Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm

Toán 11 Chân trời sáng tạo bài 4 trang 74

Toán 11 Chân trời sáng tạo bài 4: Khoảng cách trong không gian được VnDoc.com sưu tầm và xin gửi tới bạn đọc cùng tham khảo để có thêm tài liệu giải bài tập Toán 11 Chân trời sáng tạo nhé.

Bài 1 trang 81 SGK Toán 11 Chân trời

Cho hình chóp S.ABCD, đáy ABCD là hình thoi cạnh a có O là giao điểm của hai đường chéo, \widehat{ABC} = 60^{o}, SO\perp (ABCD), SO = a\sqrt{3}ABC^=60o,SO(ABCD),SO=a3. Tính khoảng cách từ O đến mặt phẳng (SCD)

Bài làm

Toán 11 Chân trời sáng tạo bài 4

Kẻ OI \perp CD; OH \perp SI

SO \perp (ABCD) nên SO \perp CD

Ta có: CD \perp SO, CD \perp OI nên CD \perp (SOI) . Suy ra CD \perp OH

Mà OH \perp SI nên OH \perp (SCD)

Ta có ABCD là hình thoi cạnh a, \widehat{ABC} = 60^{o} nên AC = a, OC = \frac{a}{2}, \widehat{ACD} = 60^{o}ABC^=60onênAC=a,OC=a2,ACD^=60o

OI = \frac{a}{2}.sin60^{o} = \frac{a\sqrt{3}}{4}OI=a2.sin60o=a34

Tam giác SOI vuông tại O có đường cao OH: \frac{1}{OH^{2}}=\frac{1}{OI^{2}}+\frac{1}{SO^{2}} Suy ra OH = \frac{a\sqrt{51}}{17}1OH2=1OI2+1SO2SuyraOH=a5117

d(SO,(SCD)) = d(O,(SCD))= OH = \frac{a\sqrt{51}}{17}d(SO,(SCD))=d(O,(SCD))=OH=a5117

Bài 2 trang 81 SGK Toán 11 Chân trời

Cho hai tam giác cân ABC và ABD có đáy chung AB và không cùng nằm trong một mặt phẳng.

a) Chứng minh rằng AB ⊥ CD

b) Xác định đoạn vuông góc chung của AB và CD

Bài làm

Toán 11 Chân trời sáng tạo bài 4

a) Gọi I là trung điểm AB.

Tam giác ABC cân tại C có I là trung điểm nên CI ⊥ AB

Tam giác ABD cân tại D có I là trung điểm nên DI ⊥ AB

Suy ra AB ⊥ (CID)

Nên AB ⊥ CD

b) Kẻ IH ⊥ CD

Mà AB ⊥ (CID) nên AB ⊥ IH

Vậy đoạn vuông góc chung giữa AB và CD là IH

Bài 3 trang 81 SGK Toán 11 Chân trời

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA = SB = SC = SD = a\sqrt{2}a2. Gọi I, J lần lượt là trung điểm của AB và CD

a) Chứng minh AB ⊥ (SIJ)

b) Tính khoảng cách giữa hai đường thẳng AB và SC

Bài làm

Toán 11 Chân trời sáng tạo bài 4

a) S.ABCD là hình chóp đều, O là tâm của đáy nên SO ⊥ (ABCD)

Nên SO ⊥ AB

Mà I, J lần lượt là trung điểm của AB và CD nên IJ ⊥ AB

Suy ra: AB ⊥ (SIJ)

b) Kẻ IH ⊥ SJ

Vì AB ⊥ (SIJ) nên AB ⊥ IH

Ta có: SO ⊥ (ABCD) nên SO ⊥ CD. Mà CD ⊥ IJ nên CD ⊥ SIJ)

Suy ra: CD ⊥ IH. Mà IH ⊥ SJ nên IH ⊥ (SCD) và IH ⊥ CD

Ta có: SJ = \sqrt{SC^{2}-CJ^{2}}=\frac{a\sqrt{7}}{2}SC2CJ2=a72

SO = \sqrt{SC^{2}-OC^{2}} = \frac{a\sqrt{6}}{2}SC2OC2=a62

S_{SIJ} = \frac{1}{2}.IH.SJ=\frac{1}{2}.SO.IJ . Suy ra: IH=\frac{a\sqrt{42}}{7}SSIJ=12.IH.SJ=12.SO.IJ.Suyra:IH=a427

d(AB,SC) = IH = \frac{a\sqrt{42}}{7}d(AB,SC)=IH=a427

Bài 4 trang 81 SGK Toán 11 Chân trời

Cho hình lăng trụ tam giác đều ABC.A'B'C' có AB = a, góc giữa hai mrụặt phẳng (A'BC) và (ABC) bằng 60o.

a) Tính khoảng cách giữa hai đáy của hình lăng trụ

b) Tính thể tích của khối lăng trụ

Bài làm

Toán 11 Chân trời sáng tạo bài 4

a) Gọi M là trung điểm của BC. Tam giác ABC đều nên AM⊥BC

Mà BC ⊥ AA′ nên BC ⊥ (AA′M). Suy ra BC ⊥ A′M

Mặt khác (ABC) ∩ (A′BC) = BC

Nên ((ABC);(A'BC)) = \widehat{AAMA^=60o

Tam giác ABC đều cạnh a nên AM = \frac{a\sqrt{3}}{2}a32

AAAA=AM.tan60o=3a2

b) S_{ABC} = \frac{a^{2}\sqrt{3}}{4}SABC=a234

V_{ABC.AVABC.ABC=3a2.a234=3a338

Bài 5 trang 81 SGK Toán 11 Chân trời

Một cây cầu dành cho người đi bộ (Hình 22) có mặt sàn cầu cách mặt đường 3,5 m, khoảng cách từ đường thẳng a nằm trên tay vịn của cầu đến mặt sàn cầu là 0,8 m. Gọi b là đường thẳng kẻ theo tim đường. Tính khoảng cách giữa hai đường thẳng a và b

Toán 11 Chân trời sáng tạo bài 4

Bài làm

d(a,b) = 3,5 + 0,8 = 4,3

Bài 6 trang 82 SGK Toán 11 Chân trời

Cho hình hộp đứng ABCD.A'B'C'D' có cạnh bên AA' = 2a và đáy ABCD là hình thoi có AB = a và AC = a\sqrt{3}a3

a) Tính khoảng cách giữa hai đường thẳng BD và AA'

b) Tính thể tích của khối hộp

Bài làm

Toán 11 Chân trời sáng tạo bài 4

a) Hình thoi ABCD có AB = BC = a

Mà AC = a\sqrt{3}a3. Nên \widehat{ABC} = 120^{o}ABC^=120o. Suy ra \widehat{ABD} = 60^{o}ABD^=60o

Do đó, AD = a

Gọi O là giao điểm của AC và BD.

Do ABCD là hình thoi nên AO \perp BD; AO = \frac{a}{2}a2

Vì AA' \perp (ABCD) nên AAAAAO

d(BD,AAd(BD,AA)=AO=a2

b) S_{ABCD} = \frac{1}{2}.AC.BD = \frac{1}{2}.a\sqrt{3}.a = \frac{a^{2}\sqrt{3}}{2}SABCD=12.AC.BD=12.a3.a=a232

V_{ABCD.AVABCD.ABCD=AA.SABCD=a33

Bài 7 trang 82 SGK Toán 11 Chân trời

Cho khối chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a và có O là giao điểm hai đường chéo của đáy.

a) Tính khoảng cách giữa hai đường thẳng AC và SB

b) Tính thể tích của khối chóp

Bài 8 trang 82 SGK Toán 11 Chân trời

Tính thể tích của khối chóp cụt lục giác đều ABCDEF.A'B'C'D'E'F' với O và O' là tâm hai đáy, cạnh đáy lớn và đáy nhỏ lần lượt là a và \frac{a}{2}a2, OO' = a

-----------------------------

Bài tiếp theo: Toán 11 Chân trời sáng tạo bài 5: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện

VnDoc.com vừa gửi tới bạn đọc bài viết Toán 11 Chân trời sáng tạo bài 4: Khoảng cách trong không gian. Mong rằng qua đây bạn đọc có thể học tập tốt hơn môn Toán 11 Chân trời sáng tạo. Mời các bạn cùng tham khảo thêm tại mục Ngữ văn 11 Chân trời sáng tạo.

Chia sẻ, đánh giá bài viết
1
Đóng Chỉ thành viên VnDoc PRO/PROPLUS tải được nội dung này!
Đóng
79.000 / tháng
Đặc quyền các gói Thành viên
PRO
Phổ biến nhất
PRO+
Tải tài liệu Cao cấp 1 Lớp
Tải tài liệu Trả phí + Miễn phí
Xem nội dung bài viết
Trải nghiệm Không quảng cáo
Làm bài trắc nghiệm không giới hạn
Mua cả năm Tiết kiệm tới 48%
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Gợi ý cho bạn

Xem thêm
🖼️

Toán 11 Chân trời sáng tạo

Xem thêm
Chia sẻ
Chia sẻ FacebookChia sẻ TwitterSao chép liên kếtQuét bằng QR Code
Mã QR Code
Đóng