Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề thi học kì 1 Toán 10 Cánh Diều Đề 3

Mô tả thêm:

Mời các bạn học cùng thử sức với Đề thi học kì 1 môn Toán lớp 10 theo chương trình sách Cánh Diều nha!

  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Tìm số nghiệm của phương trình

    Phương trình \left( x^{2} + 5x + 4 ight)\sqrt{x + 3} =0 có bao nhiêu nghiệm?

    Điều kiện xác định của phương trình là x ≥  − 3.

    Phương trình tương đương với \Leftrightarrow \left\{ \begin{matrix}x \geq - 3 \\\left\lbrack \begin{matrix}x = - 1 \\x = - 4 \\x = - 3 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = - 1 \\x = - 3 \\\end{matrix} ight..

    Vậy phương trình có hai nghiệm.

  • Câu 2: Vận dụng

    Tính giá trị biểu thức A

    Cho các véc tơ \overrightarrow{a},\ \
\overrightarrow{b}\overrightarrow{c} thỏa mãn các điều kiện \left| \overrightarrow{a} \right| = x,\ \
\left| \overrightarrow{b} \right| = y\left| \overrightarrow{z} \right| = c\overrightarrow{a} + \overrightarrow{b} +
3\overrightarrow{c} = \overrightarrow{0}. Tính A = \overrightarrow{a}.\overrightarrow{b} +
\overrightarrow{b}.\overrightarrow{c} +
\overrightarrow{c}.\overrightarrow{a}.

    Ta có:

    \overrightarrow{a} + \overrightarrow{b} +
3\overrightarrow{c} = \overrightarrow{0} \Rightarrow \overrightarrow{a}
+ \overrightarrow{b} + \overrightarrow{c} = -
2\overrightarrow{c}.

    \Rightarrow {\overrightarrow{a}}^{2} +
{\overrightarrow{b}}^{2} + {\overrightarrow{c}}^{2} + 2A =
4{\overrightarrow{c}}^{2}.

    \Rightarrow \left( \overrightarrow{a} +
\overrightarrow{b} + \overrightarrow{c} \right)^{2} = \left( -
2\overrightarrow{c} \right)^{2}.

    Sử dụng tính chất bình phương vô hướng bằng bình phương độ dài ta có:

    x^{2} + y^{2} + z^{2} + 2A =
4z^{2}

    \Rightarrow A = \frac{3z^{2} - x^{2} -
y^{2}}{2}.

  • Câu 3: Vận dụng cao

    Chọn khẳng định đúng

    Cho tam giác ABCAB =
c;BC = a;AC = b\widehat{C} <
\widehat{B}. Biết rằng:

    \dfrac{\sin\left( \widehat{B} -\widehat{C} ight)}{\sin\left( \widehat{B} + \widehat{C} ight)} =\dfrac{b^{2} - c^{2}}{b^{2} + c^{2}}

    Chọn khẳng định đúng?

    Ta có:

    \frac{\sin\left( \widehat{B} -\widehat{C} ight)}{\sin\left( \widehat{B} + \widehat{C} ight)} =\frac{\sin\widehat{B}.\cos\widehat{C} -\sin\widehat{C}.\cos\widehat{B}}{\sin\widehat{B}.\cos\widehat{C} +\sin\widehat{C}.\cos\widehat{B}}

    = \dfrac{\dfrac{b}{2R}.\cos\widehat{C} -\dfrac{c}{2R}.\cos\widehat{B}}{\dfrac{b}{2R}.\cos\widehat{C} +\dfrac{c}{2R}.\cos\widehat{B}}

    = \dfrac{2ab\cos\widehat{C} -2ac.\cos\widehat{B}}{2ab\cos\widehat{C} +2ac.\cos\widehat{B}}

    = \frac{\left( a^{2} + b^{2} - c^{2}
ight) - \left( a^{2} + c^{2} - b^{2} ight)}{\left( a^{2} + b^{2} -
c^{2} ight) + \left( a^{2} + c^{2} - b^{2} ight)}

    = \frac{b^{2} -
c^{2}}{a^{2}}

    \frac{\sin\left( \widehat{B} -
\widehat{C} ight)}{\sin\left( \widehat{B} + \widehat{C} ight)} =
\frac{b^{2} - c^{2}}{b^{2} + c^{2}}

    \Rightarrow \frac{b^{2} - c^{2}}{a^{2}}
= \frac{b^{2} - c^{2}}{b^{2} + c^{2}}

    \Rightarrow a^{2} = b^{2} +
c^{2}

    Vậy tam giác ABC là tam giác vuông tại A.

  • Câu 4: Nhận biết

    Tìm đẳng thức đúng

    Nếu G là trọng tam giác ABC thì đẳng thức nào sau đây đúng.

    Hình vẽ minh họa

    Gọi M là trung điểm của BC nên ta có

    \overrightarrow{AB}+\overrightarrow{AC} = 2\overrightarrow{AM}

    \overrightarrow{AM} =
\frac{3}{2}\overrightarrow{AG} \Rightarrow \overrightarrow{AB} +
\overrightarrow{AC} = 2.\frac{3}{2}\overrightarrow{AG} =
3\overrightarrow{AG}

    \Rightarrow \overrightarrow{AG} =
\frac{\overrightarrow{AB} + \overrightarrow{AC}}{3}.

  • Câu 5: Nhận biết

    Trục đối xứng của hàm số bậc hai

    Trong các hàm số sau, hàm số nào có đồ thị nhận đường x = 1 làm trục đối xứng?

    Ta có đáp án y=-2x^{2}+4x+1 có: x =  - \frac{b}{{2a}} =  - \frac{4}{{2.\left( { - 2} ight)}} = 1

    Vậy x = 1 là trục đối xứng của đồ thị hàm số y=-2x^{2}+4x+1.

  • Câu 6: Vận dụng cao

    Tìm số nghiệm nguyên của phương trình

    Phương trình x^{2} = \sqrt{2 - x} + 2 có mấy nghiệm nguyên ?

    Đặt t = \sqrt{2 - x}\ \ \ (t \geq
0). Ta có hệ phương trình:

    \left\{ \begin{matrix}
x^{2} = t + 2 \\
t^{2} = - x + 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
t = - x \\
t = x - 1 \\
\end{matrix} ight.

    Với t =  − x ta được \left\lbrack \begin{matrix}
x = 1 \Rightarrow t = - 1(L) \\
x = - 2 \Rightarrow t = 2(TM) \\
\end{matrix} ight.

    Với t = x − 1 ta được \left\lbrack \begin{matrix}
x = \frac{1 + \sqrt{5}}{2} \Rightarrow t = \frac{\sqrt{5} - 1}{2}(TM) \\
x = \frac{1 - \sqrt{5}}{2} \Rightarrow t = \frac{- \sqrt{5} - 1}{2}(L)
\\
\end{matrix} ight.

    Vậy phương trình có 2 nghiệm x =  − 2x = \frac{1 + \sqrt{5}}{2}.

  • Câu 7: Thông hiểu

    Chọn đáp án đúng

    Một cửa hàng bán hai loại mặt hàng AB. Biết rằng cứ bán một mặt hàng loại A cửa hàng lãi 5 nghìn đồng, bán một mặt hàng loại B cửa hàng lãi 7 nghìn đồng. Gọi x,y lần lượt là số mặt hàng loại A và mặt hàng loại B mà cửa hàng đó bán ra trong một tháng. Cặp số (x;y) nào sau đây biểu thị số mặt hàng bán ra mỗi loại của cửa hàng trong một tháng mà tổng số tiền lãi không ít hơn 30 triệu đồng?

    Đặt x là số tiền lãi của mặt hàng A

    y là số tiền lãi của mặt hàng B

    Đổi 30 triệu = 30 000 nghìn đồng

    Theo đề bài ta có: 5x + 7y \geqslant
30000

    TH1: Thay A (1000; 2000) vào phương trình

    \Rightarrow 5.1000 + 7.2000 = 19000 <
30000(P)

    {TH}_{2}. Thay B(3000; 1000) vào phương trình

    \Rightarrow 5.3000 + 7 \cdot 1000 =
22000 < 3000(l)

    {TH}_{3} : Thay C(2000;3000) vào phương trình

    \Rightarrow 5.2000 + 7.3000 = 31000 \geq
3000(tm)

    TH4: Thay D(3000;2000) vào phương trình

    \Rightarrow 5.3000 + 7.2000 = 29000 <
3000(l)

    Vậy đáp án là: C(2000;3000)

  • Câu 8: Thông hiểu

    Tìm tập xác định

    Tìm tập xác định D của hàm số y = \frac{3 - x}{\sqrt{4 - 3x -
x^{2}}}.

    Hàm số xác định khi và chỉ khi 4 − 3x − x2 > 0.

    Phương trình 4 - 3x - x^{2} = 0
\Leftrightarrow (x - 1)(x + 4) = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = - \ 4 \\
\end{matrix} ight.\ .

    Bảng xét dấu:

    Dựa vào bảng xét dấu, ta thấy 4 − 3x − x2 > 0 ⇔ x ∈ (− 4; 1).

    Vậy tập xác định của hàm số là D = (− 4;1).

  • Câu 9: Vận dụng

    Xét tính đúng sai của khẳng định

    Cho tam giác ABC đều cạnh a, đường trung tuyếnAH, trọng tâm là G.

    a) \overrightarrow{AB} +
\overrightarrow{BC} = \overrightarrow{AC}. Đúng||Sai

    b) \left| \overrightarrow{AB} +
\overrightarrow{BC} \right| = 2a. Sai||Đúng

    c) \left| \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} \right| = 0. Đúng||Sai

    d) \left| \overrightarrow{AC} +
\overrightarrow{AH} \right| = a\sqrt{3}. Sai||Đúng

    Đáp án là:

    Cho tam giác ABC đều cạnh a, đường trung tuyếnAH, trọng tâm là G.

    a) \overrightarrow{AB} +
\overrightarrow{BC} = \overrightarrow{AC}. Đúng||Sai

    b) \left| \overrightarrow{AB} +
\overrightarrow{BC} \right| = 2a. Sai||Đúng

    c) \left| \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} \right| = 0. Đúng||Sai

    d) \left| \overrightarrow{AC} +
\overrightarrow{AH} \right| = a\sqrt{3}. Sai||Đúng

    a) Đúng: Vì đây là quy tắc ba điểm đối với phép cộng véc tơ.

    b) Sai: Vì \left| \overrightarrow{AB} +
\overrightarrow{BC} \right| = \left| \overrightarrow{AC} \right| = AC =
a.

    c) Đúng: Vì với G là trọng tâm tam giác ABCsuy ra \overrightarrow{GA} + \overrightarrow{GB} +
\overrightarrow{GC} = \overrightarrow{0}

    \Rightarrow \left| \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} \right| = \left|
\overrightarrow{0} \right| = 0.

    Minh họa bằng hình vẽ:

    d) Sai: 

    Dựng \overrightarrow{CM} =
\overrightarrow{AH} \Rightarrow AHMC là hình bình hành

    \Rightarrow \overrightarrow{AC} +\overrightarrow{AH}= \overrightarrow{AM} \Rightarrow \left| \overrightarrow{AC} +
\overrightarrow{AH} \right| = AM.

    Gọi K đối xứng với A qua BC \Rightarrow \Delta AKM vuông tại K.

    AK = 2AH = a\sqrt{3} ; KM = CH = \frac{a}{2}.

    AM = \sqrt{AK^{2} + KM^{2}} = \sqrt{\left( a\sqrt{3} \right)^{2} +
\left( \frac{a}{2} \right)^{2}} =
\frac{a\sqrt{13}}{2}

    \Rightarrow \left| \overrightarrow{AC} +
\overrightarrow{AH} \right| = \frac{a\sqrt{13}}{2}.

  • Câu 10: Thông hiểu

    Xét tính đúng sai của các khẳng định

    Cho tứ giác ABCD. Gọi E,F,G,H theo thứ tự là trung điểm của BC,BD, AD,AC. Khi đó:

    a) \overrightarrow{EH} cùng hướng \overrightarrow{AB}. Sai||Đúng

    b) EF là đường trung bình của các tam giác BCD. Đúng||Sai

    c) \overrightarrow{EH} =
\overrightarrow{FG}.Đúng||Sai

    d) EFGH là hình bình hành. Đúng||Sai

    Đáp án là:

    Cho tứ giác ABCD. Gọi E,F,G,H theo thứ tự là trung điểm của BC,BD, AD,AC. Khi đó:

    a) \overrightarrow{EH} cùng hướng \overrightarrow{AB}. Sai||Đúng

    b) EF là đường trung bình của các tam giác BCD. Đúng||Sai

    c) \overrightarrow{EH} =
\overrightarrow{FG}.Đúng||Sai

    d) EFGH là hình bình hành. Đúng||Sai

    a) Sai

    Hình vẽ minh họa

    A diagram of a triangle with Great Pyramid of Giza in the backgroundDescription automatically generated

    Ta có: \overrightarrow{EH} ngược hướng \overrightarrow{AB}.

    b) Đúng

    E là trung điểm BC

    F là trung điểm BD

    Suy ra EF là đường trung bình tam giác BCD

    c) Đúng

    Ta có EH,FG lần lượt là đường trung bình của các tam giác ABC,ABD nên EH//FG//ABEH = FG = \frac{1}{2}AB.

    Do đó \overrightarrow{EH} =
\overrightarrow{FG}.

    d) Đúng

    Ta có EH,FG lần lượt là đường trung bình của các tam giác ABC,ABD nên EH//FG//ABEH = FG = \frac{1}{2}AB.

    Do đó EFGH là hình bình hành.

  • Câu 11: Vận dụng

    Xác định mệnh đề đúng

    Cho tam giác ABC và các mệnh đề

    (I) \cos\frac{B+C}{2}=\sin\frac{A}{2}

    (II) \tan\frac{A+B}{2}\tan\frac{C}{2}=1

    (III) \cos (A +B - C)=\cos 2C

    Mệnh đề nào đúng?

    Ta có: 

    \begin{matrix}  \cos \dfrac{{B + C}}{2} = \cos \dfrac{{{{180}^0} - A}}{2} \hfill \\   = \cos \left( {{{90}^0} - \dfrac{A}{2}} ight) = \sin \dfrac{A}{2} \hfill \\ \end{matrix}

    => Mệnh đề đúng

    \begin{matrix}  \tan \dfrac{{A + B}}{2}.\tan \dfrac{C}{2} = \tan \dfrac{{{{180}^0} - C}}{2}.\tan \dfrac{C}{2} \hfill \\   = \tan \left( {{{90}^0} - \dfrac{C}{2}} ight).\tan \dfrac{C}{2} \hfill \\   = \cot \dfrac{C}{2}.\tan \dfrac{C}{2} = 1 \hfill \\ \end{matrix}

    => Mệnh đề đúng

    \begin{matrix}  \cos (A + B - C) = \cos ({180^0} - C - C) \hfill \\   = \cos ({180^0} - 2C) = \sin 2C \hfill \\ \end{matrix}

    => Mệnh đề sai

  • Câu 12: Nhận biết

    Tổng các bình phương của các nghiệm là

    Tổng các bình phương của các nghiệm của phương trình(x - 1)(x - 3) + 3\sqrt{x^{2} -
4x + 5} - 2 = 0 bằng bao nhiêu?

    Ta có (x - 1)(x - 3) + 3\sqrt{x^{2} - 4x
+ 5} - 2 = 0

    \Leftrightarrow x^{2} - 4x + 5 +3\sqrt{x^{2} - 4x + 5} - 4 = 0\Leftrightarrow \sqrt{x^{2} - 4x + 5} =1

    \Leftrightarrow x^{2} - 4x + 5 = 1
\Leftrightarrow x^{2} - 4x + 4 = 0 \Leftrightarrow x = 2.

    Tổng các bình phương của các nghiệm của phương trình là 4.

  • Câu 13: Thông hiểu

    Chọn khẳng định đúng

    Cộng các vectơ có cùng độ dài 5 và cùng giá. Khẳng định nào sau đây đúng?

    Cộng số chẵn các vectơ ngược hướng cùng độ dài ta được vectơ \overrightarrow{\mathbf{0}}.

  • Câu 14: Thông hiểu

    Tìm số tập X thỏa mãn yêu cầu bài toán

    Cho tập hợp A = \left\{ 1;2;3;4;5
\right\}. Tìm số tập hợp X sao cho A\backslash X = \left\{ 1;3;5 \right\}X\backslash A = \left\{ 6;7
\right\}.

    A\backslash X = \left\{ 1;3;5
\right\} nên X phải chứa hai phần tử 2; 4 và X không chứa các phần tử 1; 3; 5.

    Mặt khác X\backslash A = \left\{ 6;7
\right\} vậy X phải chứa 6; 7 và các phần tử khác nếu có phải thuộc A.

    Vậy X = \left\{ 2;4;6;7
\right\}.

  • Câu 15: Thông hiểu

    Tìm biểu thức sai

    Cho 2 vectơ \overrightarrow{a} = \left(a_{1};a_{2} \right),\overrightarrow{b} = \left( b_{1};b_{2}\right), tìm biểu thức sai?

    Phương án \overrightarrow{a}.\overrightarrow{b} =
a_{1}.b_{1} + a_{2}.b_{2}:

    Biểu thức tọa độ tích vô hướng \overrightarrow{a}.\overrightarrow{b} =
a_{1}.b_{1} + a_{2}.b_{2} nên loại.

    Phương án \overrightarrow{a}.\overrightarrow{b} = \left|
\overrightarrow{a} \right|.\left| \overrightarrow{b} \right|.cos\left(
\overrightarrow{a},\overrightarrow{b} \right):

    Công thức tích vô hướng của hai véc tơ \overrightarrow{a}.\overrightarrow{b} = \left|
\overrightarrow{a} \right|.\left| \overrightarrow{b} \right|.cos\left(
\overrightarrow{a},\overrightarrow{b} \right) nên loại.

    Phương án \overrightarrow{a}.\overrightarrow{b} =
\frac{1}{2}\left\lbrack \overrightarrow{a^{2}} + \overrightarrow{b^{2}}
- \left( \overrightarrow{a} + \overrightarrow{b} \right)^{2}
\right\rbrack:

    \frac{1}{2}\left\lbrack
\overrightarrow{a^{2}} + \overrightarrow{b^{2}} - \left(
\overrightarrow{a} + \overrightarrow{b} \right)^{2} \right\rbrack =
\frac{1}{2}\left\lbrack \overrightarrow{a^{2}} + \overrightarrow{b^{2}}
- \left( \overrightarrow{a^{2}} + \overrightarrow{b^{2}} +
2\overrightarrow{a}\overrightarrow{b} \right) \right\rbrack = -
\overrightarrow{a}\overrightarrow{b} nên chọn.

  • Câu 16: Nhận biết

    Tìm đẳng thức sai

    Gọi O là giao điểm của hai đường chéo của hình bình hành ABCD. Đẳng thức nào sau đây sai?

    Đẳng thức sai là \overrightarrow{OA} =
\overrightarrow{OC}.

  • Câu 17: Thông hiểu

    Tìm tập xác định

    Tập xác định của hàm số y = \frac{\sqrt{3 - x} + \sqrt{x + 1}}{x^{2} - 5x +
6}

    Hàm số y = \frac{\sqrt{3 - x} + \sqrt{x +
1}}{x^{2} - 5x + 6} có nghĩa khi \left\{ \begin{matrix}
3 - x \geq 0 \\
x + 1 \geq 0 \\
x^{2} - 5x + 6 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 1 \leq x \leq 3 \\
x eq 2;x eq 3 \\
\end{matrix} ight.

     ⇔ x ∈ [ − 1; 3) ∖ {2}.

  • Câu 18: Nhận biết

    Xác định tọa độ vectơ

    Trong mặt phẳng Oxy, cho A\left( x_{A};y_{A} \right)\ và\ \
B\left( x_{B};y_{B} \right). Tọa độ của vectơ \overrightarrow{AB}

    Theo công thức tọa độ vectơ \overrightarrow{AB} = \left( x_{B} - x_{A};y_{B} -
y_{A} \right).

  • Câu 19: Nhận biết

    Tìm câu sai

    Cho \alpha\beta là hai góc khác nhau và bù nhau, trong các đẳng thức sau đây đẳng thức nào sai?

    Mối liên hệ hai cung bù nhau.

  • Câu 20: Nhận biết

    Chọn khẳng định đúng

    Hàm số y = x2 − 4x + 11 đồng biến trên khoảng nào trong các khoảng sau đây?

    Ta có bảng biến thiên:

    Từ bảng biến thiên ta thấy, hàm số đồng biến trên khoảng(2;+∞).

  • Câu 21: Nhận biết

    Tìm điểm không thuộc miền nghiệm

    Miền nghiệm của bất phương trình - 2x + 4y \geq 1 chứa điểm nào dưới đây?

    Xét điểm (0;1). Ta có: - 2.0 + 4.1 = 4 \geq 1 thỏa mãn. Do đó miền nghiệm của bất phương trình - 2x + 4y
\geq 1 chứa điểm (0;1).

  • Câu 22: Thông hiểu

    Chọn khẳng định đúng

    Cho bất phương trình 2x+3y-6\leq 0 (1). Chọn khẳng định đúng trong các khẳng định sau:

     Bất phương trình bậc nhất hai ẩn luôn có vô số nghiệm.

  • Câu 23: Vận dụng

    Tìm tập xác định của hàm số

    Tập xác định của hàm số y = \frac{mx}{\left( 2m^{2} + 1 ight)x^{2} - 4mx
+ 2} là:

    ĐKXĐ: (2m2+1)x2 − 4mx + 2 ≠ 0.

    Xét tam thức bậc hai f(x) = (2m2+1)x2 − 4mx + 2.

    Ta có a = 2m2 + 1 > 0,  Δ′ = 4m2 − 2(2m2+1) =  − 2 < 0.

    Suy ra với mọi m ta có f(x) = (2m2+1)x2 − 4mx + 2 > 0  ∀x ∈ ℝ.

    Do đó với mọi m ta có (2m2+1)x2 − 4mx + 2 ≠ 0,  ∀x ∈ ℝ.

    Vậy tập xác định của hàm số là D = ℝ.

  • Câu 24: Vận dụng

    Tìm m thỏa mãn điều kiện

    Hỏi có bao nhiêu giá trị m nguyên trong nửa khoảng [ − 10;  − 4) để đường thẳng d : y =  − (m+1)x + m + 2 cắt Parabol (P) : y = x2 + x − 2 tại hai điểm phân biệt cùng phía với trục tung?

    Xét phương trình:  − (m+1)x + m + 2 = x2 + x − 2 ⇔ x2 + x(m+2) − m − 4 = 0

    Để đường thẳng d cắt Parabol(P) tại hai điểm phân biệt cùng phía với trục tung vậy điều kiện là \left\{ \begin{matrix}
\Delta > 0 \\
P > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
(m + 2)^{2} + 4(m + 4) > 0 \\
- m - 4 > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m^{2} + 8m + 20 > 0\ ,\ \forall m \\
m < - 4 \\
\end{matrix} ight.

    Vậy trong nửa khoảng[ − 10;  − 4)6 giá trị nguyên m.

  • Câu 25: Vận dụng cao

    Tính giá trị của S

    Biết rằng với mọi giá trị thực của tham số m, các đường thẳng dm:  y = (m−2)x + 2m − 3 cùng đi qua một điểm cố định là I(a;  b). Tính giá trị của biểu thức: S = a + b

    Ta có phương trình của đường thẳng đã cho: dm:  y = (m−2)x + 2m − 3 = (x+2)m − 2x − 3.

    Vì các đường thẳng dm luôn đi qua điểm I nên ta tìm x để m bị triệt tiêu ⇒I(−2;  1) ⇒ S =  − 1

  • Câu 26: Vận dụng

    Sau 2 giờ, hai tàu cách nhau bao nhiêu km

    Hai chiếc tàu thuỷ cùng xuất phát từ vị trí A, đi thẳng theo hai hướng tạo với nhau một góc 60^{0}. Tàu thứ nhất chạy với tốc độ 30\ km/h, tàu thứ hai chạy với tốc độ 40\ km/h. Hỏi sau 2 giờ hai tàu cách nhau bao nhiêu km?

    Ta có: Sau 2h quãng đường tàu thứ nhất chạy được là: S_{1} = 30.2 = 60\
km.

    Sau 2h quãng đường tàu thứ hai chạy được là: S_{2} = 40.2 = 80\
km.

    Vậy: sau 2h hai tàu cách nhau là: S = \sqrt{{S_{1}}^{2} + {S_{2}}^{2} -
2S_{1}.S_{2}.cos60^{0}} =
20\sqrt{13}.

  • Câu 27: Thông hiểu

    Tìm tọa độ trung điểm BC

    Trong mặt phẳng Oxy, cho hình chữ nhật ABCD có A(0; 3), D(2; 1) và I(–1; 0) là tâm của hình chữ nhật. Tọa độ trung điểm của đoạn thẳng BC là:

    Ta có: I là tâm hình chữ nhật ABCD

    => I là trung điểm của AC và I là trung điểm của BD

    Khi đó ta tìm tọa độ điểm B và điểm C

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{x_B} + {x_D} = 2{x_I}} \\   {{y_B} + {y_D} = 2{y_I}} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_B} = 2{x_I} - {x_D}} \\   {{y_B} = 2{y_I} - {y_D}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_B} = -4} \\   {{y_B} =  - 1} \end{array}} ight. \Rightarrow B\left( {-4; - 1} ight) \hfill \\ \end{matrix}

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{x_A} + {x_C} = 2{x_I}} \\   {{y_A} + {y_C} = 2{y_I}} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_C} = 2{x_I} - {x_A}} \\   {{y_C} = 2{y_I} - {y_A}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_C} =  - 2} \\   {{y_C} =  - 3} \end{array}} ight. \Rightarrow C\left( { - 2; - 3} ight) \hfill \\ \end{matrix}

    => Gọi M là trung điểm của BC có tọa độ là:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{x_B} + {x_C} = 2{x_M}} \\   {{y_B} + {y_C} = 2{y_M}} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{{x_B} + {x_C}}}{2} = {x_M}} \\   {\dfrac{{{y_B} + {y_C}}}{2} = {y_M}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_M} =  - 3} \\   {{y_M} =  - 2} \end{array}} ight. \Rightarrow M\left( { - 3; - 2} ight) \hfill \\ \end{matrix}

  • Câu 28: Nhận biết

    Tìm điểm thỏa mãn hệ bất phương trình

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
x - 2y < 0 \\
x + 3y > - 2 \\
y - x < 3 \\
\end{matrix} ight. chứa điểm nào sau đây?

    Ta thấy (0;1) là nghiệm của cả ba bất phương trình. Điều đó có nghĩa điểm (0;1) thuộc cả ba miền nghiệm của ba bất phương trình.

  • Câu 29: Vận dụng

    Giải hệ bất phương trình

    Cho hệ bất phương trình \left\{\begin{matrix}x+5y<1\\ 5x-4y>6\end{matrix}ight.. Hỏi khi cho y = 0, x có thể nhận mấy giá trị nguyên nào?

    Khi y=0 hệ bất phương trình trở thành:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {x + 5.0 < 1} \\   {5x - 4.0 > 6} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x < 1} \\   {5x > 6} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x < 1} \\   {x > \dfrac{6}{5}} \end{array}} ight.\left( {VN} ight) \Rightarrow x \in \left\{ \emptyset  ight\} \hfill \\ \end{matrix}

    Vậy y=0 không có giá trị nguyên nào của x thỏa mãn hệ bất phương trình đã cho.

  • Câu 30: Nhận biết

    Xác định số mệnh đề

    Trong các câu sau, có bao nhiêu câu là mệnh đề?

    (I) Hãy mở cửa ra!                            (II) Số 25 chia hết cho 8.

    (III) Số 17 là số nguyên tố.               (IV) Bạn thích ăn phở không?

    Các câu (III) và (II) là mệnh đề.

  • Câu 31: Nhận biết

    Tam thức bậc hai nhận giá trị không âm khi và chỉ khi

    Tam thức bậc hai f(x) =  − x2 + 3x − 2 nhận giá trị không âm khi và chỉ khi

    f(x) = - x^{2} + 3x - 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 2 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp ánx ∈ [1; 2] .

  • Câu 32: Nhận biết

    Tính độ dài BC

    Cho tam giác ABCAB=1;AC=\sqrt2;\hat A=45^{\circ}. Tính độ dài cạnh BC.

     Áp dụng định lí côsin:

    BC^2=AB^2+AC^2-2.AB.AC.\cos A=1+2-2.1.\sqrt2.\cos45^{\circ} =1.

    Suy ra BC=1.

  • Câu 33: Thông hiểu

    Tìm câu sai

    Cho tam giác ABC. Đẳng thức nào sai ?

    Ta có:

    A + B + C = 180^{0}

    \Rightarrow \frac{A + B + 2C}{2} =
90^{0} + \frac{C}{2}

    \Rightarrow \cos\left( \frac{B + C}{2}
\right) = \cos\left( 90^{0} + \frac{C}{2} \right)

    \Leftrightarrow \cos\left( \frac{B +
C}{2} \right) = - \sin\frac{C}{2}.

  • Câu 34: Thông hiểu

    Tìm x thỏa mãn điều kiện

    Giá trị nguyên dương lớn nhất của x để hàm số y = \sqrt{5 - 4x - x^{2}} xác định là

    Hàm số đã cho xác định khi và chỉ khi 5 − 4x − x2 ≥ 0 ⇔ x ∈ [− 5; 1].

    Vậy giá trị nguyên dương lớn nhất của xđể hàm số xác định là x = 1.

  • Câu 35: Thông hiểu

    Chọn khẳng định đúng

    Cho hàm số y = x^{2} – 3x + 2. Khẳng định nào sau đây đúng?

    Hàm số bậc hai y = x2 – 3x + 2 có tập xác định là ℝ. Khẳng định "Tập xác định của hàm số là D = (0; +∞)." sai.

    Xét điểm M(1; 0): thay x = 1; y = 0 vào hàm số ta có: 0 = 12 – 3. 1 + 2 = 0 là mệnh đề đúng. Vậy M(1; 0) thuộc đồ thị hàm số. Khẳng định "Điểm M(1; 0) thuộc đồ thị hàm số." đúng.

    Hàm số y = x2 – 3x + 2 có a = 1 > 0, b = ‒3 nên hàm số nghịch biến trên khoảng \left( { - \infty ;\frac{3}{2}} ight) và đồng biến trên khoảng \left( {\frac{3}{2}; + \infty } ight). Khẳng định "Hàm số đồng biến trên ℝ." sai.

    Hàm số y = x2 – 3x + 2 có a = 1 > 0 nên đồ thị hàm số có bề lõm quay lên trên. Khẳng định "Đồ thị hàm số có bề lõm quay xuống dưới." sai.

  • Câu 36: Nhận biết

    Tính tổng các vectơ

    Cho hình bình hành ABCD tâm O. Khi đó \overrightarrow{OA}+\overrightarrow{BO} bằng:

     

    Ta có: \overrightarrow {BO}  + \overrightarrow {OA}  = \overrightarrow {BA}  = \overrightarrow {CD}

  • Câu 37: Nhận biết

    Chọn phương án đúng

    Cho A = \lbrack a;a + 1). Lựa chọn phương án đúng.

    Ta có C_{\mathbb{R}}A\mathbb{=
R}\backslash A = ( - \infty;a) \cup \lbrack a + 1; +
\infty).

  • Câu 38: Vận dụng cao

    Tìm giá trị lớn nhất

    Một xưởng cơ khí có hai công nhân là Chiến và Bình. Xưởng sản xuất loại sản phẩm III. Mỗi sản phẩm I bán lãi 500 nghìn đồng, mỗi sản phẩm II bán lãi 400 nghìn đồng. Để sản xuất được một sản phẩm I thì Chiến phải làm việc trong 3 giờ, Bình phải làm việc trong 1 giờ. Để sản xuất được một sản phẩm II thì Chiến phải làm việc trong 2 giờ, Bình phải làm việc trong 6 giờ. Một người không thể làm được đồng thời hai sản phẩm. Biết rằng trong một tháng Chiến không thể làm việc quá 180 giờ và Bình không thể làm việc quá 220 giờ. Số tiền lãi lớn nhất trong một tháng của xưởng là.

    Gọi x, y lần lượt là số sản phẩm loại I và loại II được sản xuất ra. Điều kiện x, y nguyên dương.

    Ta có hệ bất phương trình sau: \left\{
\begin{matrix}
3x + 2y \leq 180 \\
x + 6y \leq 220 \\
x > 0 \\
y > 0 \\
\end{matrix} ight.

    Miền nghiệm của hệ trên là

    Tiền lãi trong một tháng của xưởng là T =
0,5x + 0,4y .

    Ta thấy T đạt giá trị lớn nhất chỉ có thể tại các điểm A, B, C. Vì C có tọa độ không nguyên nên loại.

    Tại A(60;\ 0) thì T = 30 triệu đồng.

    Tại B(40;\ 30) thì T = 32 triệu đồng.

    Vậy tiền lãi lớn nhất trong một tháng của xưởng là 32 triệu đồng.

  • Câu 39: Nhận biết

    Chọn đẳng thức đúng

    Cho hình bình hành ABCD, với giao điểm hai đường chéo I. Khi đó:

     Ta có: \overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{0} (2 vectơ đối nhau).

  • Câu 40: Thông hiểu

    Chọn kết luận đúng

    Cho tam giác ABCa^{2} + b^{2} - c^{2} > 0. Khi đó:

    Ta có:

    \cos C = \frac{a^{2} + b^{2} -
c^{2}}{2ab}.

    Mà: a^{2} + b^{2} - c^{2} > 0 suy ra: \cos C > 0 \Rightarrow C <
90^{0}.

  • Câu 41: Thông hiểu

    Biểu diễn một vectơ theo hai vectơ khác

    Cho hình bình hành ABCD. Tính \overrightarrow{AB} theo \overrightarrow{AC}\overrightarrow{BD}.

    ABCD là hình bình hành nên \overrightarrow{CB} + \overrightarrow{AD} =
\overrightarrow{0}.Ta có \left\{
\begin{matrix}
\overrightarrow{AB} = \overrightarrow{AC} + \overrightarrow{CB} \\
\overrightarrow{AB} = \overrightarrow{AD} + \overrightarrow{DB} \\
\end{matrix} ight.

    = > 2\overrightarrow{AB} =
\overrightarrow{AC} + \overrightarrow{DB} + \left( \overrightarrow{CB} +
\overrightarrow{AD} ight) = \overrightarrow{AC} +
\overrightarrow{DB}\overset{}{ightarrow}\overrightarrow{AB} =
\frac{1}{2}\overrightarrow{AC} +
\frac{1}{2}\overrightarrow{BD}.

  • Câu 42: Vận dụng cao

    Tìm điều kiện của x và y

    Cho hình bình hành ABCD. Lấy hai điểm M,N sao cho \overrightarrow{CM} =
\frac{1}{2}\overrightarrow{CB};\overrightarrow{CN} =
\frac{1}{3}\overrightarrow{CD}, lấy tiếp hai điểm I,J sao cho \overrightarrow{CI} =
x\overrightarrow{CD};\overrightarrow{BJ} =
y\overrightarrow{BI}. Để J là trọng tâm tam giác AMN thì x,y thỏa mãn điều kiện nào sau đây:

    Hình vẽ minh họa

    Tìm điều kiện của x và y

    \overrightarrow{JA} +
\overrightarrow{JM} + \overrightarrow{JN} = \overrightarrow{BA} -
\overrightarrow{BJ} + \overrightarrow{JB} + \overrightarrow{BM} +
\overrightarrow{JI} + \overrightarrow{IN}

    = \overrightarrow{BA} -
2\overrightarrow{BJ} + \frac{\overrightarrow{BC}}{2} +
\overrightarrow{BI} - \overrightarrow{BJ} + \overrightarrow{CN} -
\overrightarrow{CI}

    = \overrightarrow{BA} +
\frac{\overrightarrow{BC}}{2} + ( - 3y + 1).\overrightarrow{BI} +
\overrightarrow{CN} - \overrightarrow{CI}

    = \overrightarrow{BA} +
\frac{\overrightarrow{BC}}{2} + ( - 3y + 1).\left( \overrightarrow{BC} +
\overrightarrow{CI} ight) + \overrightarrow{CN} -
\overrightarrow{CI}

    = \overrightarrow{BA} + \left(
\frac{3}{2} - 3y ight)\left( \overrightarrow{AC} - \overrightarrow{AB}
ight) + \overrightarrow{CN} - 3y.\overrightarrow{CI}

    = \overrightarrow{BA} + \left(
\frac{3}{2} - 3y ight)\left( \overrightarrow{AC} - \overrightarrow{AB}
ight) + \frac{1}{3}\overrightarrow{CD} -
3xy.\overrightarrow{CD}

    = \overrightarrow{BA} + \left(
\frac{3}{2} - 3y ight)\left( \overrightarrow{AC} - \overrightarrow{AB}
ight) + \left( \frac{1}{3} - 3xy
ight).\overrightarrow{BA}

    = \left( - \frac{17}{6} + 3y + 3xy
ight).\overrightarrow{AB} + \left( \frac{3}{2} - 3y
ight).\overrightarrow{AC}

    Để J là trọng tâm tam giác AMN thì

    \overrightarrow{JA} +
\overrightarrow{JM} + \overrightarrow{JN} =
\overrightarrow{0}

    \Leftrightarrow \left( - \frac{17}{6} +
3y + 3xy ight).\overrightarrow{AB} + \left( \frac{3}{2} - 3y
ight).\overrightarrow{AC} = \overrightarrow{0}

    Mặt khác do \overrightarrow{AB};\overrightarrow{AC} không cùng phương nên ta suy ra:

    \left\{ \begin{matrix}- \dfrac{17}{6} + 3y + 3xy = 0 \\\dfrac{3}{2} - 3y = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = \dfrac{8}{9} \\y = \dfrac{1}{2} \\\end{matrix} ight.

    Vậy với x = \frac{8}{9};y =
\frac{1}{2} thì điểm J là trọng tâm tam giác AMN.

  • Câu 43: Thông hiểu

    Chọn đáp án đúng

    Cho các tập hợp M = \lbrack - 3;\ \
6\rbrackN = ( - \infty;\ \  -
2) \cup (3;\ \  + \infty). Khi đó M
\cap N

    Biểu diễn trục số:

    M = \lbrack - 3;\ \ 6\rbrackN = ( - \infty;\ \  - 2) \cup (3;\ \  +
\infty).

    Khi đó: M \cap N = \lbrack - 3;\ \  - 2)
\cup (3;\ \ 6\rbrack.

  • Câu 44: Thông hiểu

    Chọn đáp án đúng

    Mệnh đề: " \exists x \in \mathbb{R},x^{2} > 33 " khẳng định là

    Mệnh đề: " \exists x \in \mathbb{R},x^{2}
> 33 " khẳng định là có ít nhất một số thực mà bình phương của nó lớn hơn 33.

  • Câu 45: Vận dụng cao

    Tính bán kính của đường tròn

    Cho hình vuông ABCD tâm O cạnh a. Biết rằng tập hợp điểm M thỏa mãn 2MA^{2} + MB^{2} + 2MC^{2} + MD^{2} =
9a^{2} là một đường tròn. Tính bán kính của đường tròn.

    Ta có: 

    2MA^{2} + MB^{2} + 2MC^{2} + MD^{2} =
9a^{2}

    \Leftrightarrow 2\left(
\overrightarrow{MO} + \overrightarrow{OA} ight)^{2} + \left(
\overrightarrow{MO} + \overrightarrow{OB} ight)^{2} + 2\left(
\overrightarrow{MO} + \overrightarrow{OC} ight)^{2} + \left(
\overrightarrow{MO} + \overrightarrow{OD} ight)^{2} =
9a^{2}

    \Leftrightarrow 6MO^{2} + 2OA^{2} +
OB^{2} + 2OC^{2} + OD^{2}

    +
2\overrightarrow{MO}\left( 2\overrightarrow{OA} + \overrightarrow{OB} +
2\overrightarrow{OC} + \overrightarrow{OD} ight) = 9a^{2}

    Do 2\overrightarrow{OA} +
\overrightarrow{OB} + 2\overrightarrow{OC} + \overrightarrow{OD} =
\overrightarrow{0}

    \Leftrightarrow 6MO^{2} + 3a^{2} =
9a^{2}

    \Leftrightarrow MO = a

    Vậy tập hợp các điểm M là đường tròn tâm O, bán kính R = a.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Cánh Diều Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo