Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169

Đường tròn ngoại tiếp và đường tròn nội tiếp của một tam giác

Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Vndoc.com xin gửi tới bạn học bài giảng Toán 9 Đường tròn ngoại tiếp và đường tròn nội tiếp của một tam giác sách Kết nối tri thức. Mời các bạn cùng nhau ôn tập nhé!

  • Tâm đường tròn ngoại tiếp tam giác là:

    Tâm đường tròn ngoại tiếp tam giác là giao điểm của ba đường trung trực của tam giác đó.

  • Cho tam giác ABC vuông tại A, có AB =
15cm;AC = 20cm Tính bán kính đường tròn ngoại tiếp tam giác ABC.

    Hình vẽ minh họa

    Vì tam giác ABC vuông tại A nên tâm đường tròn ngoại tiếp là trung điểm cạnh huyền BC, bán kính là R =
\frac{BC}{2}.

    Theo định lý Pytago ta có: BC =
\sqrt{AC^{2} + AB^{2}} = 25 nên bán kính R = \frac{25}{2}

  • Cho tam giác đều ABC có cạnh bằng a. Bán kính đường tròn ngoại tiếp R, nội tiếp r của tam giác ABC lần lượt là:

    Hình vẽ minh họa

    Gọi M; N; P lần lượt là trung điểm của BC; AB; AC và O là giao điểm của AM; BP; CN.

    Vì ABC là tam giác đều nên OA = OB = OC hay O là tâm đường tròn ngoại tiếp tam giác ABC.

    Mặt khác ta có OM = ON = OP hay O cách đều ba cạnh của tam giác. Vậy O cũng là tâm đường tròn nội tiếp tam giác ABC.

    Xét tam giác vuông AMB có:

    AB^{2} = AM^{2} + MB^{2}

    a^{2} = AM^{2} + \left( \frac{a}{2}
ight)^{2} \Rightarrow AM^{2} = \frac{3a^{2}}{4} \Rightarrow AM =
\frac{a\sqrt{3}}{2}

    Bán kính đường tròn ngoại tiếp tam giác ABC là R = OA = \frac{2}{3}AM =
\frac{a\sqrt{3}}{3}

    Bán kính đường tròn nội tiếp tam giác ABC là: r = OM = \frac{1}{3}AM =
\frac{a\sqrt{3}}{6}

Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo