sin(\frac{5\pi }{12}) = sin(\frac{\pi }{6}+\frac{\pi }{4}) = sin(\frac{\pi }{6}).cos(\frac{\pi }{4})+cos(\frac{\pi }{6}).sin(\frac{\pi }{4}) = \frac{1}{2}.\frac{\sqrt{2}}{2}+\frac{\sqrt{3}}{2}.\frac{\sqrt{2}}{2} = \frac{\sqrt{2}+\sqrt{6}}{4}sin(5π12)=sin(π6+π4)=sin(π6).cos(π4)+cos(π6).sin(π4)=12.22+32.22=2+64

cos(\frac{5\pi }{12}) = cos(\frac{\pi }{6}+\frac{\pi }{4}) = cos(\frac{\pi }{6}).cos(\frac{\pi }{4})-sin(\frac{\pi }{6}).sin(\frac{\pi }{4}) = \frac{\sqrt{3}}{2}.\frac{\sqrt{2}}{2}-\frac{1}{2}.\frac{\sqrt{2}}{2} = \frac{\sqrt{6}-\sqrt{2}}{4}cos(5π12)=cos(π6+π4)=cos(π6).cos(π4)sin(π6).sin(π4)=32.2212.22=624

tan(\frac{5\pi }{12}) = \frac{sin(\frac{5\pi }{12})}{cos(\frac{5\pi }{12})} = \frac{\frac{\sqrt{2}+\sqrt{6}}{4}}{\frac{\sqrt{6}-\sqrt{2}}{4}}=\frac{\sqrt{6}+\sqrt{2}}{\sqrt{6}-\sqrt{2}}tan(5π12)=sin(5π12)cos(5π12)=2+64624=6+262

sin(-555^{o}) = sin(720^{o}-555^{o}) = sin165^{o} = sin(180^{o}-165^{o})sin(555o)=sin(720o555o)=sin165o=sin(180o165o)

= sin15^{o} = sin(45^{o}-30^{o})= sin(45^{o}).cos(30^{o})-cos(45^{o}).sin(30^{o})=sin15o=sin(45o30o)=sin(45o).cos(30o)cos(45o).sin(30o)

= \frac{\sqrt{2}}{2}.\frac{\sqrt{3}}{2}-\frac{\sqrt{2}}{2}.\frac{1}{2} = \frac{\sqrt{6}-\sqrt{2}}{4}=22.3222.12=624

cos(-555^{o}) = cos(720^{o}-555^{o}) = cos165^{o} = -cos(180^{o}-165^{o})cos(555o)=cos(720o555o)=cos165o=cos(180o165o)

= -cos15^{o} = -cos(45^{o}-30^{o})= -cos(45^{o}).cos(30^{o})-sin(45^{o}).sin(30^{o})=cos15o=cos(45o30o)=cos(45o).cos(30o)sin(45o).sin(30o)

= -\frac{\sqrt{2}}{2}.\frac{\sqrt{3}}{2}-\frac{\sqrt{2}}{2}.\frac{1}{2} = -\frac{\sqrt{6}+\sqrt{2}}{4}=22.3222.12=6+24

tan(-555^{o}) = \frac{sin(-555^{o})}{cos(-555^{o})} = \frac{\frac{\sqrt{6}-\sqrt{2}}{4}}{-\frac{\sqrt{6}+\sqrt{2}}{4}}=\frac{-\sqrt{6}+\sqrt{2}}{\sqrt{6}+\sqrt{2}}tan(555o)=sin(555o)cos(555o)=6246+24=6+26+2

Bài 2 trang 23 SGK Toán 11 Chân trời

Tính sin(\alpha +\frac{\pi }{6}) , cos(\frac{\pi }{4}-\alpha ) biết sin\alpha = -\frac{5}{13} và \pi <\alpha <\frac{3\pi }{2}sin(α+π6),cos(π4α)biếtsinα=513vàπ<α<3π2 .

Lời giải

Do \pi <\alpha <\frac{3\pi }{2}π<α<3π2 nên cos\alpha <0cosα<0

cos\alpha = -\sqrt{1-sin^{2}\alpha } = -\frac{12}{13}cosα=1sin2α=1213

sin(\alpha +\frac{\pi }{6}) = sin\alpha .cos\frac{\pi }{6}+cos\alpha .sin\frac{\pi }{6} = \frac{-5}{13}.\frac{\sqrt{3}}{2} + \frac{-12}{13}.\frac{1}{2} = \frac{-5\sqrt{3} -12}{26}sin(α+π6)=sinα.cosπ6+cosα.sinπ6=513.32+1213.12=531226

cos(\frac{\pi }{4}-\alpha ) = cos\frac{\pi }{4} .cos\alpha + sin\frac{\pi }{4} .sin\alpha = \frac{-12}{13}.\frac{\sqrt{2}}{2} + \frac{-5}{13}.\frac{\sqrt{2}}{2} = \frac{-17\sqrt{2}}{26}cos(π4α)=cosπ4.cosα+sinπ4.sinα=1213.22+513.22=17226

Bài 3 trang 24 SGK Toán 11 Chân trời

Tính các giá trị lượng giác của góc 2\alpha2α , biết:

a) sin\alpha  = \frac{\sqrt{3}}{3} và 0<\alpha <\frac{\pi }{2}sinα=33và0<α<π2

b) sin\frac{\alpha}{2}  = \frac{3}{4} và \pi <\alpha <2\pisinα2=34vàπ<α<2π

Lời giải

a) cos2\alpha  =1 -2sin^{2}\alpha  = \frac{1}{3}cos2α=12sin2α=13

Do 0<\alpha <\frac{\pi }{2}0<α<π2 nên 0<2\alpha <\frac{\pi }{2}0<2α<π2 . Suy ra sin2\alpha >0sin2α>0

sin2\alpha  = \sqrt{1-cos^{2}2\alpha }  = \frac{2\sqrt{2}}{3}sin2α=1cos22α=223

b) cos\alpha  =1 -2sin^{2}\frac{\alpha}{2}  = \frac{-1}{8}cosα=12sin2α2=18

cos2\alpha  =2cos^{2}\alpha - 1 = \frac{-31}{32}cos2α=2cos2α1=3132

Do \pi <\alpha <2\piπ<α<2π nên sin\alpha <0sinα<0

cos\alpha <0cosα<0. Suy ra sin2\alpha >0sin2α>0

sin2\alpha = -\sqrt{1-cos2\alpha } = \frac{\sqrt{63}}{32}sin2α=1cos2α=6332

Bài 4 trang 24 SGK Toán 11 Chân trời

Rút gọn các biểu thức sau:

a) \sqrt{2}sin(\alpha +\frac{\pi }{4}) - cos\alpha2sin(α+π4)cosα

b) (cos\alpha  + sin\alpha )^{2}-sin2\alpha(cosα+sinα)2sin2α

Lời giải

a) \sqrt{2}sin(\alpha +\frac{\pi }{4}) - cos\alpha2sin(α+π4)cosα

= -\sqrt{2}cos\alpha - cos\alpha2cosαcosα

= -(\sqrt{2}+1)cos\alpha(2+1)cosα

b) (cos\alpha  + sin\alpha )^{2}-sin2\alpha(cosα+sinα)2sin2α

= cos^{2}\alpha  +sin^{2}\alpha + 2sin\alpha .cos\alpha -2sin\alpha .cos\alphacos2α+sin2α+2sinα.cosα2sinα.cosα

= 1

Bài 5 trang 24 SGK Toán 11 Chân trời

Tính các giá trị lượng giác của góc \alphaα, biết:

a) cos2\alpha = \frac{2}{5} và -\frac{\pi }{2}<\alpha <0cos2α=25vàπ2<α<0

b) sin2\alpha = -\frac{4}{9} và \frac{\pi }{2}<\alpha <\frac{3\pi }{4}sin2α=49vàπ2<α<3π4

Lời giải

a) Do -\frac{\pi }{2}<\alpha <0π2<α<0 nên sin\alpha <0sinα<0cos\alpha >0cosα>0

Ta có: \frac{2}{5}= cos2\alpha = 2.cos^{2}\alpha - 1 = 1-2sin^{2}\alpha25=cos2α=2.cos2α1=12sin2α

Suy ra: cos\alpha  = \frac{\sqrt{70}}{10} và sin\alpha  = -\frac{\sqrt{30}}{10}cosα=7010vàsinα=3010

b) Do \frac{\pi }{2}<\alpha <\frac{3\pi }{4}π2<α<3π4 nên \pi <2\alpha <\frac{3\pi }{2}π<2α<3π2

Suy ra: sin\alpha >0 , cos\alpha <0 và cos2\alpha <0sinα>0,cosα<0vàcos2α<0

cos2\alpha  = \sqrt{1-sin^{2}2\alpha} = -\frac{\sqrt{65}}{9}cos2α=1sin22α=659

Suy ra: cos\alpha \approx -0,69 và sin\alpha \approx 0,16cosα0,69vàsinα0,16

Bài 6 trang 24 SGK Toán 11 Chân trời

Chứng minh rằng trong tam giác ABC, ta có sin A = sin BcosC + sin C . cos B.

Lời giải

Trong tam giác ABC, ta có: \hat{A}A^ + \hat{B}B^ + \hat{C}C^ = π

Ta có: sinA = sin(π − B − C)

sinA = sin(B + C)

sinA = sinB . cosC + cosB . sinC

Bài 7 trang 24 SGK Toán 11 Chân trời

Trong Hình 3, tam giác ABC vuông tại B và có hai cạnh góc vuông là AB = 4, BC = 3. Vẽ điểm D nằm trên tia đối của tia CB thoả mãn \widehat{CAD} = 30^{o}CAD^=30o. Tính tan \widehat{BAD}BAD^, từ đó tính độ dài cạnh CD.

Toán 11 Chân trời sáng tạo bài 3

Lời giải

tan\widehat{BAC} = \frac{BC}{AB} = \frac{3}{4}tanBAC^=BCAB=34

tan\widehat{BAD} = tan(\widehat{BAC}+\widehat{CAD})=\frac{tan\widehat{BAC}+tan\widehat{CAD}}{1-tan\widehat{BAC}.tan\widehat{CAD}} \approx 2,34tanBAD^=tan(BAC^+CAD^)=tanBAC^+tanCAD^1tanBAC^.tanCAD^2,34

CD = BD - BC = AB.tan\widehat{BAD} \approx 6,36CD=BDBC=AB.tanBAD^6,36

Bài 8 trang 24 SGK Toán 11 Chân trời

Trong Hình 4, pít-tông M của động cơ chuyển động tịnh tiến qua lại dọc theo xi-lanh làm quay trục khuỷu IA. Ban đầu I,A,M thẳng hàng. Cho \alphaα là góc quay của trục khuỷu, O là vị trị của pít-tông khi \alpha =\frac{\pi }{2}α=π2 và H là hình chiếu của A lên Ix. Trục khuỷu IA rất ngắn so với độ dài thanh truyền AM nên có thể xem như độ dài MH không đổi và gần bằng MA.

a) Biết IA = 8 cm, viết công thức tính toạ độ x_{M}xM của điểm M trên trục Ox theo \alphaα.

b) Làm tròn \alpha =0α=0. Sau 1 phút chuyển động, x_{M} = -3cmxM=3cm. Xác định x_{M}xM sau 2 phút chuyển động. Làm tròn kết quả đến hàng phần mười.

Toán 11 Chân trời sáng tạo bài 3

Lời giải

a) Khi \alpha =\frac{\pi }{2}α=π2 thì M ở vị trí O, H ở vị trí I. Ta có IO = HM = AM

x_{M}xM = IM - OI = IH + HM - OI = IH + AM - AM = IH = IA.cos\alphaα

x_{M} = 8cos\alphaxM=8cosα

b) Sau khi chuyển động 1 phút, trục khuỷu quay được một góc là \alphaα

Khi đóx_{M}xM = -3cm. Suy ra cos\alpha  = \frac{-3}{8}cosα=38

Sau khi chuyển động 2 phút, trục khuỷu quay được một góc là 2\alpha2α

x_{M} = 8.cos2\alpha = 8.(2cos^{2}\alpha -1) = -5,75xM=8.cos2α=8.(2cos2α1)=5,75

Bài 9 trang 24 SGK Toán 11 Chân trời

Trong Hình 5, ba điểm M, N, P nằm ở đầu các cánh quạt tua-bin gió. Biết các cánh quạt dài 31m, độ cao của điểm M so với mặt đất là 30m, góc giữa các cánh quạt là \frac{2\pi }{3}2π3 và số đo góc (OA, OM) là \alphaα

a) Tính sin\alpha và cos\alphasinαvàcosα

b) Tính sin của các góc lượng giác (OA, ON) và (OA, OP), từ đó tính chiều cao của các điểm N và P so với mặt đất (theo đơn vị mét). Làm tròn kết quả đến hàng phần trăm.

Toán 11 Chân trời sáng tạo bài 3

Lời giải

a) sin\alpha  = \frac{-30}{31}sinα=3031

cos\alpha  = \sqrt{1-(\frac{-30}{31})^{2}} = \frac{\sqrt{61}}{31}cosα=1(3031)2=6131

b) sin(OA, ON) = sin(\alpha -\frac{2\pi }{3}) = sin\alpha .cos\frac{2\pi }{3} - cos\alpha .sin\frac{2\pi }{3} \approx 0,27sin(OA,ON)=sin(α2π3)=sinα.cos2π3cosα.sin2π30,27

Chiều cao điểm N so với mặt đất là: 60 + 31.0,37 = 68,27 (m)

sin(OA, OP) = sin(\alpha +\frac{2\pi }{3}) = sin\alpha .cos\frac{2\pi }{3} -+cos\alpha .sin\frac{2\pi }{3} \approx 0,7sin(OA,OP)=sin(α+2π3)=sinα.cos2π3+cosα.sin2π30,7

Chiều cao điểm P so với mặt đất là: 60 + 31.0,7 = 81,7 (m)

-----------------------------