a) \(lim\frac{3n-1}{n} = lim\left ( 3-\frac{1}{n} \right ) = 3-lim\frac{1}{n}=3-0=3\)
b) \(lim\frac{\sqrt{n^{2}+2}}{n} = lim\sqrt{\frac{n^{2}+2}{n^{2}}}=lim\sqrt{1+\frac{1}{n^{2}}}=\sqrt{1+lim\frac{1}{n^{2}}}=\sqrt{1+0}=1\)
c) \(lim\frac{2}{3n+1} = lim\frac{\frac{2}{n}}{3+\frac{1}{n}}= \frac{lim\frac{2}{n}}{3+lim\frac{1}{n}}=\frac{0}{3+0}=0\)
d) \(lim\frac{(n+1)(2n+2)}{n^{2}} = lim\frac{2n^{2}+4n+2}{n^{2}}=lim\left ( 2+\frac{4}{n}+\frac{2}{n^{2}} \right )\)
\(= 2+lim\frac{4}{n}+lim\frac{2}{n^{2}}=2+0+0=2\)