Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm

Giải Toán 9 trang 115 tập 1 Cánh diều

Giải Toán 9 trang 115 Tập 1 Cánh diều hướng dẫn giải chi tiết cho các câu hỏi và bài tập trong SGK Toán 9 Cánh diều tập 1 trang 115.

Hoạt động 3 trang 115 Toán 9 Tập 1 Cánh diều

Trong Hình 55, đỉnh của góc AIB có thuộc đường tròn hay không? Hai cạnh của góc chứa hai dây cung nào của đường tròn?

Hướng dẫn giải

Đỉnh của góc AIB là điểm I có thuộc đường tròn

Hai cạnh của góc AIB chứa hai dây cung IA, IB của đường tròn.

Luyện tập 3 trang 115 Toán 9 Tập 1 Cánh diều

Hãy vẽ một đường tròn và hai góc nội tiếp trong đường tròn đó.

Hướng dẫn giải

Hoạt động 4 trang 115 Toán 9 Tập 1 Cánh diều

Cho góc AIB nội tiếp đường tròn tâm O đường kính IK sao cho tâm O nằm trong góc đó (Hình 57).

a) Các cặp góc \widehat {OAI}\(\widehat {OAI}\)\widehat {OIA},\widehat {OBI}\(\widehat {OIA},\widehat {OBI}\) và \widehat {OIB}\(\widehat {OIB}\) có bằng nhau hay không?

b) Tính các tổng \widehat {AOI} + 2\widehat {OIA},\widehat {BOI} + 2\widehat {OIB}\(\widehat {AOI} + 2\widehat {OIA},\widehat {BOI} + 2\widehat {OIB}\)

c) Tính các tổng \widehat {AOI} + \widehat {AOK},\widehat {BOI} + \widehat {BOK}\(\widehat {AOI} + \widehat {AOK},\widehat {BOI} + \widehat {BOK}\)

d) So sánh \widehat {AOK}\(\widehat {AOK}\)2\widehat {OIA},\widehat {BOK}\(2\widehat {OIA},\widehat {BOK}\)2\widehat {OIB},\widehat {AOB}\(2\widehat {OIB},\widehat {AOB}\)2\widehat {AIB}\(2\widehat {AIB}\).

Hướng dẫn giải

a) Ta có IOA và IOB là các tam giác cân tại O

Suy ra \widehat {OAI} = \widehat {OIA}\(\widehat {OAI} = \widehat {OIA}\) và \widehat {OBI} = \widehat {OIB}\(\widehat {OBI} = \widehat {OIB}\)

b) Xét tam giác AOI cân tại O có:

\widehat {AOI} + \widehat {OIA} + \widehat {OAI} = 180^\circ\(\widehat {AOI} + \widehat {OIA} + \widehat {OAI} = 180^\circ\) (định lí tổng ba góc trong một tam giác)

\Rightarrow \widehat {AOI} + \widehat {OIA} + \widehat {OIA} = 180^\circ\(\Rightarrow \widehat {AOI} + \widehat {OIA} + \widehat {OIA} = 180^\circ\)

Hay \widehat {AOI} + 2\widehat {OIA} = 180^\circ\(\widehat {AOI} + 2\widehat {OIA} = 180^\circ\) (1)

Tương tự ta có: \widehat {BOI} + 2\widehat {OIB} = 180^\circ\(\widehat {BOI} + 2\widehat {OIB} = 180^\circ\) (2)

c) Do IK là đường kính nên:

\widehat {AOI} + \widehat {AOK} = 180^\circ\(\widehat {AOI} + \widehat {AOK} = 180^\circ\) (hai góc kề bù) (3)

\widehat {BOI} + \widehat {BOK} = 180^\circ\(\widehat {BOI} + \widehat {BOK} = 180^\circ\) (hai góc kề bù) (4)

d) Từ (1) và (3) suy ra 2\widehat {OIA} = \widehat {AOK}\(2\widehat {OIA} = \widehat {AOK}\) (*)

Từ (2) và (4) suy ra 2\widehat {OIB} = \widehat {BOK}\(2\widehat {OIB} = \widehat {BOK}\) (**)

Cộng vế với vế của (*) và (**), ta có:

2\left( {\widehat {OIA} + \widehat {OIB}} \right) =\widehat {AOK} + \widehat {BOK}\(2\left( {\widehat {OIA} + \widehat {OIB}} \right) =\widehat {AOK} + \widehat {BOK}\)

Hay 2\widehat {AIB} = \widehat {AOB}\(2\widehat {AIB} = \widehat {AOB}\)

-----------------------------------------------

---> Trang tiếp theo: Giải Toán 9 trang 116 tập 1 Cánh diều

Lời giải Toán 9 trang 115 Tập 1 Cánh diều với các câu hỏi nằm trong Bài 4: Góc ở tâm. Góc nội tiếp, được VnDoc biên soạn và đăng tải!

Chia sẻ, đánh giá bài viết
1
Chỉ thành viên VnDoc PRO tải được nội dung này!
79.000 / tháng
Đặc quyền các gói Thành viên
PRO
Phổ biến nhất
PRO+
Tải tài liệu Cao cấp 1 Lớp
Tải tài liệu Trả phí + Miễn phí
Xem nội dung bài viết
Trải nghiệm Không quảng cáo
Làm bài trắc nghiệm không giới hạn
Mua cả năm Tiết kiệm tới 48%
Sắp xếp theo
    🖼️

    Gợi ý cho bạn

    Xem thêm
    🖼️

    Toán 9 Cánh diều

    Xem thêm