Chọn khẳng định đúng.
Chọn khẳng định đúng.
Khẳng định đúng là:
Khoảng biến thiên chỉ sử dụng thông tin của giá trị lớn nhất và bé nhất, bỏ qua thông tin các giá trị còn lại.
Đề kiểm tra 45 phút Toán 10 Chương 6 Một số yếu tố thống kê và xác suất sách Cánh Diều giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!
Chọn khẳng định đúng.
Chọn khẳng định đúng.
Khẳng định đúng là:
Khoảng biến thiên chỉ sử dụng thông tin của giá trị lớn nhất và bé nhất, bỏ qua thông tin các giá trị còn lại.
Tính số trung vị của dãy số liệu
Xác định số trung vị của dãy số liệu
?
Dãy số đã cho được sắp xếp theo thứ tự không giảm.
Dãy số có 7 số liệu nên số trung vị đứng giữa dãy số.
Do đó số trung vị của dãy trên là 5.
Chọn đáp án đúng
Gieo một đồng xu cân đối và đồng chất hai lần liên tiếp. Tính xác suất của biến cố: “Cả hai lần gieo đều xuất hiện mặt sấp”?
Số phần tử không gian mẫu là:
Gọi A là biến cố: “Cả hai lần gieo đều xuất hiện mặt sấp”
Vậy xác suất của biến cố A là:
Xác suất để trong ba số được chọn không có hai số liên tiếp bằng
Cho X = {0; 1; 2; 3; …; 15}. Chọn ngẫu nhiên 3 số trong tập hợp X. Xác suất để trong ba số được chọn không có hai số liên tiếp bằng:
Không gian mẫu có số phần tử là: (phần tử).
Ta tìm số cách lấy ra ba số trong đó có đúng hai số liên tiếp nhau hoặc lấy ra được cả ba số liên tiếp nhau.
Khi đó ta có các trường hợp sau:
Trường hợp 1: Lấy ra ba số trong đó có đúng hai số liên tiếp nhau.
Trong ba số lấy ra có hai số 0,1 hoặc 14, 15 khi đó số thứ ba có 13 cách lấy.
Do đó trường hợp này có: 2.13 = 26 cách lấy.
Trong ba số lấy ra không có hai số 0,1 hoặc 14, 15 khi đó ta có 13 cặp số liên tiếp nhau khác 0,1 và 14, 15, số thứ ba có 12 cách lấy. Do đó trường hợp này có: 13.12 = 156 cách lấy.
Trường hợp 2: Lấy ra được cả ba số liên tiếp nhau có 14 cách lấy.
Vậy ta có 26 + 156 + 14 = 196 cách lấy ra ba số liên tiếp nhau hoặc lấy ra ba số trong đó có hai số liên tiếp nhau.
Xác suất để trong ba số được chọn không có hai số liên tiếp là: .
Xác định giá trị độ lệch chuẩn
Cho mẫu số liệu có
. Khi đó độ lệch chuẩn của mẫu số liệu bằng:
Độ lệch chuẩn
Tìm tứ phân vị
Cho mẫu số liệu: 17 21 35 43 8 59 72 119. Tìm tứ phân vị.
Sắp xếp mẫu số liệu theo thứ tự không giảm: 8 17 21 35 43 59 72 119.
Trung vị của mẫu số liệu trên là: .
Trung vị của dãy 8 17 21 35 là: .
Trung vị của dãy 43 59 72 119 là: .
Vậy .
Mô tả không gian mẫu
Một hộp có 1 viên bi xanh, 1 viên bi đỏ, 1 viên bi vàng. Chọn ngẫu nhiên 2 viên bi trong hộp (sau khi chọn mỗi viên lại thả lại vào hộp). Không gian mẫu là:
Mô tả không gian mẫu: .
(Xanh là X, đỏ là D, vàng là V).
Tìm mốt của mẫu số liệu
Điểm kiểm tra của 24 học sinh được ghi lại trong bảng sau:

Mốt của mẫu số liệu là:
Điểm 8 có tần số xuất hiện nhiều nhất nên mốt của mẫu số liệu là 8.
Tính số trung bình của mẫu số liệu
Cho bảng điểm kiểm tra môn Toán của học sinh lớp 10B như sau:
|
Điểm |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Tổng |
|
Số học sinh |
2 |
8 |
7 |
10 |
8 |
3 |
2 |
N = 40 |
Tính số trung bình của mẫu số liệu? (Làm tròn kết quả đến chữ số thập phân thứ nhất).
Số trung bình của mẫu số liệu là:
Vậy số trung bình của mẫu số liệu bằng 6,8.
Tìm xác suất để đề thi lấy ra là một đề thi “Tốt”.
Một bộ đề thi Olympic Toán lớp 11 của Trường THPT Z mà mỗi đề gồm 5 câu được chọn từ 15 câu mức dễ, 10 câu mức trung bình và 5 câu mức khó. Một đề thi được gọi là “Tốt” nếu trong đề thi phải có cả mức dễ, mức trung bình và khó, đồng thời số câu mức khó không ít hơn 2. Lấy ngẫu nhiên một đề thi trong bộ đề trên. Tìm xác suất để đề thi lấy ra là một đề thi “Tốt”.
Chọn 5 câu trong tổng số 30 câu nên ta có không gian mẫu .
Gọi A là biến cố “Lấy ra được một đề thi “Tốt””.
TH1: 5 câu lấy ra có 2 câu khó, 1 câu dễ, 2 câu trung bình (cách).
TH2: 5 câu lấy ra có 2 câu khó, 2 câu dễ, 1 câu trung bình (cách).
TH3: 5 câu lấy ra có 3 câu khó, 1 câu dễ, 1 câu trung bình (cách).
Số kết quả thuận lợi của biến cố A là: .
Xác suất của biến cố A là: .
Xác suất để tổng số ghi trên ba thẻ rút được là một số chia hết cho 3
Một túi đựng 10 tấm thẻ được đánh số từ 1 đến 10. Rút ngẫu nhiên ba tấm thẻ từ túi đó. Xác suất để tổng số ghi trên ba thẻ rút được là một số chia hết cho 3 bằng:
Số cách rút ngẫu nhiên ba tấm thẻ từ túi có 10 thẻ là: cách.
Trong các số từ 1 đến 10 có ba số chia hết cho 3, bốn số chia cho 3 dư 1, ba số chia cho 3 dư 2.
Để tổng các số ghi trên ba thẻ rút được là một số chia hết cho 3 thì ba thẻ đó phải có số được ghi thỏa mãn một trong các trường hợp sau:
- Ba số đều chia hết cho 3.
- Ba số đều chia cho 3 dư 1.
- Ba số đều chia cho 3 dư 2.
- Một số chia hết cho 3, một số chia cho 3 dư 1, một số chia cho 3 dư 2.
Do đó số cách rút để tổng số ghi trên 3 thẻ rút được là một số chia hết cho 3 là (cách).
Vậy xác suất cần tìm là: .
Xác suất để ba quyển sách có đủ 2 loại
Trên kệ sách có 5 quyển sách Hóa học và 7 quyển sách Vật lí. Lấy ngẫu nhiên 3 quyển sách. Xác suất để ba quyển sách lấy ra có cả sách Hóa học và Vật lí bằng:
Số phần tử không gian mẫu (lấy 3 trong 12 quyển sách)
Gọi B là biến cố lấy được 3 quyển sách có cả sách Hóa học và sách Vật lí.
Khi đó là biến cố lấy được 3 quyển sách trong đó chỉ có 1 loại sách hoặc là Hóa học hoặc là Vật lí
TH1: 2 quyển sách được chọn là sách Hóa học ta có: cách chọn.
TH2: 2 quyển sách được chọn là sách Vật lí ta có: cách chọn.
Số phần tử của biến cố là:
Vậy xác suất của biến cố B cần tìm là:
Xác định phương sai của mẫu số liệu
Tìm phương sai trong mẫu số liệu:
?
Số trung bình bằng:
Phương sai bằng:
Vậy phương sai cần tìm là 5,2.
Chọn mệnh đề đúng
Cho
và
là hai biến cố đối nhau. Chọn mệnh đề đúng trong các mệnh đề sau đây?
Mệnh đề đúng là:
Chọn kết luận đúng
Khẳng định nào sau đây là đúng?
Trong đo đạc và tính toán, ta thường chỉ nhận được số gần đúng.
Tìm mốt
Bảng dưới đây thống kê tuổi thọ của một số bóng đèn (đơn vị: giờ):

Tìm mốt của bảng trên.
Ta thấy giá trị 1170 xuất hiện nhiều nhất. Suy ra mốt của bảng trên là 1170.
Xác suất để lấy được 2 sản phẩm cùng loại là bao nhiêu?
Một thùng có
sản phẩm, trong đó có
sản phẩm loại
và
sản phẩm loại
. Lấy ngẫu nhiên
sản phẩm từ thùng đó. Xác suất để lấy được
sản phẩm cùng loại là bao nhiêu?
Lấy ngẫu nhiên sản phẩm trong
sản phẩm thì có
(cách).
sản phẩm được lấy ra đều là sản phẩm loại
có
(cách).
sản phẩm được lấy ra đều là sản phẩm loại
có
(cách).
Xác suất để lấy được sản phẩm cùng loại là
.
Tính sai số tuyệt đối
Đo chiều dài của một cây thước, ta được kết quả
. Khi đó sai số tuyệt đối của phép đo được ước lượng là
Ta có độ dài dài gần đúng của cây thước là với độ chính xác
Nên sai số tuyệt đối
Tìm giá trị bất thường
Tìm giá trị bất thường của dãy số liệu: 3 6 8 14 19 28.
Hai giá trị chính giữa là 8 và 14. Suy ra trung vị .
Trung vị của mẫu 3 6 8 là
.
Trung vị của mẫu 14 19 28 là
.
Suy ra .
Xét: .
Xét: .
Ta thấy không có giá trị nào nhỏ hơn và lớn hơn
nên dãy không có giá trị bất thường.
Tính xác suất của biến cố B
Gieo một con xúc xắc hai lần liên tiếp. Tính xác suất của biến cố B: “Tổng số chấm xuất hiện trong hai lần gieo nhỏ hơn 4”.
Ta có:
Các kết quả thuận lợi cho biến cố: “Tổng số chấm xuất hiện trong hai lần gieo nhỏ hơn 4” là:
Vậy xác suất của biến cố B là:
Xác định khoảng biến thiên
Xác định khoảng biến thiên
của mẫu số liệu: 6 5 3 7 8 10 15.
Sắp xếp mẫu số liệu theo thứ tự không giảm: 3 5 6 7 8 10 15.
Suy ra khoảng biến thiên .
Tính xác suất để biến cố có tích 2 lần số chấm khi gieo xúc xắc là một số chẵn.
Gieo một con xúc xắc cân đối đồng chất 2 lần. Tính xác suất để biến cố có tích 2 lần số chấm khi gieo xúc xắc là một số chẵn.
Số phần tử của không gian mẫu là
Gọi là biến cố
Tích hai lần số chấm khi gieo xúc xắc là một số chẵn
. Ta xét các trường hợp:
TH1:. Gieo lần một, số chấm xuất hiện trên mặt là số lẻ thì khi gieo lần hai, số chấm xuất hiện phải là số chẵn. Khi đó có cách gieo.
TH2:. Gieo lần một, số chấm xuất hiện trên mặt là số chẵn thì có hai trường hợp xảy ra là số chấm xuất hiện trên mặt khi gieo lần hai là số lẻ hoặc số chẵn. Khi đó có cách gieo.
Suy ra số kết quả thuận lợi cho biến cố là
Vậy xác suất cần tìm tính
Tính khoảng biến thiên
Câu lạc bộ Liverpool đạt được điểm số tại giải Ngoại hạng Anh từ mùa giải 2010-2011 đến mùa 2018-2019 như sau: 75 82 87 50 93 70 72 66 67.
Khoảng biến thiên điểm số là:
Khoảng biến thiên là .
Tìm số trung vị của mẫu số liệu
Số cam có trong các giỏ được ghi lại như sau:
. Số trung vị của mẫu số liệu là:
Vì cỡ mẫu là số chẵn nên trung vị bằng trung bình cộng của số liệu ở vị trí thứ hai và thứ ba.
=> Số trung vị của mẫu số liệu:
Tìm tứ phân vị dưới
Tìm tứ phân vị dưới của bảng số liệu sau:

Cỡ mẫu số liệu trên là: .
Giá trị chính giữa của mẫu là giá trị ở vị trí thứ 13, đó là số 27. Suy ra .
Ta đi tìm trung vị của mẫu số liệu gồm 12 giá trị bên trái . Hai giá trị chính giữa là giá trị ở vị trí thứ 6 và 7. Đó là số 26 và số 26.
Suy ra . Vậy tứ phân vị dưới là 26.
Số phần tử không gian mẫu là bao nhiêu?
Gieo ngẫu nhiên một đồng tiền cân đối và đồng chất
lần. Số phần tử không gian mẫu là bao nhiêu?
Mỗi lần gieo có hai khả năng nên gieo 5 lần theo quy tắc nhân ta có .
Số phần tử không gian mẫu là .
Tính xác suất lấy được 1 viên bi trắng, 1 viên bi đen, 1 viên bi đỏ.
Một bình chứa 16 viên vi, với 7 viên bi trắng, 6 viên bi đen, 3 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi trong bình đó. Tính xác suất lấy được 1 viên bi trắng, 1 viên bi đen, 1 viên bi đỏ.
Số cách lấy 3 viên bi bất kì là .
Số cách lấy được 1 viên bi trắng, 1 viên bi đen, 1 viên bi đỏ là .
Suy ra xác suất cần tìm là.
Tính khối lượng trung bình của ba nhóm học sinh
Ba nhóm học sinh gồm 5 người, 10 người và 15 người. Khối lượng trung bình của mỗi nhóm lần lượt là 48 kg, 45kg và 40 kg. Khối lượng trung bình của 3 nhóm học sinh là:
Khối lượng trung bình của 3 nhóm học sinh là:
Số phần tử của không gian mẫu là bao nhiêu?
Gieo một đồng tiền liên tiếp
lần. Số phần tử của không gian mẫu là bao nhiêu?
.
(lần 1 có 2 khả năng xảy ra - lần 2 có 2 khả năng xảy ra).
Chọn phương án thích hợp
Theo thống kê, dân số Việt Nam năm 2002 là 79715675 người. Giả sử sai số tuyệt đối của thống kê này không vượt quá 10000 người, hãy viết số trên dưới dạng chuẩn và ước lượng sai số tương đối của số liệu thống kê trên.
Vì các chữ số đáng tin là 7; 9; 7. Dạng chuẩn của số đã cho là (Bảy mươi chín triệu bảy trăm nghìn người).
Sai số tương đối mắc phải là:
Viết số quy tròn của số đã cho
Đo độ cao một ngọn cây là
Hãy viết số quy tròn của số gần đúng 347,13.
Ta có:
Làm tròn số
đến hàng
(hàng đơn vị)
Vậy kết quả là
Chọn đáp án đúng
Số quy tròn của số
đến hàng chục bằng:
Số quy tròn của số đến hàng chục bằng
.
Tìm số gần đúng
Tìm số gần đúng của a = 3456782 với độ chính xác d = 100.
Vì độ chính xác đến hàng trăm nên ta quy tròn a đến hàng nghìn, vậy số quy tròn của a là 3457000.
Xác suất của P để trong 3 số tự nhiên được chọn không có 2 số tự nhiên liên tiếp bằng bao nhiêu?
Chọn ngẫu nhiên 3 số tự nhiên từ tập hợp
. Xác suất của
để trong 3 số tự nhiên được chọn không có 2 số tự nhiên liên tiếp bằng bao nhiêu?
Có tất cả cách chọn 3 số tự nhiên từ tập hợp
.
Suy ra .
Xét biến cố “Chọn 3 số tự nhiên sao cho không có 2 số tự nhiên liên tiếp”.
Ta có “Chọn 3 số tự nhiên sao luôn có 2 số tự nhiên liên tiếp”.
Xét các trường hợp sau:
+ Trường hợp 1: Trong ba số chọn được chỉ có 2 số liên tiếp:
- Nếu 2 số liên tiếp là hoặc
thì số thứ ba có
cách chọn (do không tính số liên tiếp sau và trước mỗi cặp số đó).
- Nếu 2 số liên tiếp là ,
,.,
thì số thứ ba có
cách chọn (do không tính 2 số liền trước và sau mỗi cặp số đó).
Trường hợp này có cách chọn.
+ Trường hợp 2: Chọn được 3 số liên tiếp.
Tức là chọn các bộ ,
,.,
: có tất cả 2017 cách.
Suy ra .
Vậy .
Tìm mốt
Sản lượng lúa (đơn vị là tạ) của 11 thửa ruộng thí nghiệm có cùng diện tích lần lượt là: 20; 19; 17; 21; 24; 22; 23; 16; 11; 25; 23. Tìm mốt của mẫu số liệu trên.
Số 23 xuất hiện nhiều nhất nên nó là mốt.
Xác suất luôn lấy được 1 bóng hỏng là:
Một hộp đèn có 12 bóng, trong đó có 4 bóng hỏng. Lấy ngẫu nhiên 3 bóng. Xác suất luôn lấy được 1 bóng hỏng là:
Trong 3 bóng có 1 bóng hỏng
Ta có .
Gọi biến cố A : “Trong 3 bóng lấy ra có 1 bóng hỏng”.
Tính được .
Vậy .
Tính số trung bình cộng của mẫu số liệu
Điểm thi học kì của một học sinh như sau: 4 6 7 2 10 9 3 5 8 7 3 8.
Tính số trung bình cộng của mẫu số liệu trên.
Số trung bình cộng của mẫu số liệu trên là:
.
Tính độ lệch chuẩn
Nhiệt độ (đơn vị: 0C) tại Mộc Châu trong một ngày sau một vài lần đo như sau:
![]()
![]()
Kết quả nào dưới đây gần nhất với độ lệch chuẩn của mẫu số liệu đã cho?
Ta có:
Nhiệt độ trung bình trong ngày là:
Ta có bảng sau:
|
Giá trị |
Độ lệch |
Bình phương độ lệch |
|
21 |
47,61 |
|
|
23 |
24,01 |
|
|
25 |
8,41 |
|
|
28 |
0,01 |
|
|
30 |
4,41 |
|
|
32 |
16,81 |
|
|
34 |
37,21 |
|
|
31 |
9,61 |
|
|
29 |
1,21 |
|
|
26 |
3,61 |
|
|
Tổng |
152,9 |
|
Suy ra phương sai của mẫu số liệu là:
Suy ra độ lệch chuẩn của mẫu số liệu là:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: