Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm

Công thức tích phân

Công thức tích phân là một trong những phần trong thường xuyên xuất hiện trong đề thi đại học. Bài viết sau đây sẽ giúp các bạn ôn tập và củng cố các kiến thức cơ bản của tích phân như định nghĩa, phương pháp tính tích phân và bài tập minh họa. Mời các bạn cùng tham khảo nhằm ôn thi THPT quốc gia hiệu quả.

Công thức tích phân

Định nghĩa tích phân

Cho hàm f(x) liên tục trên khoảng K và a, b là hai số bất kỳ thuộc K. Nếu F(x) là một nguyên hàm của f(x) thì hiệu số F(b) − F(a) được gọi là tích phân của f(x) từ a đến b và ký hiệu là Công thức tích phân.

Tính chất của tích phân – Công thức tích phân

Cho các hàm số f(x), g(x) liên tục trên K và a, b, c là ba số thuộc K.

Công thức tích phân

Một số phương pháp tính tích phân

Phương pháp đổi biến số

Công thức đổi biến số Công thức tích phân. Trong đó f(x) là hàm số liên tục và u(x) có đạo hàm liên tục trên khoảng J sao cho hàm hợp f[u(x)]f[u(x)] xác định trên J; a, b ∈ J.

Các phương pháp đổi biến số thường gặp:

Cách 1: Đặt u = u(x) (u là một hàm theo x).

Cách 2: Đặt x = x(t) (x là một hàm theo t).

Phương pháp tích phân từng phần

Định lí:

Nếu u(x), v(x) là hai hàm số có đạo hàm liên tục trên khoảng K và a, b là hai số thuộc K thì Công thức tích phân.

Bài tập minh họa áp dụng công thức tích phân

Ví dụ 1:

Áp dụng công thức tính tích phân cơ bản, tính các tích phân sau:

Công thức tích phân

Công thức tích phân

Công thức tích phân

Công thức tích phân

Công thức tích phân

Các tài liệu liên quan:

Chia sẻ, đánh giá bài viết
1
Chọn file muốn tải về:
Đóng Chỉ thành viên VnDoc PRO/PROPLUS tải được nội dung này!
Đóng
79.000 / tháng
Đặc quyền các gói Thành viên
PRO
Phổ biến nhất
PRO+
Tải tài liệu Cao cấp 1 Lớp
Tải tài liệu Trả phí + Miễn phí
Xem nội dung bài viết
Trải nghiệm Không quảng cáo
Làm bài trắc nghiệm không giới hạn
Mua cả năm Tiết kiệm tới 48%
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Gợi ý cho bạn

Xem thêm
🖼️

Thi THPT Quốc gia môn Toán

Xem thêm
Chia sẻ
Chia sẻ FacebookChia sẻ TwitterSao chép liên kếtQuét bằng QR Code
Mã QR Code
Đóng