Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Tú Nguyễn Toán học

Rút gọn các phân thức

Lm như nào ạ

3
3 Câu trả lời
  • Điện hạ
    Điện hạ

    Bài 2:

    a) B = 2x2 - 3x - 5 = (2x - 5)(x + 1)

    \frac{\left(2x-5\right)\left(x+1\right)}{\left(3x^2+4\right)\left(x+1\right)}=\frac{2x^2-3x-5}{3x^3+3x^2+4x+4}\(\frac{\left(2x-5\right)\left(x+1\right)}{\left(3x^2+4\right)\left(x+1\right)}=\frac{2x^2-3x-5}{3x^3+3x^2+4x+4}\)

    b) \frac{\left(x+1\right)\left(x^2+x-6\right)}{\left(x^2-9\right)\left(x^2+3x+2\right)}=\frac{\left(x+1\right)\left(x+3\right)\left(x-2\right)}{\left(x+3\right)\left(x-3\right)\left(x+1\right)\left(x+2\right)}=\frac{x-2}{\left(x-3\right)\left(x+2\right)}\(\frac{\left(x+1\right)\left(x^2+x-6\right)}{\left(x^2-9\right)\left(x^2+3x+2\right)}=\frac{\left(x+1\right)\left(x+3\right)\left(x-2\right)}{\left(x+3\right)\left(x-3\right)\left(x+1\right)\left(x+2\right)}=\frac{x-2}{\left(x-3\right)\left(x+2\right)}\)

    Trả lời hay
    1 Trả lời 14/03/23
    • Đậu Phộng
      Đậu Phộng

      Bài 1:

      a) \frac{A}{3x-2}=\frac{15x^2+10x}{9x^2-4}=\frac{5x\left(3x+2\right)}{\left(3x+2\right)\left(3x-2\right)}=\frac{5x}{3x-2}\(\frac{A}{3x-2}=\frac{15x^2+10x}{9x^2-4}=\frac{5x\left(3x+2\right)}{\left(3x+2\right)\left(3x-2\right)}=\frac{5x}{3x-2}\)

      => \frac{A}{3x-2}=\frac{5x}{3x-2}\(\frac{A}{3x-2}=\frac{5x}{3x-2}\)

      => A = 5x

      b) Ta có: 3x2 - 5x -2 = (3x + 1)(x - 2)

      => \frac{\left(3x+1\right)\left(x-2\right)}{A}=\frac{x-2}{2x-3}\(\frac{\left(3x+1\right)\left(x-2\right)}{A}=\frac{x-2}{2x-3}\)

      => A = (3x +1)(2x - 3) = 6x2 - 7x - 3

      \frac{x^2-4}{x^2+x-6}=\frac{\left(x-2\right)\left(x+2\right)}{\left(x+3\right)\left(x-2\right)}=\frac{x+2}{x+3}\(\frac{x^2-4}{x^2+x-6}=\frac{\left(x-2\right)\left(x+2\right)}{\left(x+3\right)\left(x-2\right)}=\frac{x+2}{x+3}\)

      => \frac{x+2}{x+3}=\frac{x^2+4x+4}{A}=\frac{\left(x+2\right)^2}{A}\(\frac{x+2}{x+3}=\frac{x^2+4x+4}{A}=\frac{\left(x+2\right)^2}{A}\)

      => A = (x + 3)(x + 2) = x2 + 5x + 6

      d) \frac{2x+1}{x^3+x^2-x+2}=\frac{A}{x^3+1}\(\frac{2x+1}{x^3+x^2-x+2}=\frac{A}{x^3+1}\)

      <=> \frac{2x+1}{\left(x+2\right)\left(x^2-x+1\right)}=\frac{A}{\left(x+1\right)\left(x^2-x+1\right)}\(\frac{2x+1}{\left(x+2\right)\left(x^2-x+1\right)}=\frac{A}{\left(x+1\right)\left(x^2-x+1\right)}\)

      <=>\frac{2x+1}{\left(x+2\right)}=\frac{A}{\left(x+1\right)}\(\frac{2x+1}{\left(x+2\right)}=\frac{A}{\left(x+1\right)}\)

      => \frac{\left(2x+1\right)\left(x+1\right)}{\left(x+2\right)}=A\(\frac{\left(2x+1\right)\left(x+1\right)}{\left(x+2\right)}=A\)

      0 Trả lời 14/03/23
      • Cự Giải
        Cự Giải

        Bài 3:

        a) \frac{2^{18}.54^3+15.4^{10}.9^4}{2.12^9+6^{10}.2^{10}}=\frac{2^{18}.\left(2.3^3\right)^3+15.2^{20}.3^8}{2.\left(2^2.3\right)^3+2^{10}.3^{10}.2^{10}}\(\frac{2^{18}.54^3+15.4^{10}.9^4}{2.12^9+6^{10}.2^{10}}=\frac{2^{18}.\left(2.3^3\right)^3+15.2^{20}.3^8}{2.\left(2^2.3\right)^3+2^{10}.3^{10}.2^{10}}\)

        =\frac{2^{21}.3^9+15.2^{20}.3^8}{2^{19}.3^9+2^{20}.3^{10}}\(=\frac{2^{21}.3^9+15.2^{20}.3^8}{2^{19}.3^9+2^{20}.3^{10}}\)

        =\frac{2^{20}.3^8.\left(3.2\ +15\right)}{2^{19}.3^9.\left(1+2.3\right)}=\frac{2.21}{3.7}=2\(=\frac{2^{20}.3^8.\left(3.2\ +15\right)}{2^{19}.3^9.\left(1+2.3\right)}=\frac{2.21}{3.7}=2\)

        0 Trả lời 15/03/23

        Toán học

        Xem thêm