Gieo một con súc sắc. Xác suất để mặt chấm chẵn xuất hiện là:
Khả năng các mặt chấm xuất hiện là: {1; 2; 3; 4; 5; 6}
Số phần tử không gian mẫu là:
Biến cố để mặt chấm chẵn xuất hiện là: D = {2; 4; 6}
=>
Khoahoc.vn xin gửi tới bạn đọc bài viết Trắc nghiệm: Xác suất của biến cố. Mời các bạn cùng tham khảo chi tiết bài viết dưới đây nhé!
Gieo một con súc sắc. Xác suất để mặt chấm chẵn xuất hiện là:
Khả năng các mặt chấm xuất hiện là: {1; 2; 3; 4; 5; 6}
Số phần tử không gian mẫu là:
Biến cố để mặt chấm chẵn xuất hiện là: D = {2; 4; 6}
=>
Rút ra một lá bài từ bộ bài 52 lá. Xác suất để được lá bích là:
Số phần tử không gian mẫu là: 52
Một bộ bài 52 lá có 13 bộ 4 lá bài trong đó có mỗi bộ có 1 lá bích
=> Số lá bích trong bộ bài là 13 lá
=> Xác suất để được lá bích là:
Từ các chữ số 1, 2, 4, 6, 8, 9 lấy ngẫu nhiên một số. Xác suất để lấy được một số nguyên tố là:
- Số nguyên tố là số tự nhiên lớn hơn 1, chỉ có hai ước là 1 và chính nó.
Ví dụ về số nguyên tố như: 2, 3, 5, 7, 11, 13, 17, ….
Lấy một số từ dãy số đã cho ta được:
Giả sử A là biến cố "lấy được một số nguyên tố"
Ta có: A = {2} =>
=> Xác suất để lấy được một số nguyên tố là:
Cho hai biến cố A và B có ta kết luận hai biến cố A và B là:
Ta có: P(A) + P(B) = 1/3 + 1/4 = 7/12 ≠ 1/2 = P(A ∪ B)
Suy ra P(A) + P(B) ≠ P(A ∪ B)
=> Hai biến cố A và B không xung khắc
Áp dụng công thức xác suất tổng hai biến cố ta có:
Mà
=> Hai biến cố A và B là hai biến cố độc lập.
Gieo ngẫu nhiên một con súc sắc. Xác suất để mặt 6 chấm xuất hiện:
Số phần tử không gian mẫu là:
Biến cố A là biến cố "mặt 6 chấm xuất hiện"
=>
=> Xác suất để mặt 6 chấm xuất hiện:
Gieo ngẫu nhiên 2 con súc sắc cân đối và đồng chất. Xác suất để sau hai lần gieo kết quả như nhau là:
Gieo ngẫu nhiên 2 con súc sắc cân đối và đồng chất ta có:
Số phần tử của không gian mẫu là:
Giả sử B là biến cố "sau hai lần gieo kết quả như nhau"
=> B = {(1; 1), (2; 2), (3; 3), (4; 4), (5; 5), (6; 6)}
=>
=> Xác suất để sau hai lần gieo kết quả như nhau là:
Gieo đồng tiền 2 lần. Xác suất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất một lần là:
Gieo đồng tiền 2 lần nên ta có:
Số phần tử không gian mẫu là:
Giả sử C là biến cố "sau hai lần gieo thì mặt sấp xuất hiện ít nhất một lần"
=> biến cố "sau hai lần gieo thì không có mặt sấp xuất hiện"
=>
=>
=> Xác suất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất một lần là:
Gieo hai con súc sắc cân đối và đồng chất. Xác suất để tổng số chấm xuất hiện ở hai mặt trên chia hết cho 3 là:
Số có tổng các chữ số chia hết cho 3 thì số đó chia hết cho 3
Gieo hai con súc sắc cân đối và đồng chất
=> Số phần tử không gian mẫu là:
Giả sử D là biến cố "tổng số chấm xuất hiện ở hai mặt trên chia hết cho 3"
Các bộ số chia hết cho 3 là (1; 2), (3; 3); (2; 4), (1; 5), (5; 4), (3; 6), (6; 6)
Ngoài bộ số (6; 6) và (3; 3) ta có các bộ số còn lại hoán vị
=>
=> Xác suất để tổng số chấm xuất hiện ở hai mặt trên chia hết cho 3 là:
Một con súc sắc cân đối đồng chất được gieo 5 lần. Xác suất để tổng số chấm ở 2 lần gieo đầu bằng số chấm ở lần gieo thứ ba:
Một con súc sắc cân đối đồng chất được gieo 5 lần
=> Số phần tử của không gian mẫu là:
Giả sử H là biến cố "tổng số chấm ở 2 lần gieo đầu bằng số chấm ở lần gieo thứ ba"
=> Các bộ số là: (1; 1; 2), (1; 2; 3), (2; 1; 3), (1; 3; 4), (3; 1; 4), (2; 2; 4), (1; 4; 5), (4; 1; 5), (2; 3; 5), (3; 2; 5), (1; 5; 6), (5; 1; 6), (2; 4; 6), (4; 2; 6), (3; 3; 6)}
=>
=> Xác suất để tổng số chấm ở 2 lần gieo đầu bằng số chấm ở lần gieo thứ ba là:
Một túi chứa 2 bi trắng và 3 bi đen. Rút ra 3 bi. Xác suất để được ít nhất 1 bi trắng là:
Số phần tử không gian mẫu là:
Gọi A là biến cố " được ít nhất 1 bi trắng"
=> là biến cố không lấy được viên bi trắng nào
=> Số phần tử của là:
=> Xác suất lấy 3 viên bi không có viên bi trắng là:
=> Xác suất để được ít nhất 1 bi trắng là:
Gieo một con súc sắc 2 lần. Số phần tử của không gian mẫu là?
Số phần tử không gian mẫu là: n(Ω) = 6 . 6 = 36
Gieo một đồng tiền liên tiếp 2 lần. Số phần tử của không gian mẫu là?
Số phần tử không gian mẫu là: n(Ω) = 2 . 2 = 4
Người ta gieo 8000 lần một đồng xu cân đối thì tần số xuất hiện của mặt ngửa là 4013. Xác suất thực nghiệm mặt ngửa là:
Số phần tử không gian mẫu là:
Theo bài ra ta có: Tần số xuất hiện của mặt ngửa là 4 013 lần
=> Xác suất thực nghiệm mặt ngửa là:
Một túi chứa 2 bi trắng và 3 bi đen. Rút ra 3 bi. Xác suất để được ít nhất 1 bi trắng là:
Số phần tử không gian mẫu là:
Gọi A là biến cố " được ít nhất 1 bi trắng"
=> là biến cố không lấy được viên bi trắng nào
=> Số phần tử của là:
=> Xác suất lấy 3 viên bi không có viên bi trắng là:
=> Xác suất để được ít nhất 1 bi trắng là:
Gieo 3 con súc sắc cân đối và đồng chất. Xác suất để số chấm xuất hiện trên 3 con súc sắc đó bằng nhau:
Số phần tử của không gian mẫu là: 6 . 6 . 6 = 216
Giả sử B là biến cố "số chấm xuất hiện trên 3 con súc sắc đó bằng nhau"
Ta có các khả năng như sau: (1; 1), (2; 2), (3; 3), (4; 4), (5; 5), (6; 6)
=> Số phần tử của biến cố B là
=> Xác suất để số chấm xuất hiện trên 3 con súc sắc đó bằng nhau là:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: