Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm

Toán 11 Cánh diều bài 2: Đường thẳng vuông góc với mặt phẳng

VnDoc.com xin gửi tới bạn đọc bài viết Toán 11 Cánh diều bài 2: Đường thẳng vuông góc với mặt phẳng để bạn đọc cùng tham khảo và có thêm tài liệu giải bài tập Toán 11 Cánh diều nhé. Mời các bạn cùng theo dõi bài viết.

Bài 1 trang 88 SGK Toán 11 Cánh diều

Quan sát Hình 30 (hai cột của biển báo, mặt đường), cho biết hình đó gợi nên tính chất nào về quan hệ vuông góc giữa đường thẳng và mặt phẳng.

Toán 11 Cánh diều bài 2

Bài làm

• Cho hai đường thẳng song song. Một mặt phẳng vuông góc với đường thẳng này thì cũng vuông góc với đường thẳng kia.

• Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau.

Bài 2 trang 88 SGK Toán 11 Cánh diều

Cho hình chóp S.ABC. Gọi H là hình chiếu của S trên mặt phẳng (ABC).

a) Xác định hình chiếu của các đường thẳng SA, SB, SC trên mặt phẳng (ABC).

b) Giả sử BC ⊥ SA, CA ⊥ SB. Chứng minh rằng H là trực tâm của tam giác ABC và AB ⊥ SC.

Bài làm

Toán 11 Cánh diều bài 2

a) Để xác định hình chiếu của các đường thẳng SA, SB, SC trên mặt phẳng (ABC), ta có thể vẽ đường thẳng vuông góc từ điểm S đến mặt phẳng (ABC), kết hợp với việc vẽ các đường thẳng từ A, B, C vuông góc với mặt phẳng (ABC) để tìm hình chiếu của các đường thẳng đó. Hình chiếu của SA, SB, SC lần lượt là AD, BE, CF

b) Vì BC ⊥ SA và CA ⊥ SB, nên BC và CA lần lượt là các đường vuông góc với SA và SB. Do đó, ta có:

  • SA ⊥ (ABC) ⇒ SH ⊥ BC và SK ⊥ AB (trong đó H và K lần lượt là hình chiếu của S xuống BC và AB)
  • SB ⊥ (ABC) ⇒ SJ ⊥ AC và SL ⊥ AB (trong đó J và L lần lượt là hình chiếu của S xuống AC và AB)
  • SC ⊥ (ABC) ⇒ SM ⊥ AB và SN ⊥ AC (trong đó M và N lần lượt là hình chiếu của S xuống AB và AC)

Khi đó, ta thấy rằng tam giác ABC có ba đường cao HN, KM và LJ, nên H là trực tâm của tam giác ABC (vì trực tâm là điểm giao điểm của ba đường cao của tam giác).

Bên cạnh đó, ta có AB ⊥ SL (vì AB vuông góc với mặt phẳng (ABC), SL vuông góc với AB), và từ đó suy ra AB ⊥ SC (vì SL là hình chiếu của SC xuống AB). Vậy AB ⊥ SC, như cần chứng minh.

Bài 3 trang 88 SGK Toán 11 Cánh diều

Cho tứ diện ABCD có AB ⊥ (BCD), các tam giác BCD và ACD là những tam giác nhọn. Gọi H, K lần lượt là trực tâm của tam giác BCD, ACD. Chứng minh rằng:

a) CD ⊥ (ABH)

b) CD ⊥ (ABK)

c) Ba đường thẳng AK, BH, CD cùng đi qua một điểm

Toán 11 Cánh diều bài 2

Bài làm

a) Vì AB ⊥ (BCD)

=> AB ⊥ CD (1)

Có H là trực tâm của tam giác BCD => BH ⊥ CD (2)

Từ (1) và (2) => CD ⊥ (ABH)

b) Vì AB ⊥ (BCD)

=> AB ⊥ CD (1)

Có K là trực tâm của tam giác ACD => AK ⊥ CD (2)

Từ (1) và (2) => CD ⊥ (ABK)

Bài 4 trang 88 SGK Toán 11 Cánh diều

Cho hình chóp S.ABCD có đáy là hình bình hành. Tam giác ABC nhọn có trực tâm H là hình chiếu của S trên (ABCD). Chứng minh rằng

a) SA ⊥ AD

b) SC ⊥ CD

Bài làm

a) Chứng minh SA ⊥ AD

Gọi M là trung điểm của AB

=> HM // CD (vì AB và CD là hai đường chéo của hình bình hành).

Có SA vuông góc với mặt phẳng (ABCD) và SM vuông góc với HM. Vì SM song song với CD, nên SA cũng vuông góc với CD. Do đó, ta có SA ⊥ AD.

b) Chứng minh SC ⊥ CD

Chứng minh tương tự, gọi N là trung điểm của CD. Ta có HN song song với AB. Theo tính chất đường thẳng vuông góc với mặt phẳng, ta biết rằng SC vuông góc với mặt phẳng (ABCD) và SN vuông góc với HN. Vì SN song song với AB, nên SC cũng vuông góc với AB. Do đó, ta có SC ⊥ CD.

Bài 5 trang 88 SGK Toán 11 Cánh diều

Cho hình chóp S.ABCD có SA ⊥ (ABC), BC ⊥ AB. Lấy hai điểm M, N lần lượt là trung điểm của SB, SC và điểm P nằm trên cạnh SA. Chứng minh rằng tam giác MNP là tam giác vuông.

Bài làm

Toán 11 Cánh diều bài 2

Có SA ⊥ (ABC) => SA ⊥ BC

mà BC ⊥ AB

=> BC ⊥ (SAB)

=> BC ⊥ MP (1)

Xét tam giác SBC có M, N lần lượt là trung điểm của SB, SC

=> MN là đường trung bình của tam giác SBC

=> MN // BC (2)

Từ (1) và (2)

=> MN ⊥ MP

=> tam giác MNP là tam giác vuông tại M

---------------------------------------------------------

Bài tiếp theo: Toán 11 Cánh diều bài 3: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện

VnDoc.com vừa gửi tới bạn đọc bài viết Toán 11 Cánh diều bài 2: Đường thẳng vuông góc với mặt phẳng. Mời các bạn cùng tham khảo thêm tại mục Toán 11 Cánh diều, Trắc nghiệm Toán 11 Cánh diều.

Chia sẻ, đánh giá bài viết
1
Chỉ thành viên VnDoc PRO/PROPLUS tải được nội dung này!
79.000 / tháng
Đặc quyền các gói Thành viên
PRO
Phổ biến nhất
PRO+
Tải tài liệu Cao cấp 1 Lớp
Tải tài liệu Trả phí + Miễn phí
Xem nội dung bài viết
Trải nghiệm Không quảng cáo
Làm bài trắc nghiệm không giới hạn
Mua cả năm Tiết kiệm tới 48%
Sắp xếp theo
    🖼️

    Gợi ý cho bạn

    Xem thêm
    🖼️

    Toán 11 Cánh diều

    Xem thêm