Toán 11 Cánh Diều bài 4 trang 109
Từ năm học mới 2023 - 2024, Chương trình Toán lớp 11 sẽ được giảng dạy theo 3 bộ sách: Chân trời sáng tạo; Kết nối tri thức với cuộc sống và Cánh diều. Để giúp các thầy cô và các em học sinh làm quen với từng bộ sách mới, VnDoc xin giới thiệu tài liệu Toán 11 Cánh Diều bài 4 trang 109. Mời quý bạn đọc cùng tham khảo.
Giải Toán 11 Cánh Diều bài 4: Hai mặt phẳng song song
1. Bài tập 1 trang 109 sgk Toán 11 tập 1 Cánh diều
Bạn Chung cho rằng: Nếu mặt phẳng (P) chứa hai đường thẳng a, b và a, b cùng song song với mặt phẳng (Q) thì (P) luôn song song với (Q). Phát biểu của bạn Chung có đúng không? Vì sao?
Bài giải:
- Trường hợp a cắt b thì theo dấu hiệu nhận biết hai mặt phẳng song song thì ý kiến đúng.
- Trường hợp a không cắt b thì a // b
Ta có: a thuộc (P), a // (Q)
b thuộc (P), b // (Q)
mà a // b
Do đó: (P) // (Q). Vậy ý kiến đúng.
2. Bài tập 2 trang 109 sgk Toán 11 tập 1 Cánh diều
Trong mặt phẳng (P) cho hình bình hành ABCD. Qua A, B, C, D lần lượt vẽ bốn đường thẳng a, b, c, d đôi một song song với nhau và không nằm trong mặt phẳng (P). Một mặt phẳng cắt a, b, c, d lần lượt tại bốn điểm A', B', C', D'. Chứng minh rằng A'B'C'D' là hình bình hành.
Bài giải:
Theo định lí 2 ta có: Chỉ có một và một mặt phẳng qua A' // (P). Tương tự với các điểm B', C', D'.
Mà đề bài cho A', B', C', D' đồng phẳng
Suy ra mặt phẳng chứa A', B', C', D' song song với (P)
Do đó: A'D' // AD, B'C' // BC, AD // BC
Suy ra: A'D' // B'C' (1)
Tương tự ta có: A'B' // C'D' (2)
(1)(2) suy ra A'B'C'D' là hình bình hành.
3. Bài tập 3 trang 109 sgk Toán 11 tập 1 Cánh diều
Cho tứ diện ABCD. Lấy \(G_{1}, G_{2}, G_{3}\) lần lượt là trọng tâm của các tam giác ABC, ACD, ADB.
a) Chứng minh rằng \((G_{1}G_{2}G_{3})\parallel (BCD)\).
b) Xác định giao tuyến của mặt phẳng \((G_{1}G_{2}G_{3})\) với mặt phẳng (ABD).
Bài giải:
a) Gọi E, F, H là trung điểm của BC, CD, BD
Ta có: \(G_{1}\) là trọng tâm \(\triangle\)ABC, suy ra \(\frac{AG_{1} }{AE}=\frac{2}{3}\)
\(G_{3}\) là trọng tâm \(\triangle\)ABD, suy ra \(\frac{AG_{3} }{AH}=\frac{2}{3}\)
Suy ra \(\triangle\)AEH có \(\frac{AG_{1} }{AE}=\frac{AG_{3} }{AH}\) nên \(G_{1}G_{3}\) // EH
Mà EH thuộc (BCD) nên \(G_{1}G_{3}\) // (BCD).
Tương tự ta có \(G_{2}G_{3}\) // (BCD)
Do đó: \(G_{1}G_{2}G_{3}\) // (BCD).
b) Ta có: \(G_{1}G_{2}G_{3}\) // (BCD) nên \(G_{1}G_{2}\) // BD
mà \(G_{3}\) là điểm chung của hai mặt phẳng
Từ \(G_{3}\) kẻ \(G_{3}x\) sao cho \(G_{3}x\) // BD.
Vậy \(G_{3}x\) là giao tuyến cần tìm.
4. Bài tập 4 trang 109 sgk Toán 11 tập 1 Cánh diều
Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng.
a) Chứng minh rằng (AFD) \(\parallel\) (BEC).
b) Gọi M là trọng tâm của tam giác ABE. Gọi (P) là mặt phẳng đi qua M và song song với mặt phẳng (AFD). Lấy N là giao điểm của (P) và AC. Tính \(\frac{AN}{NC}\).
Bài giải:
a) Ta có: AD // BC (ABCD là hình bình hành)
Mà AD thuộc (AFĐ), BC thuộc (BEC)
Nên (AFD) // (BEC)
b) Trong (ABEF) kẻ đường thẳng d qua M // AF
Ta có: d cắt AB tại I, d cắt EF tại J (1)
Trong (ABCD) có I thuộc (P) mà (P) // (AFD)
Suy ra từ I kẻ IH // AD (2)
(1)(2) suy ra (IJH) trùng (P) và // (AFD)
Ta có: (P) cắt AC tại N mà AC thuộc (ABCD), IH thuộc (P) và (ABCD)
Suy ra: IH cắt AC tại N
Ta có các hình bình hành IBCH, IBEJ
Gọi O là trung điểm của AB
Có M là trọng tâm \(\triangle\)ABE
Suy ra: \(\frac{MO}{ME}=\frac{1}{2}\)
Ta có: AB // CD suy ra: AI // CH
Định lí Ta-lét: \(\frac{AN}{NC}=\frac{AI}{CH}\)
mà CH = IB (IBCH là hình bình hành)
Suy ra: \(\frac{AN}{NC}=\frac{AI}{IB}\)
Ta có: AB // EF nên OI // EJ
Do đó: \(\frac{OI}{EJ}=\frac{MO}{ME}=\frac{1}{2}\)
Mà EJ = IB (IBEJ là hình bình hành)
Suy ra: \(\frac{OI}{IB}=\frac{1}{2}\) hay IB = 2OI
Ta có: \(\frac{AN}{NC}=\frac{AI}{IB}=\frac{AO+OI}{2OI}\)
Mà OA = OB (O là trung điểm AB)
Nên \(\frac{AN}{NC}=\frac{OB+OI}{2OI}=2\)
Do đó: \(\frac{AN}{NC}=2\).
-------------------
Trên đây VnDoc.com vừa gửi tới bạn đọc bài viết Toán 11 Cánh Diều bài 4 trang 109: Hai mặt phẳng song song. Hi vọng qua bài viết này bạn đọc có thêm tài liệu để học tập tốt hơn môn Toán 11 Cánh Diều.