Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Luyện tập Phép cộng và phép trừ đa thức

Vndoc.com xin gửi tới bạn đọc bài viết Bài tập Toán lớp 8: Phép cộng và phép trừ đa thức sách Kết nối tri thức. Mời các bạn cùng tham khảo chi tiết bài viết dưới đây nhé!

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tìm đa thức M

    Cho các đa thức:

    A = 9,5x^{2} - 5xy +
3,2y^{2}

    B = - 3,5x^{2} + 4xy -
1,8y^{2}

    Xác định đa thức M biết M + A = B.

    Hướng dẫn:

    Ta có:

    M + A = B

    \Rightarrow M = B - A

    \Rightarrow M = \left( - 3,5x^{2} + 4xy
- 1,8y^{2} ight) - \left( 9,5x^{2} - 5xy + 3,2y^{2}
ight)

    \Rightarrow M = - 3,5x^{2} + 4xy -
1,8y^{2} - 9,5x^{2} + 5xy - 3,2y^{2}

    \Rightarrow M = \left( - 3,5x^{2} -
9,5x^{2} ight) + \left( - 1,8y^{2} - 3,2y^{2} ight) + (5xy +
4xy)

    \Rightarrow M = - 13x^{2} - 5y^{2} +
9xy

  • Câu 2: Thông hiểu
    Tìm đa thức N

    Xác định đa thức N biết:

    \left( 47,5x^{2}y - 6,8xy^{2} + 1,2xy
ight) - N = 1,2xy + 22,5x^{2}y - 1,8xy^{2}

    Hướng dẫn:

    Ta có:

    \left( 47,5x^{2}y - 6,8xy^{2} + 1,2xy
ight) - N = 1,2xy + 22,5x^{2}y - 1,8xy^{2}

    \Rightarrow N = \left( 47,5x^{2}y -
6,8xy^{2} + 1,2xy ight) - \left( 1,2xy + 22,5x^{2}y - 1,8xy^{2}
ight)

    \Rightarrow N = 47,5x^{2}y - 6,8xy^{2} +
1,2xy - 1,2xy - 22,5x^{2}y + 1,8xy^{2}

    \Rightarrow N = \left( 47,5x^{2}y -
22,5x^{2}y ight) + \left( - 6,8xy^{2} + 1,8xy^{2} ight) + (1,2xy -
1,2xy)

    \Rightarrow N = 25x^{2}y -
5xy^{2}

  • Câu 3: Thông hiểu
    Tính tổng hai đa thức

    Cho các đa thức:

    A = - 3,5x^{2} + 4xy -
1,8y^{2}

    B = 9,5x^{2} - 5xy +
3,2y^{2}

    Xác định đa thức C = A + B.

    Hướng dẫn:

    Ta có:

    C = A + B

    C = - 3,5x^{2} + 4xy - 1,8y^{2} +
9,5x^{2} - 5xy + 3,2y^{2}

    C = \left( 9,5x^{2} - 3,5x^{2} ight) +
\left( 3,2y^{2} - 1,8y^{2} ight) + (4xy - 5xy)

    C = 6x^{2} - xy + 1,4y^{2}

  • Câu 4: Thông hiểu
    Thực hiện phép tính

    Tính tổng hai đa thức:

    A = 4x^{2}y - 4xy^{2} + xy - 7B = - 8xy^{2} - xy + 10 - 9x^{2}y +
3xy^{2}

    Hướng dẫn:

    Ta có:

    A + B = 4x^{2}y - 4xy^{2} + xy - 7 -
8xy^{2} - xy + 10 - 9x^{2}y + 3xy^{2}

    A + B = \left( 4x^{2}y - 9x^{2}y ight)
+ \left( - 4xy^{2} - 8xy^{2} + 3xy^{2} ight) + (xy - xy) + ( - 7 +
10)

    A + B = - 5x^{2}y - 9xy^{2} +
3

  • Câu 5: Thông hiểu
    Điền đáp án vào ô trống

    Thu gọn đa thức:

    T = \left( {{y^3} - 7{x^4}{y^4}} ight) + \left( { - 10{x^4}{y^3} + 6{y^3} + 4{x^4}{y^4}} ight) - \left( {{x^4}{y^3} + 6{x^4}{y^4}} ight)

    Bậc của đa thức thu gọn là: 8

    Đáp án là:

    Thu gọn đa thức:

    T = \left( {{y^3} - 7{x^4}{y^4}} ight) + \left( { - 10{x^4}{y^3} + 6{y^3} + 4{x^4}{y^4}} ight) - \left( {{x^4}{y^3} + 6{x^4}{y^4}} ight)

    Bậc của đa thức thu gọn là: 8

    Ta có:

    T = \left( {{y^3} - 7{x^4}{y^4}} ight) + \left( { - 10{x^4}{y^3} + 6{y^3} + 4{x^4}{y^4}} ight) - \left( {{x^4}{y^3} + 6{x^4}{y^4}} ight)

    T = {y^3} - 7{x^4}{y^4} - 10{x^4}{y^3} + 6{y^3} + 4{x^4}{y^4} - {x^4}{y^3} - 6{x^4}{y^4}

    T = \left( {{y^3} + 6{y^3}} ight) + \left( { - 7{x^4}{y^4} + 4{x^4}{y^4} - 6{x^4}{y^4}} ight) + \left( { - 10{x^4}{y^3} - {x^4}{y^3}} ight)

    T = 7{y^3} - 9{x^4}{y^4} - 11{x^4}{y^3}

    Bậc của đa thức thu gọn là 8.

  • Câu 6: Thông hiểu
    Xác định đa thức P

    Tìm đa thức P biết:

    P - \left( 5x^{2} - xyz ight) = xy +
2x^{2} - 3xyz + 5

    Hướng dẫn:

    Ta có:

    P - \left( 5x^{2} - xyz ight) = xy +
2x^{2} - 3xyz + 5

    \Rightarrow P = xy + 2x^{2} - 3xyz + 5 +
\left( 5x^{2} - xyz ight)

    \Rightarrow P = xy + 2x^{2} - 3xyz + 5 +
5x^{2} - xyz

    \Rightarrow P = \left( 2x^{2} + 5x^{2}
ight) + 5 + ( - xyz - 3xyz) + xy

    \Rightarrow P = 7x^{2} + 5 - 4xyz +
xy

  • Câu 7: Thông hiểu
    Xác định đa thức A

    Tìm A biết:

    3ab - b^{2}a - A = ab +
b^{2}a

    Hướng dẫn:

    Ta có:

    3ab - b^{2}a - A = ab +
b^{2}a

    \Rightarrow 3ab - b^{2}a - \left( ab +
b^{2}a ight) = A

    \Rightarrow 3ab - b^{2}a - ab - b^{2}a =
A

    \Rightarrow (3ab - ab) - \left( b^{2}a +
b^{2}a ight) = A

    \Rightarrow 2ab - 2b^{2}a =
A

  • Câu 8: Vận dụng
    Tìm đa thức C

    Cho đa thức D =
16x^{2}y^{3} - xy^{3} - 3x^{3}y^{4}. Xác định C, biết:

    D = 15x^{2}y^{3} - 3xy^{3} - 16xy^{3} -
15x^{2}y^{3} + 16x^{2}y^{3} + 18xy^{3} + C

    Hướng dẫn:

    Ta có:

    D = 15x^{2}y^{3} - 3xy^{3} +
16x^{2}y^{3} - 16xy^{3} - 15x^{2}y^{3} + 18xy^{3} + C

    D = \left( 15x^{2}y^{3} - 15x^{2}y^{3} +
16x^{2}y^{3} ight) + \left( - 3xy^{3} - 16xy^{3} + 18xy^{3} ight) +
C

    D = 16x^{2}y^{3} - xy^{3} +
C

    \Rightarrow 16x^{2}y^{3} - xy^{3} -
3x^{3}y^{4} = 16x^{2}y^{3} - xy^{3} + C

    \Rightarrow C = \left( 16x^{2}y^{3} -
xy^{3} - 3x^{3}y^{4} ight) - \left( 16x^{2}y^{3} - xy^{3}
ight)

    \Rightarrow C = -
3x^{3}y^{4}

  • Câu 9: Thông hiểu
    Tìm bậc của đa thức thu gọn

    Cho hai đa thức:

    A = 5xyz - 5x^{2}y + 8xy + 5 - 2xy^{2} -
3x^{2}y - 4xy

    B = 3x^{2}y + 2xyz - xy^{2} + 9xy -
6x^{2}y - xyz - 7

    Tính A - B. Hỏi bậc của đa thức thu gọn thu được là bao nhiêu?

    Hướng dẫn:

    Ta có:

    A = 5xyz - 5x^{2}y + 8xy + 5 - 2xy^{2} -
3x^{2}y - 4xy

    A = 5xyz + \left( - 5x^{2}y - 3x^{2}y
ight) + 5 - 2xy^{2} + ( - 4xy + 8xy)

    A = 5xyz - 8x^{2}y + 5 - 2xy^{2} +
4xy

    B = 3x^{2}y + 2xyz - xy^{2} + 9xy -
6x^{2}y - xyz - 7

    B = \left( 3x^{2}y - 6x^{2}y ight) +
(2xyz - xyz) - xy^{2} + 9xy - 7

    B =  - 3{x^2}y + xyz - x{y^2} + 9xy - 7

    Khi đó

    {A - B = \left( 5xyz - 8x^{2}y + 5 -
2xy^{2} + 4xy ight)
}{- \left( - 3x^{2}y + xyz - xy^{2} + 9xy - 7 ight)}

    = 5xyz - 8x^{2}y + 5 - 2xy^{2} + 4xy +
3x^{2}y - xyz + xy^{2} - 9xy + 7

    = (5xyz - xyz) + \left( - 8x^{2}y +
3x^{2}y ight) + \left( - 2xy^{2} + xy^{2} ight) + (4xy - 9xy) + 7 +
5

    = 4xyz - 5x^{2}y - xy^{2} - 5xy +
12

    Đa thức thu gọn có bậc là 3.

  • Câu 10: Thông hiểu
    Xác định đa thức P

    Tìm đa thức P biết:

    P + \left( 15x^{2} - 22y^{2} ight) =
16x^{2} - 25xy - 32y^{2}

    Hướng dẫn:

    Ta có:

    P + \left( 15x^{2} - 22y^{2} ight) =
16x^{2} - 25xy - 32y^{2}

    \Rightarrow P = 16x^{2} - 25xy - 32y^{2}
- \left( 15x^{2} - 22y^{2} ight)

    \Rightarrow P = 16x^{2} - 25xy - 32y^{2}
- 15x^{2} + 22y^{2}

    \Rightarrow P = \left( 16x^{2} - 15x^{2}
ight) + \left( - 32y^{2} + 22y^{2} ight) - 25xy

    \Rightarrow P = x^{2} - 10y^{2} -
25xy

  • Câu 11: Thông hiểu
    Tìm bậc đa thức C

    Cho hai đa thức:

    A = 2x^{3} - 4x^{2}y +
1\frac{1}{3}xy^{2} - y^{4} + 1

    B = - 2x^{3} - 1\frac{1}{2}x^{2}y -
y^{4} - 3

    Xác định bậc của đa thức C = A +
B.

    Hướng dẫn:

    Ta có:

    C = 2x^{3} - 4x^{2}y +
1\frac{1}{3}xy^{2} - y^{4} + 1 - 2x^{3} - 1\frac{1}{2}x^{2}y - y^{4} -
3

    C = \left( 2x^{3} - 2x^{3} ight) +
\left( - 4x^{2}y - 1\frac{1}{2}x^{2}y ight) + 1\frac{1}{3}xy^{2} +
\left( - y^{4} - y^{4} ight) + (1 - 3)

    C = - \frac{11}{2}x^{2}y +
\frac{4}{3}xy^{2} - 2y^{4} - 2

    Bậc của đa thức là 3.

  • Câu 12: Thông hiểu
    Tìm bậc của đa thức C

    Tìm bậc của đa thức C = A + B biết A = 15x^{2}y^{3} - 3xy^{3} + 16x^{2}y^{3}
- 16xy^{3}B = - 15x^{2}y^{3} +
18xy^{3} - 2x^{3}y^{4}.

    Hướng dẫn:

    Ta có:

    C = A + B

    C = 15x^{2}y^{3} - 3xy^{3} +
16x^{2}y^{3} - 16xy^{3} + \left( - 15x^{2}y^{3} + 18xy^{3} - 2x^{3}y^{4}
ight)

    C = 15x^{2}y^{3} - 3xy^{3} +
16x^{2}y^{3} - 16xy^{3} - 15x^{2}y^{3} + 18xy^{3} -
2x^{3}y^{4}

    C = \left( 15x^{2}y^{3} - 15x^{2}y^{3} +
16x^{2}y^{3} ight) + \left( - 3xy^{3} - 16xy^{3} + 18xy^{3} ight) -
2x^{3}y^{4}

    C = 16x^{2}y^{3} - xy^{3} -
2x^{3}y^{4}

    Bậc của đa thức C là 7.

  • Câu 13: Vận dụng
    Tính giá trị của đa thức

    Cho hai đa thức:

    A = 5xyz - 5x^{2}y + 8xy + 5 - 2xy^{2} -
3x^{2}y - 4xy

    B = 3x^{2}y + 2xyz - xy^{2} + 9xy -
6x^{2}y - xyz - 7

    Tính A + B tại x = 1;y = 2;z = - 2.

    Hướng dẫn:

    Ta có:

    A = 5xyz - 5x^{2}y + 8xy + 5 - 2xy^{2} -
3x^{2}y - 4xy

    A = 5xyz + \left( - 5x^{2}y - 3x^{2}y
ight) + 5 - 2xy^{2} + ( - 4xy + 8xy)

    A = 5xyz - 8x^{2}y + 5 - 2xy^{2} +
4xy

    B = 3x^{2}y + 2xyz - xy^{2} + 9xy -
6x^{2}y - xyz - 7

    B = \left( 3x^{2}y - 6x^{2}y ight) +
(2xyz - xyz) - xy^{2} + 9xy - 7

    B =  - 3{x^2}y + xyz - x{y^2} + 9xy - 7

    Khi đó:

    A + B = 5xyz - 8x^{2}y + 5 - 2xy^{2} +
4xy

    + \left( - 3x^{2}y + xyz - xy^{2} + 9xy
- 7 ight)

    = (5xyz + xyz) + \left( - 8x^{2}y -
3x^{2}y ight) + \left( - 2xy^{2} - xy^{2} ight) + (4xy + 9xy) -
2

    = 6xyz - 11x^{2}y - 3xy^{2} + 13xy -
2

    Thay giá trị x = 1;y = 2;z = - 2 vào biểu thức thu gọn ta được:

    A + B = 6.1.2.( - 2) - 11.1^{2}.2 -
31.2^{2} + 13.1.2 - 2 = - 34

  • Câu 14: Vận dụng
    Xác định đa thức H

    Tìm đa thức H sao cho

    H + 2\left( x^{2} - 4y^{2} ight) + B =
16x^{2} - 4xy + 5y^{2} + A

    Biết A = 9,5x^{2} - 5xy +
3,2y^{2}B = - 3,5x^{2} + 4xy -
1,8y^{2}.

    Hướng dẫn:

    Ta có:

    H + 2x\left( x^{2} - 4y^{2} ight) + B
= 16x^{2} - 4xy + 5y^{2} + A

    \Rightarrow H = 16x^{2} - 4xy + 5y^{2} -
2x\left( x^{2} - 4y^{2} ight) + A - B (*)

    Ta lại có:

    A - B

    = 9,5x^{2} - 5xy + 3,2y^{2} - \left( -
3,5x^{2} + 4xy - 1,8y^{2} ight)

    = 9,5x^{2} - 5xy + 3,2y^{2} - 3,5x^{2} -
4xy + 1,8y^{2}

    = \left( 9,5x^{2} - 3,5x^{2} ight) + (
- 5xy - 4xy) + \left( 3,2y^{2} + 1,8y^{2} ight)

    = 13x^{2} - 9xy + 5y^{2} (**)

    Thay (**) vào (*) ta được:

    \Rightarrow H = 16x^{2} - 4xy + 5y^{2} -
2\left( x^{2} - 4y^{2} ight) + 13x^{2} - 9xy + 5y^{2}

    \Rightarrow H = 16x^{2} - 4xy + 5y^{2} -
2x^{2} + 8y^{2} + 13x^{2} - 9xy + 5y^{2}

    \Rightarrow H = \left( 16x^{2} - 2x^{2}
+ 13x^{2} ight) + \left( 5y^{2} + 5y^{2} + 8y^{2} ight) + ( - 9xy -
4xy)

    \Rightarrow H = 27x^{2} + 18y^{2} -
13xy

  • Câu 15: Thông hiểu
    Điền đáp án vào ô trống

    Thực hiện thu gọn đa thức

    \left( { - 5{u^3}{v^4} + 9u} ight) - \left( {5{u^3}{v^4} + 8u - 8{u^2}{v^2}} ight) + \left( { - 8{u^4}{v^2} + 8{u^3}{v^4}} ight)

    = -2 || - 2{u^3}{v^4}+ 8{u^2}{v^2} + -8 || - 8{u^4}{v^2} + 1u.

    Đáp án là:

    Thực hiện thu gọn đa thức

    \left( { - 5{u^3}{v^4} + 9u} ight) - \left( {5{u^3}{v^4} + 8u - 8{u^2}{v^2}} ight) + \left( { - 8{u^4}{v^2} + 8{u^3}{v^4}} ight)

    = -2 || - 2{u^3}{v^4}+ 8{u^2}{v^2} + -8 || - 8{u^4}{v^2} + 1u.

    Ta có:

    \left( - 5u^{3}v^{4} + 9u ight) -
\left( 5u^{3}v^{4} + 8u - 8u^{2}v^{2} ight) + \left( - 8u^{4}v^{2} +
8u^{3}v^{4} ight)

    = - 5u^{3}v^{4} + 9u - 5u^{3}v^{4} - 8u
+ 8u^{2}v^{2} - 8u^{4}v^{2} + 8u^{3}v^{4}

    = \left( - 5u^{3}v^{4} + 8u^{3}v^{4} -
5u^{3}v^{4} ight) + (9u - 8u) + \left( 8u^{2}v^{2} - 8u^{4}v^{2}
ight)

    = \left( - 5u^{3}v^{4} + 8u^{3}v^{4} -
5u^{3}v^{4} ight) + (9u - 8u) + 8u^{2}v^{2} - 8u^{4}v^{2}

    = - 2u^{3}v^{4} + u + 8u^{2}v^{2} -
8u^{4}v^{2}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (80%):
    2/3
  • Thông hiểu (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Toán 8 - Kết nối tri thức với Cuộc sống

Xem thêm