Phương án nào đúng
Cho hai tập hợp
và
.Tập hợp
bằng tập nào sau đây?
Ta có:
Mời các bạn học cùng thử sức với Đề thi học kì 1 môn Toán lớp 10 theo chương trình sách Cánh Diều nha!
Phương án nào đúng
Cho hai tập hợp
và
.Tập hợp
bằng tập nào sau đây?
Ta có:
Chọn đẳng thức đúng
Trong các đẳng thức sau, đẳng thức nào đúng?
Đáp án đúng là sin(180° – α) = sin α
Tìm nghiệm của phương trình
Nghiệm của phương trình
là:
Điều kiện: .Ta có
( vì x + 3 > 0 )
⇔ x = 2.
Kể tên các vectơ thỏa mãn
Cho lục giác đều
tâm
. Ba vectơ bằng vectơ
là:
Ba vectơ bằng vectơ là:
,
,
.
Tìm trục đối xứng
Trục đối xứng của parabol y = − x2 + 5x + 3 là đường thẳng có phương trình
Trục đối xứng của parabol y = ax2 + bx + c là đường thẳng .
Trục đối xứng của parabol y = − x2 + 5x + 3 là đường thẳng .
Tính độ dài vectơ
Cho hình vuông
có cạnh bằng
. Khi đó
bằng:
Ta có:
Tìm tập xác định
Tìm tập xác định D của hàm số
.
Hàm số xác định khi
⇔ x2 − 3x + 2 ≠ x2 − 7 ⇔ 9 ≠ 3x ⇔ x ≠ 3.
Vậy tập xác định của hàm số là D = ℝ ∖ {3}.
Chọn khẳng định đúng
Cho tam giác
có
và
. Biết rằng:

Chọn khẳng định đúng?
Ta có:
Mà
Vậy tam giác ABC là tam giác vuông tại A.
Sau 2 giờ, hai tàu cách nhau bao nhiêu km
Hai chiếc tàu thuỷ cùng xuất phát từ vị trí
, đi thẳng theo hai hướng tạo với nhau một góc
. Tàu thứ nhất chạy với tốc độ
, tàu thứ hai chạy với tốc độ
. Hỏi sau
giờ hai tàu cách nhau bao nhiêu
?

Ta có: Sau quãng đường tàu thứ nhất chạy được là:
Sau quãng đường tàu thứ hai chạy được là:
Vậy: sau hai tàu cách nhau là:
Tìm m để bất phương trình vô nghiệm
Cho tam thức bậc hai
. Tìm tất cả các giá trị thực của tham số m để bất phương trình
vô nghiệm?
Bất phương trình: vô nghiệm khi và chỉ khi
Xét
Với thì (*)
loại giá trị
.
Với thì bất phương trình (*)
bất phương trình vô nghiệm, nhận giá trị
.
Xét
Vậy thì bất phương trình (*) vô nghiệm.
Chọn khẳng định đúng
Cho bất phương trình
(1). Chọn khẳng định đúng trong các khẳng định sau:
Bất phương trình bậc nhất hai ẩn luôn có vô số nghiệm.
Chọn phương án thích hợp
Cho
không cùng phương,
. Vectơ cùng hướng với
là:
Ta có:
.
Vậy đáp án cần tìm là:
Tìm điểm thỏa mãn
Miền nghiệm của hệ bất phương trình
chứa điểm nào trong các điểm sau đây?
Với . Ta có:
. Cả 4 bất phương trình đều đúng. Chọn đáp án này.
Tìm điểm thỏa mãn
Cho hệ bất phương trình
. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?
Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.
Với
. Bất phương trình thứ hai sai nên không thỏa mãn.
Với
. Đúng. Chọn đáp án này.
Tìm tập xác định
Tập xác định của hàm số
là
Hàm số xác định khi .
Vậy tập xác định của hàm số là D = (1; 3].
Tìm m thỏa mãn điều kiện
Với giá trị nào của m thì bất phương trình x2 − x + m ≤ 0 vô nghiệm?
Bất phương trình x2 − x + m ≤ 0 vô nghiệm khi và chỉ khi bất phương trình .
Tìm công thức của Parabol
Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có đỉnh ![]()
Vì (P) có đỉnh nên ta có
. Vậy (P) : y = 3x2 + 3x − 2.
Chọn phương án thích hợp
Phủ định của mệnh đề: “Có ít nhất một số vô tỷ là số thập phân vô hạn tuần hoàn” là mệnh đề nào sau đây:
Phủ định của “có ít nhất” là “mọi”
Phủ định của “tuần hoàn” là “không tuần hoàn”.
Vậy đáp án cần tìm là: “Mọi số vô tỉ đều là số thập phân vô hạn không tuần hoàn”.
Khẳng định nào sau đây đúng?
Cho
. Khẳng định nào sau đây đúng?
Ta có . Do đó:
và
ngược hướng.
và
cùng độ dài.
là hình bình hành nếu
và
không cùng giá.
Chọn đáp án và
cùng độ dài.
Giải phương trình
Tập nghiệm của phương trình:
là:
Điều kiện: =>
Phương trình tương đương
Ta có:
Vậy tập nghiệm của phương trình là:
Tìm m thỏa mãn điều kiện
Tìm m để hàm số y = x2 − 2x + 2m + 3 có giá trị nhỏ nhất trên đoạn [2 ; 5] bằng − 3.
Ta có bảng biến thiên của hàm số y = x2 − 2x + 2m + 3 trên đoạn [2 ; 5]:

Do đó giá trị nhỏ nhất trên đoạn [2 ; 5] của hàm số y = x2 − 2x + 2m + 3 bằng 2m + 3.
Theo giả thiết 2m + 3 = − 3 ⇔ m = − 3.
Xét tính đúng sai của các khẳng định
Trong mặt phẳng với hệ trục tọa độ
, cho hai điểm
,
. Khi đó các mệnh đề sau đúng hay sai?
a) Tích vô hướng của hai vectơ là một vectơ. Sai||Đúng
b) Tích vô hướng của hai vectơ
. Đúng||Sai
c) Gọi
là điểm đối xứng với điểm
qua điểm
. Khi đó
. Sai||Đúng
d) Gọi điểm
thuộc
có tung độ dương sao cho
vuông tại
. Khi đó tọa độ điểm
là
. Sai||Đúng
Trong mặt phẳng với hệ trục tọa độ
, cho hai điểm
,
. Khi đó các mệnh đề sau đúng hay sai?
a) Tích vô hướng của hai vectơ là một vectơ. Sai||Đúng
b) Tích vô hướng của hai vectơ
. Đúng||Sai
c) Gọi
là điểm đối xứng với điểm
qua điểm
. Khi đó
. Sai||Đúng
d) Gọi điểm
thuộc
có tung độ dương sao cho
vuông tại
. Khi đó tọa độ điểm
là
. Sai||Đúng
a) Saib) Đúngc) Said) Sai
a) Tích vô hướng của hai véc tơ là một số. Mệnh đề a) sai.
b) Ta có: . Mệnh đề b) đúng.
c) Do là điểm đối xứng với điểm
qua điểm
nên
là trung điểm của
.
Khi đó
.
Mệnh đề c) sai.
d) Ta có: .
,
.
vuông tại
.
Xác định tất cả các giá trị nguyên của tham số m
Có bao nhiêu giá trị nguyên của tham số
sao cho hàm số
có hai nghiệm phân biệt thuộc khoảng
?
Ta có:
Từ yêu cầu bài toán
Suy ra
Vậy có 8 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Định tọa độ điểm D thỏa mãn đẳng thức
Cho
. Điểm
thỏa mãn
, tọa độ
là:
Ta có:
.
Tính độ dài cạnh c của tam giác ABC
Cho tam giác ABC có
, góc
bằng
. Độ dài cạnh
bằng bao nhiêu?
Ta có:
.
Tìm giá trị nhỏ nhất
Giá trị nhỏ nhất của biểu thức
trên miền xác định bởi hệ
là:
Miền nghiệm của hệ là miền trong của tam giác
kể cả biên
Ta thấy đạt giá trị nhỏ nhất chỉ có thể tại các điểm
,
,
.
Tại thì
.
Tại thì
Tại thì
.
Vậy khi
,
.
Tìm bất phương trình tương đương
Bất phương trình
tương đương với bất phương trình nào sau đây?
Ta có: .
Xác định kết quả phép toán tập hợp
Cho hai tập hợp
và
. Khi đó
là
Biểu diễn hai tập hợp trên trục số như sau:

Ta có ,
.
Do đó
Chọn đáp án thích hợp
Trong mặt phẳng
, cho các điểm
. Tọa độ điểm
thỏa mãn
là
Ta có:
.
Xác định đẳng thức thích hợp với hình vẽ
Đẳng thức nào sau đây mô tả đúng hình vẽ bên:

Ta có và
ngược hướng nên
Vậy .
Tính độ lớn của vectơ
Cho 2 vectơ
và
có
,
và
. Tính
.
Ta có
.
Tìm mệnh đề đúng
Hai vectơ được gọi là bằng nhau khi và chỉ khi
Hai vectơ được gọi là bằng nhau khi và chỉ khi: Chúng cùng hướng và độ dài của chúng bằng nhau.
Tìm a thỏa mãn điều kiện
Với giá trị nào của a thì ax2 − x + a ≥ 0, ∀x ∈ ℝ?
*a = 0thì bpt trở thành − x ≥ 0 ⇔ x ≤ 0. Suy ra a = 0không thỏa ycbt.
* a ≠ 0 thì .
Tính chiều dài hàng rào
Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào
là
, chiều dài của hàng rào
là
. Góc giữa hai hàng rào
và
là
(như hình vẽ).

Chiều dài hàng rào
là bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?
Áp dụng định li côsin ta
.
Suy ra .
Vậy chiều dài hàng rào là khoảng
.
Tính tổng các vecto
Cho hình vuông
, dựng các hình vuông
với
là tâm các hình vuông biểu diễn như hình vẽ dưới đây:

Biết các hình vuông nhỏ có kích thước
. Tính độ dài vectơ:
![]()
![]()
![]()
Hình vẽ minh họa
Ta có:
Khi đó tổng vecto cần tính có kết quả là:
Tìm điều kiện chính xác
Cho
. Điều kiện để
là:
Ta có:
.
Tính tổng hợp lực
Cho hai lực
và
cùng tác động vào một vật đứng tại điểm O, biết hai lực
và
đều có cường độ là 50 (N) và chúng hợp với nhau một góc 60°. Hỏi vật đó phải chịu một lực tổng hợp có cường độ bằng bao nhiêu?
Hình vẽ minh họa

Theo quy tắc hình bình hành ta có:
Điền đáp án vào ô trống
Bác Hùng tính trồng rau và hoa trên một lô đất rộng 10ha. Nếu trồng rau cần 20 công và thu 10 triệu đồng trên diện tích mỗi ha, nếu trồng hoa cần 30 công và thu 12 triệu đồng trên diện tích mỗi ha. Biết rằng rau do các thành viên trong gia đình chăm sóc và số công không vượt quá 80, còn hoa gia đình thuê nhân công với giá 100.000 đồng cho mỗi công. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất.
Diện tích trồng hoa là: 6 (ha)
Diện tích trông rau là: 4 (ha)
Bác Hùng tính trồng rau và hoa trên một lô đất rộng 10ha. Nếu trồng rau cần 20 công và thu 10 triệu đồng trên diện tích mỗi ha, nếu trồng hoa cần 30 công và thu 12 triệu đồng trên diện tích mỗi ha. Biết rằng rau do các thành viên trong gia đình chăm sóc và số công không vượt quá 80, còn hoa gia đình thuê nhân công với giá 100.000 đồng cho mỗi công. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất.
Diện tích trồng hoa là: 6 (ha)
Diện tích trông rau là: 4 (ha)
Gọi diện tích trồng rau và hoa gia đình cần trồng lần lượt là: (ha)
Điều kiện:
Số tiền cần bỏ ra để thuê người trồng hoa là (trồng).
Lợi nhuận thu được là
(đồng).
Vì số công trồng rau không vượt quá nên
Ta có hệ bất phương trình sau:
Ta cần tìm giá trị lớn nhất của trên miền nghiệm của hệ
.
Miền nghiệm của hệ là tứ giác
(kể cả biên).
Hình vẽ minh họa
Hàm số sẽ đạt giá trị lớn nhất khi
là toạ độ của một trong các đỉnh
.
=> lớn nhất khi
Như vậy cần 4 ha trồng rau và 6 ha trồng để thu về lợi nhuận lớn nhất
Tính giá trị biểu thức E
Cho biết
. Tính giá trị của biểu thức
?
Ta có:
.
Tìm tập nghiệm của bất phương trình
Tập nghiệm của bất phương trình:
là:
Ta có: .
Vậy .
Tìm câu sai
Mệnh đề nào sau là mệnh đề sai?
Ta có và
nên mệnh đề
là mệnh đề sai.
Tính độ dài BC
Cho tam giác
có
. Tính độ dài cạnh
.
Áp dụng định lí côsin:
.
Suy ra .
Tìm điều kiện của x và y
Cho hình bình hành
. Lấy hai điểm
sao cho
, lấy tiếp hai điểm
sao cho
. Để
là trọng tâm tam giác
thì
thỏa mãn điều kiện nào sau đây:
Hình vẽ minh họa

Để J là trọng tâm tam giác AMN thì
Mặt khác do không cùng phương nên ta suy ra:
Vậy với thì điểm J là trọng tâm tam giác AMN.
Chọn đáp án đúng
Tập
có bao nhiêu tập hợp con có đúng hai phần tử?
Các tập con có hai phần tử của tập là:
Xác định điểm M thỏa mãn đẳng thức
Cho
. Điểm
thỏa mãn
thì điểm
là:
Ta có:
.
Vậy là đỉnh thứ tư của hình bình hành nhận
và
làm hai cạnh.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: