Công thức đúng của tổ hợp là:
Công thức đúng của tổ hợp là:
Khoahoc.vn xin gửi tới bạn đọc bài viết Trắc nghiệm: Hoán vị Chỉnh hợp Tổ hợp. Mời các bạn cùng tham khảo chi tiết bài viết dưới đây nhé!
Công thức đúng của tổ hợp là:
Công thức đúng của tổ hợp là:
Cho . Tính giá trị biểu thức:
Ta có:
Thay n = 20 vào T ta được:
Nghiệm của phương trình:
Giải phương trình:
Tìm các số nguyên dương n sao cho:
Điều kiện
Ta có:
Tìm n biết:
Ta có:
(*)
Đạo hàm hai vế của biểu thức (*) ta được:
Chọn x = 1 ta có:
Vậy n = 4
Nghiệm của phương trình:
Các kiến thức cần nhớ:
Giải phương trình ta có:
Vậy n = 3
Cho dãy số 0, 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số có chẵn, mỗi số có 5 chữ số trong đó có đúng hai số lẻ, 2 số lẻ đó đứng cạnh nhau.
Gọi số tự nhiên có hai chữ số lẻ khác nhau từ các số 0, 1, 2, 3, 4, 5, 6 là m
Số cách chọn được m là:
Số chẵn có 5 chữ số mà hai số lẻ đứng kề nhau phải chứa M và ba trong bốn chữ số 0; 2; 4; 6
Gọi là số thỏa mãn yêu cầu bài toán
Trường hợp 1: Nếu a = m ta có:
Số cách chọn a là 1 cách
Số cách chọn b, c, d là cách
Trướng hợp 2: Nếu a khác m thì ta có:
Số cách chọn a là 3 cách
Nếu b = m thì có 1 cách chọn b và cách chọn c, d
Nếu c = m thì có 1 cách chọn c và cach chọn b, d
=> Số các số được tạo thành là:
Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên gồm 3 chữ số đôi một khác nhau
Gọi số tự nhiên có ba chữ số khác nhau có dạng:
Số cách chọn a là 6 cách
Số cách chọn b là 5 cách
Số cách chọn c là 4 cách
=> Số các số tự nhiên có ba chữ số khác nhau được tạo thành là: 6 . 5 . 4 = 120 số
Có bao nhiêu số tự nhiên có 7 chữ số biết rằng chữ số 2 có mặt 2 lần, chữ số 3 có mặt 3 lần, chữ số còn lại có mặt nhiều nhất 1 lần.
Số tự nhiên có 7 chữ số có dạng:
Xét trường hợp có chữ số 0 đứng đầu
Số cách chọn vị trí cho chữ số 2 là:
Số cách chọn vị trí cho chữ số 3 là:
Số cách chọn 2 chữ số còn lại trong tập hợp các số đã cho để xếp vào hai vị trí cuối là
=> Số các số được tạo thành là:
Xét trường hợp không có chữ số 0 đứng đầu
Ta có:
Vì a = 0 => a có 1 cách chọn
Số cách chọn vị trí cho chữ số 2 là:
Số cách chọn vị trí cho chữ số 3 là:
Số cách chọn chữ số cuối trong tập hợp dãy số đã cho là 7 cách
=> Số các số được tạo thành là:
Vậy số các số được lập thành thỏa mãn yêu cầu đề bài là: 11760 - 420 = 11340 số
Đội học sinh giỏi toán 10 có tất cả 18 học sinh, trong đó có 7 học sinh giỏi môn Toán, 6 học sinh giỏi môn Văn và 5 học sinh giỏi môn Hóa. Hỏi có bao nhiêu cách chọn 8 học sinh đi dự thi chính thức, biết rằng mỗi môn có ít nhất 1 học sinh.
Số cách chọn 8 học sinh gồm hai khối là phần bù của cách chọn 8 học sinh đi dự đại hội sao cho mỗi khối có ít nhất 1 học sinh được chọn.
Số cách chọn 8 học sinh từ hai khối là:
Số cách chọn 8 học sinh bất kì là:
Số cách chọn thỏa yêu cầu bài toán:
Từ các chữ số 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên có 6 chữ số đôi một khác nhau và chia hết cho 5.
Nếu một số có chữ số tận cùng là 0 hoặc 5 thì số đó chia hết cho 5
Gọi số tự nhiên có 6 chữ số có dạng:
Do số tự nhiên tạo thành có các chữ số đôi một khác nhau =>
Khi đó:
Số cách chọn f là 1 cách
Số cách chọn a là 6 cách
Số cách chọn b là 5 cách
Số cách chọn c là 4 cách
Số cách chọn d là 3 cách
Số cách chọn e là 2 cách
=> Số các số tạo thành thỏa mãn điều kiện đề bài là:
6.5.4.3.2.1 = 720 số
Một lớp có 20 học sinh nữ, 26 học sinh nam. Giáo viên cần chọn ban cán sự lớp gồm 3 học sinh. Hỏi có bao nhiêu cách chọn biết trong ban cán sự có ít nhất một nữ.
Số học sinh của lớp là: 20 + 26 = 46 (học sinh)
Số cách chọn 3 học sinh làm cán bộ lớp là:
Số cách chọn 3 học sinh làm cán bộ lớp trong đó không có bạn nữ là:
Số cách chọn 3 học sinh trong đó có ít nhất một bạn nữ là:
cách chọn
Trong lớp có 20 học sinh nữ, 15 học sinh nam. Hỏi giáo viên có bao nhiêu cách chọn 3 học sinh làm ban cán sự lớp?
Số học sinh của lớp là 20 + 15 = 35 (học sinh)
Số cách chọn 3 học sinh làm ban cán sự lớp là: (cách chọn)
Cho hai đường thẳng d và d’ song song với nhau. Trên d có 10 điểm phân biệt, trên d’ có n điểm phân biệt (n ≥ 2). Tìm n biết có 2800 tam giác có đỉnh là các điểm nói trên.
Trướng hợp 1: Tam giác có một đỉnh thuộc d và hai đỉnh còn lại thuộc d'
=> Số tam giác tạo thành là: (tam giác)
Trướng hợp 2: Tam giác có hai đỉnh thuộc d và một đỉnh thuộc d'
=> Số tam giác tạo thành là: (tam giác)
Theo bài ra ta có: 2800 tam giác có đỉnh là các điểm đã cho nên ta có phương trình:
Vậy n = 20
Có bao nhiêu cách xếp n người vào một bàn tròn n chỗ?
Chọn một người vào một ví trí cố định làm trung tâm
Còn lại n - 1 người xếp vào n - 1 chỗ ngồi còn lại
=> Có (n - 1)! cách sắp xếp
Vậy có tất cả (n - 1)! cách sắp xếp n người vào một bàn tròn n chỗ
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: