7233” thì có tất cả 105 mật khẩu. Trong đó, có 10 mật khẩu bắt đầu bằng dãy số 7233.
Vậy có thể có nhiều nhất 105 – 10 = 99 990 mật khẩu không bắt đầu bằng dãy số 7233.
Bài 133 trang 38 SBT Toán 6 tập 1
Trong một kì Á vận hội có 216 vận động viên tranh tài ở bộ môn chạy 100m. Có 6 đường chạy nên chỉ có 6 vận động viên tranh tài mỗi lượt đua. Kết thúc mỗi lượt đua, 5 người thua cuộc sẽ bị loại và chỉ có duy nhất một người chiến thắng được tham gia ở các vòng đua sau. Cần phải tổ chức bao nhiêu lượt đua để tìm được nhà vô địch?
Đáp án
Vòng đua thứ nhất sẽ tổ chức: 216:6 = 36 (lượt đua).
Số vận động viên được vào vòng đua thứ hai là: 36 vận động viên.
Vòng đua thứ hai sẽ tổ chức: 36:6 = 6 (lượt đua).
Số vận động viên được vào vòng đua thứ 3 là: 6 vận động viên.
Vòng đua thứ ba sẽ tổ chức: 6:6 = 1 (lượt đua).
Vậy cần phải tổ chức: 36 + 6 + 1 = 43 (lượt đua).
Bài 134 trang 38 SBT Toán 6 tập 1
Bạn Minh dùng tờ tiền mệnh giá 200 000 đồng để mua một quyển truyện 17 000 đồng. Cô bán hàng có các tờ tiền mệnh giá 50 000 đồng, 20 000 đồng, 10 000 đồng, 5 000 đồng, 2 000 đồng, 1 000 đồng. Bạn Minh nhận được ít nhất bao nhiêu tờ tiền từ cô bán hàng?
Đáp án
Số tiền cô bán hàng cần trả lại Minh là: 200 000 – 17 000 = 183 000 (đồng).
Muốn bạn Minh nhận được ít số tờ tiền nhất thì cô bán hàng cần phải chọn các đồng tiền có mệnh giá càng lớn (càng nhiều càng tốt) để trả lại. Số tiền 183 000 đồng được chọn để trả như sau: 3 tờ mệnh giá 50 000 đồng, 1 tờ 20 000 đồng, 1 tờ mệnh giá 10 000 đồng, 1 tờ mệnh giá 2 000 đồng và 1 tờ mệnh giá 1 000 đồng.
Vậy bạn Minh nhận được ít nhất 7 tờ tiền.
Bài 135 trang 38 SBT Toán 6 tập 1
Tìm hai số tự nhiên m, n sao cho: 220m + 1 544n = 105 322.
Đáp án
Ta có 220 = 4.55 nên 220 chia hết cho 4. Do đó 220m chia hết cho 4.
Ta lại có: 1 544 = 4.386 nên 1 544 chia hết cho 4. Do đó 1 544n chia hết cho 4.
Suy ra 220m + 1 544n chia hết cho 4.
Mà 105 322 không chia hết cho 4.
Vì vậy không tồn tại số tự nhiên m, n thỏa mãn 220m + 1 544n = 105 322.
Bài 136 trang 38 SBT Toán 6 tập 1
Cho p và p + 4 là các số nguyên tố (p > 3). Chứng tỏ p + 8 là hợp số.
Đáp án
Do p là số nguyên tố và p > 3 nên p chia 3 dư 1 hoặc p chia cho 3 dư 2; nhưng vì p + 4 là số nguyên tố nên p chia 3 dư 2 loại.
Xét p chia cho 3 dư 1 nên p có dạng p = 3k + 1. Khi đó p + 8 = 3k + 9 = 3.(k + 3) chia hết cho 3 mà p + 8 > 3 nên p + 8 là hợp số (thỏa mãn).
Bài 137 trang 38 SBT Toán 6 tập 1
Tìm ước chung lớn nhất của:
a) 44 và 121;
b) 18 và 57;
c) 36; 108 và 1 224.
Đáp án
a) Ta có: 44 = 22.11, 121 = 112.
Tích các thừa số chung với số mũ nhỏ nhất là: 11.
Khi đó ƯCLN(44, 121) = 11.
Vậy ƯCLN(44, 121) = 11.
b) Ta có: 18 = 2.32, 57 = 3.19.
Tích các thừa số chung với số mũ nhỏ nhất là: 3.
Khi đó ƯCLN(18, 57) = 3.
Vậy ƯCLN(18, 57) = 3.
c) Ta có: 36 = 22.32, 108 = 22.33, 1 224 = 23.32.17.
Tích các thừa số chung với số mũ nhỏ nhất là: 22.32.
Khi đó ƯCLN(36,108, 1 224) = 22.32 = 4.9 = 36.
Vậy ƯCLN(36,108, 1 224) = 36.
Bài 138 trang 38 SBT Toán 6 tập 1
Tìm bội chung nhỏ nhất của:
a) 13 và 338;
b) 321 và 225;
c) 62; 124 và 1 364.
Đáp án
a) Ta có 13 = 13, 338 = 2.132.
Tích các thừa số chung và riêng với số mũ lớn nhất: 2.132.
Khi đó BCNN(13, 338) = 2.132 = 2.169 = 338.
Vậy BCNN(13, 338) = 338.
b) Ta có: 321 = 3.107, 225 = 32.52.
Tích các thừa số chung và riêng với số mũ lớn nhất là: 32.52.107.
Khi đó BCNN(321, 225) = 32.52.107 = 24 075.
Vậy BCNN(321, 225) = 24 075.
c) Ta có: 62 = 2.31, 124 = 22.31 và 1 364 = 22.11.31.
Tích các thừa số chung và riêng với số mũ lớn nhất là: 22.11.31.
Khi đó BCNN(321, 225) = 22.11.31 = 1 364.
Vậy BCNN(321, 225) = 1 364.
Bài 139 trang 38 SBT Toán 6 tập 1
Tìm hai số tự nhiên a, b sao cho: a + 2b = 48, a < 24 và ƯCLN(a, b) + 3.BCNN(a, b) = 114.
Đáp án
Ta có a + 2b = 48; vì 2b, 48 chia hết cho 2. Do đó a chia hết cho 2.
Ta lại có: ƯCLN(a, b) + 3.BCNN(a, b) = 114.
Vì 3.BCNN(a, b) chia hết cho 3, 114 cũng chia hết cho 3 nên ƯCLN(a, b) chia hết cho 3 hay a chia hết cho 3.
Suy ra a vừa chia hết cho 2, vừa chia hết cho 3 nên a chia hết cho 6 (vì 2 và 3 nguyên tố cùng nhau) hay a là bội của 6.
Ta có: B(6) = {0; 6; 12; 18; 24; 30; 36; …}.
Do đó, a ∈ {0; 6; 12; 18; 24; 30; 36; …}. .
Vì a < 24 nên a ∈ {6; 12; 18} .
Ta có bảng sau:
a | 6 | 12 | 18 |
b | 21 | 18 | 15 |
ƯCLN(a,b) | 3 | 6 | 3 |
BCNN(a, b) | 42 | 36 | 90 |
ƯCLN(a, b) + 3.BCNN(a, b) | 129 (loại) | 114 (thỏa mãn) | 273 (loại) |
Vậy a = 12, b = 18 thỏa mãn yêu cầu bài toán.
Bài 140 trang 38 SBT Toán 6 tập 1
Hầu hết các ngọn núi cao nhất thế giới đều thuộc dãy Himalaya và dãy Karakoram, nằm ở vùng biên giới giữa các nước Ấn Độ, Trung Quốc, Pakistan và Nepal.Sau đây là danh sách tám ngọn núi cao nhất thế giới:
Tên núi | Độ cao (m) | Vị trí |
Everest | 8 848 | Nepal |
Manaslu | 8 163 | Nepal |
K2 | 8 611 | Pakistan |
Dhaulagiri | 8 167 | Nepal |
Cho Oyu | 8 188 | Nepal – Trung Quốc |
Lhotse | 8 516 | Nepal – Trung Quốc |
Makalu | 8 463 | Nepal – Trung Quốc |
Kangchenjunga | 8 586 | Nepal – Ấn Độ |
a) Viết tập hợp A gồm bốn ngọn núi cao nhất thế giới trong danh sách trên.
b) Sắp xếp tám ngọn núi trong danh sách theo thứ tự độ cao giảm dần.
c) Viết tập hợp B gồm các ngọn núi có độ cao lớn hơn 8 400m.
Đáp án
a) Bốn ngọn núi cao nhất thế giới trong danh sách trên là: Everest; K2; Lhotse; Kangchenjunga.
Khi đó, A = {Everest; K2; Lhotse; Kangchenjunga}.
Vậy A = {Everest; K2; Lhotse; Kangchenjunga}.
b) Vì 8 848 > 8 611 > 8 586 > 8 463 > 8 188 > 8 167 > 8 163 nên độ các ngọn núi có độ cao giảm dần được sắp xếp như sau: Everest; K2; Kangchenjunga; Lhotse; Makalu; Cho Oyu; Dhaulagiri; Manaslu.
c) Các ngọn núi có độ cao hơn 8 400 m là: Everest; K2; Kangchenjunga; Lhotse; Makalu.
Thông qua lời giải Toán trên các em học sinh có thể luyện tập các dạng Toán trong chuyên mục Toán lớp 6 Cánh Diều phù hợp với nội dung chương trình mình đang học.
Các em học sinh tham khảo thêm Toán lớp 6 Kết nối tri thức và Toán lớp 6 Chân Trời Sáng Tạo. VnDoc liên tục cập nhật lời giải cũng như đáp án sách mới của SGK cũng như SBT các môn cho các bạn cùng tham khảo.