Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm

Toán 11 Chân trời sáng tạo bài 2 trang 100

VnDoc.com xin gửi tới bạn đọc bài viết Toán 11 Chân trời sáng tạo bài 2: Hai đường thẳng song song để bạn đọc cùng tham khảo và có thêm tài liệu giải bài tập Toán 11 Chân trời sáng tạo nhé. Mời các bạn cùng theo dõi.

Bài 1 trang 105 SGK Toán 11 Chân trời

Cho hai đường thẳng song song a và b. Mệnh đề sau đây là đúng hay sai?

a) Một đường thẳng c cắt a thì cũng cắt b

b) Một đường thẳng c chéo a thì cũng chéo b

Bài làm

2 mệnh đề trên đều sai

Bài 2 trang 106 SGK Toán 11 Chân trời

Cho hình chóp S.ABC và điểm M thuộc miền trong tam giác ABC (Hình 17). Qua M, vẽ đường thẳng d song song với SA, cắt (SBC) tại N. Trên hình vẽ, hãy chỉ rõ vị trí của điểm N và xác định giao tuyến của hai mặt phẳng (SAC) và (CMN).

Toán 11 Chân trời sáng tạo bài 2

Bài làm

Toán 11 Chân trời sáng tạo bài 2

Gọi I là giao điểm của AM và BC. Trong mặt phẳng (SAI), kẻ đường thẳng d song sóng SA cắt SI tại N

Giao tuyến của hai mặt phẳng (SAC) và (CMN) là đường thẳng đi qua C và song song với SA và MN

Bài 3 trang 106 SGK Toán 11 Chân trời

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành.

a) Tìm giao tuyến của hai mặt phẳng (SCD) và (SAB)

b) Lấy một điểm M trên đoạn SA (M khác S và A), mặt phẳng (BCM) cắt SD tại N. Tứ giác CBMN là hình gì?

Bài làm

Toán 11 Chân trời sáng tạo bài 2

a) Giao tuyến của hai mặt phẳng (SCD) và (SAB) là đường thẳng đi qua S và song song với AB và CD

b) Giao tuyến của (BCM) với (SAD) là đường thẳng MN song song với BC

Do đó CBMN là hình thang

Bài 4 trang 106 SGK Toán 11 Chân trời

Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi I là trung điểm của SD. Hai mặt phẳng (IAC) và (SBC) cắt nhau theo giao tuyến Cx. Chứng minh rằng Cx//SB.

Bài làm

Toán 11 Chân trời sáng tạo bài 2

Mặt phẳng (SBC) và (SAD) giao nhau tại đường thẳng d đi qua S và song song với BC

Trong mặt phẳng (SAD), kéo dài AI cắt d tại K.

AI ⊂ (AIC) nên K ∈ (ACI)

Ta có C và K là 2 điểm chung của hai mặt phẳng (SBC) và (CIA) nên CK là giao tuyến của hai mặt phẳng (SBC) và (CIA)

Trong mặt phẳng (SADK) ta có AD//SK, I là trung điểm của SD nên AD = SK. Mà AB = BD. Suy ra SK = BC

Ta có SK//BC, SK = BC nên SBCK là hình bình hành.

Suy ra CK//SB. Hay Cx//SB

Bài 5 trang 106 SGK Toán 11 Chân trời

Cho hình chóp S.ABCD có đáy là hình bình hành, AC và BD cắt nhau tại O. Gọi I là trung điểm của SO. Mặt phẳng (ICD) cắt SA, SB lần lượt tại M, N.

a) Hãy nói cách xác định hai điểm M và N. Cho AB = a. Tính MN theo a

b) Trong mặt phẳng (CDMN), gọi K là giao điểm của CN và DM. Chứng minh SK//BC//AD

Bài làm

Toán 11 Chân trời sáng tạo bài 2

a) Trong mặt phẳng (SAC), gọi M là giao của CI và SA. CI ⊂ (ICD) nên M ∈ (ICD)

Trong mặt phẳng (SBD), gọi N là giao của DI và SB. DI ⊂ (ICD) nên N ∈ (ICD)

Ta có MN là giao của của (ICD) và (SAB). Mà AB//CD nên MN//CD

Theo định lý Menelaus, trong tam giác SOA, ta có: \frac{SM}{MA}\(\frac{SM}{MA}\) . \frac{AC}{CO}\(\frac{AC}{CO}\) . \frac{OI}{IS}\(\frac{OI}{IS}\) = 1

Hay \frac{SM}{MA}\(\frac{SM}{MA}\) . 2 . 1 = 1. Suy ra: \frac{SM}{MA}\(\frac{SM}{MA}\) = \frac{1}{2}\(\frac{1}{2}\) Nên \frac{SM}{MA}\(\frac{SM}{MA}\) = \frac{1}{3}\(\frac{1}{3}\)

Ta có MN//AB nên \frac{SM}{SA}\(\frac{SM}{SA}\) = \frac{MN}{AB}\(\frac{MN}{AB}\)

Vậy MN = \frac{1}{3}\(\frac{1}{3}\)a

b) K ∈ CN; CN ⊂ (SBC) nên K ∈ (SBC)

K ∈ DM; DM ⊂ (SAD) nên K ∈ (SAD)

Ta có S và K là hai điểm chung của hai mặt phẳng (SAD) và (SBC) nên SK là giao tuyến của hai mặt phẳng (SAD) và (SBC).

Mà AD//BC nên SK//BC//AD

Bài 6 trang 106 SGK Toán 11 Chân trời

Chỉ ra các đường thẳng song song trong mỗi hình sau. Tìm thêm một số ví dụ khác về các đường thẳng song song trong thực tế

Toán 11 Chân trời sáng tạo bài 2

Bài làm

Hình a: Các dây điện song song với nhau

Hình b: Các mép của viên gạch lát song song với nhau

Hình c: Các mép của bậc thang song song với nhau

Hình d: Các mép của phím đàn song song với nhau

Hình e: Các mép của từng ngăn kệ song song với nhau

Hình g: Các mép của viên gạch song song với nhau

Một số ví dụ khác về đường thẳng song song: Các gáy của quyền sách trong chồng sách, Các mép của chân bàn thẳng đứng,...

----------------------------------

Bài tiếp theo: Toán 11 Chân trời sáng tạo bài 3 trang 107

VnDoc.com vừa gửi tới bạn đọc bài viết Toán 11 Chân trời sáng tạo bài 2: Hai đường thẳng song song. Hi vọng qua bài viết này bạn đọc có thêm tài liệu để học tập tốt hơn môn Toán 11 Chân trời sáng tạo. Mời các bạn cùng tham khảo thêm tại mục Ngữ văn 11 Chân trời sáng tạo, Vật lý 11 Chân trời sáng tạo.

Chia sẻ, đánh giá bài viết
1
Sắp xếp theo
    🖼️

    Gợi ý cho bạn

    Xem thêm
    🖼️

    Toán 11 Chân trời sáng tạo

    Xem thêm