Giải Toán Tiểu học: Phương pháp ứng dụng Graph
Tài liệu bồi dưỡng học sinh giỏi lớp 4, 5
VnDoc - Tải tài liệu, văn bản pháp luật, biểu mẫu miễn phí
CÁC PHƯƠNG PHÁP GIẢI TOÁN TIỂU HỌC
PHƯƠNG PHÁP ỨNG DỤNG GRAPH
- Khái niệm Graph được sử dụng không những trong toán học mà cả trong kĩ thuật và
trong cuộc sống dưới những tên gọi khác nhau như lược đồ, biểu đồ…
- Trong một số bài toán có để cập đến các đối tượng hoặc các loại đối tượng khác nhau
mà giữa chúng có những mối quan hệ nào đấy. Trên hình vẽ, ta biểu diễn các đối
tượng bằng các điểm và mối quan hệ giữ chúng bằng các đoạn thẳng hoặc các mũi tên.
Hình biểu diễn như vậy gọi là Graph. Các điểm gọi là những đỉnh, các đoạn thẳng
hoặc mũi tên gọi là cạnh của Graph. Các Graph có thể diễn tả trực quan các đối tượng
và các quan hệ giữa chúng, tạo ra khả năng theo dõi được nhiều sự kiện có trong điều
kiện của bài toán và xây dựng được mối quan hệ giữa chúng. Vì thế Graph được ứng
dụng có hiệu quả để giải các bài toán suy luận.
Ví dụ 1:
Trong cuộc thi đấu bóng bàn ngày hội khỏe Phù Đổng các đấu thủ đến dự đều bắt tay
nhau. Người ta đếm được tất cả 10 cái bắt tay. Hỏi có mấy đấu thủ dự thi?
Phân tích:
Ta đánh dấu hai điểm A, B và nối chúng với nhau bằng 1 đoạn thẳng. Mỗi điểm “Đại
diện” cho một đấu thủ, còn mỗi đoạn thẳng kí hiệu cho một cáu bắt tay, cũng như có
hai điểm thì có 1 đoạn thẳng nối chúng với nhau.
Ta vẽ thêm điểm C và nối chúng với A, B thì ta được tất cả 3 đoạn thẳng (hình 11).
Lấy thêm điểm D và nối chúng với A, B, C thì ta được tất cả 6 đoạn thẳng . Cuối cùng
ta đánh dấu thêm điểm thứ năm E và nối E với A, B, C, D thì được tổng cộng 10 đoạn
thẳng (hình 12).
Ta nhận thấy rằng, với 2 điểm thì có 1 đoạn thẳng. Thêm một điểm thứ ba thì có thêm
2 đoạn nữ nối với 2 điểm tức là 1 + 2 đoạn thẳng. Thêm điểm thứ tư thì cso thêm ba
đạo thẳng nữa nối với 3 điểm đã cho, tức là 1 + 2 + 3 đoạn thẳng. Nếu thêm điểm thứ
năm thì có thêm 4 đoạn thẳng nối với 4 điểm đã cho, tức là có
1 + 2 + 3 + 4 đoạn thẳng. Từ đó có thể suy ra cách xác định số đoạn thẳng khi biết số
điểm cho trước hoặc ngược lại, tính số đoạn thẳng (như bài toán 1 trên là một ví dụ cụ
thể).
VnDoc - Tải tài liệu, văn bản pháp luật, biểu mẫu miễn phí
Giải
Ta đánh dấu trên hình vẽ mỗi đấu thủ là một điểm và mỗi cái bắt tay giữ các cầu thủ là
một đoạn thẳng nối hai điểm. Với 2 điểm kẻ được một đoạn thẳng, với 3 điểm kẻ được
3 đoạn thẳng, với 4 điểm kẻ được 6 đoạn thẳng. Với 5 điểm kẻ được 10 đoạn thẳng.
Vậy có 5 đối thủ dự thi.
Ví dụ 2:
Trong một buổi học nữ công, bạn Cúc, Đào, Hồng làm ba bông hoa cúc, đào, hồng.
Bạn làm hoa hồng nói với Cúc: “Thế là trong chúng ta chẳng có ai làm loại hoa trùng
tên mình cả!” Hỏi ai đã làm hoa nào?
Phân tích:
VnDoc - Tải tài liệu, văn bản pháp luật, biểu mẫu miễn phí
Bài toán này đã được giải bằng phương pháp suy luận logic. Ở đây ta trình bày cách
giải bằng phương pháp ứng dụng Graph.
Ở bài toán này, ta có hai nhóm đối tượng: một là tên các bạn, hai là tên các bông hoa.
Ta phải tìm sự tương ứng giữa các nhóm đối tượng cuat hai nhóm đối tượng của hai
nhóm này để xem bạn nào đã làm hoa gì. Muốn vậy, ta xây dựng graph như sau:
Nhóm thứ nhất, ta vẽ ba chấm C, Đ, H để kí hiệu ba bạn Cúc, Đào, Hồng. Còn nhóm
thứ hai ta sẽ vẽ ba chấm c, đ, h thay cho ba bông cúc , đào, hồng mà các bạn đã làm.
Ta sẽ nối hai dấu chấm của hai nhóm này với nhau bằng nét đứt nếu giữa chúng không
có sự tương ứng còn nếu giữa chúng có sự tương ứng bằng những nét liền.
Từ giả thiết đầu tiên của bài toán là “bạn làm hao hồng nói với bạn Cúc” suy ra bạn
Cúc không làm hoa hồng, ta nối C-h bằng nét đứt (hình 13). Mặt khác , từ câu nói với
Cúc ở đề bài, ta nhận thấy rằng, lúc đầu, tên hoa không trùng với tên người, do đó ta
lại nối C – c, Đ – đ, H – h bằng nét đứt (hình 14).
Đây là giả thiết đã cho của bài toán. Nhìn trên hình 14, ta thấy ngay rằng C-c, C-h nối
bẳng nét đứt thì C-đ phải bằng nét liền, đồng thời h-C, h-H nối bằng nét đứt thì h – Đ
phải bằng nét liền (hình 15).
Từ đó có kết quả là C- đ, Đ-h, H-c hay Cúc làm hoa đào, Đào làm hoa hồng, còn Hồng
làm hoa cúc.
Ngoài cách trình bày như bài 6 còn có thể trình bày lời giải theo hình 16. Trong một số
bài toán, việc diễn tả các điều kiện của bài toán bằng graph có thể giúp việc tìm các
bước giải được nhanh chóng.
Chẳng hạn ta xét bài toán sau:
Ví dụ 3:
Kiên nghĩ ra một số. Nếu đem số đó cộng với 12 rồi tăng tổng tìm được lên 7 lần, sau
đó bớt ở tích này đi 136, cuối cùng đem chia cho 8 được kết quả là 11. Hãy tìm số mà
Kiên đã nghĩ ra.
Phân tích:
Trước hết, ta vẽ Graph theo điều kiện của bài toán như hình 17.
Phương pháp ứng dụng Graph giải Toán tiểu học
Giải Toán Tiểu học: Phương pháp ứng dụng Graph được VnDoc sưu tầm, tổng hợp các bao gồm các bài tập minh họa có kèm theo đáp án chi tiết và các bài tập tự luyện giúp các em học sinh ôn tập, củng cố nâng cao kiến thức dạng Toán này ôn thi học sinh giỏi. Mời các thầy cô cùng các em học sinh tham khảo.
Giải Toán Tiểu học: Các bài toán giải bằng phương pháp thay thế
Các bài Toán giải bằng phương pháp Graph là dạng Toán nâng cao trong chương trình phạm vi Toán nâng cao lớp 4, 5 có các dạng bài tập và đáp án chi tiết kèm theo cho các em học sinh lớp 4, lớp 5 củng cố kiến thức, mở rộng các dạng Toán từ cơ bản đến nâng cao.