Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Chương 6 Một số yếu tố thống kê và xác suất

Mô tả thêm:

Đề kiểm tra 15 phút Toán 10 Chương 6 Một số yếu tố thống kê và xác suất sách Cánh Diều giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 2: Vận dụng

    Tìm trung vị

    Bảng dưới đây thống kê điểm Văn của lớp 11C.

    Biết n\mathbb{\in N}. Tìm trung vị của bảng số liệu.

    Vì tổng số học sinh bằng 40 nên ta có: 5n
+ 15 = 40 \Leftrightarrow n = 5.

    Thống kê lại bảng:

    Hai giá trị chính giữa của mẫu số liệu là giá trị ở vị trí thứ 20 và 21. Đó là số 6 và số 6.

    Suy ra trung vị M_{e} = \frac{6 + 6}{2} =
6.

  • Câu 3: Thông hiểu

    Tính số phần tử của biến cố A

    Một hộp đựng 10 thẻ, đánh số từ 1 đến 10. Chọn ngẫu nhiên 3 thẻ. Gọi A là biến cố để tổng số của 3 thẻ được chọn không vượt quá 8. Số phần tử của biến cố A là:

    Các cặp số thỏa mãn tổng số ba thẻ được chọn không vượt quá 8 là: {1; 2; 3}, {1; 2; 4}, {1; 2; 5}, {1; 3; 4}.

    Vậy số phần tử của A là 4 phần tử.

  • Câu 4: Thông hiểu

    Tính xác suất của biến cố A

    Trong hộp có 3 viên bi xanh và 5 viên bi đỏ. Lấy ngẫu nhiên trong hộp 3 viên bi. Xác suất của biến cố A: “Lấy ra được 3 viên bi màu đỏ” là:

    Chọn ba viên bi ngẫu nhiên trong hộp => n\left( \Omega  ight) = C_8^3

    Biến cố A: “Lấy ra được 3 viên bi màu đỏ” => n\left( A ight) = C_5^3

    => Xác suất của biến cố A là: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{{C_5^3}}{{C_8^3}} = \frac{5}{{28}}

  • Câu 5: Thông hiểu

    Tính thời gian chạy trung bình

    Cho bảng số liệu thống kê kết quả thi chạy 100m của một nhóm học sinh (đơn vị: giây) như sau:

    Thời gian

    12

    13

    14

    15

    16

    Số học sinh

    6

    4

    5

    3

    2

    Tính thời gian chạy trung bình của nhóm học sinh đó?

    Số học sinh tham gia chạy là 20 (học sinh)

    Thi gian chạy trung bình của nhóm 20 học sinh là:

    \overline{x} = \frac{6.12 + 4.13 + 5.14 +
3.15 + 2.16}{20} = 13,55(giây)

    Vậy thời gian chạy trung bình của nhóm học sinh bằng 13,55 giây.

  • Câu 6: Nhận biết

    Tìm các số gần đúng

    Cho các mệnh đề:

    i) Một túi cam nặng khoảng 10,5kg.

    ii) Độ dài đường chéo hình vuông cạnh bằng 1 là \sqrt{2}.

    iii) Bán kính Trái Đất khoảng 6371km.

    Trong các mệnh đề trên, có bao nhiêu số là số gần đúng?

    Có hai số là số gần đúng thuộc các mệnh đề:

    i) Một túi cam nặng khoảng 10,5kg.

    iii) Bán kính Trái Đất khoảng 6371km.

  • Câu 8: Thông hiểu

    Tính giá trị của phương sai

    Có 100 học sinh tham dự kì thi học sinh giỏi Toán (thang điểm 20). Kết quả sau kì thi được thống kê như sau:

    Điểm

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    Tần số

    1

    1

    3

    5

    8

    13

    19

    24

    14

    10

    2

    Giá trị của phương sai gần bằng:

    Kết quả trung bình là:

    \overline x  = \frac{{9.1 + 10.1 + 11.3 + 12.5 + 13.8 + 14.13 + 15.19 + 16.24 + 17.14 + 18.10 + 19.2}}{{100}} = 15,23

    Giá trị của phương sai là:

     \begin{matrix}  {S^2} = \dfrac{1}{n}\left( {{n_1}{x_1}^2 + {n_2}{x_2}^2 + {n_3}{x_4}^2 + ... + {n_k}{x_k}^2} ight) - {\left( {\overline x } ight)^2} \hfill \\   \Rightarrow {S^2} = \dfrac{1}{{100}}({1.9^2} + {1.10^2} + {3.11^2} + {5.12^2} + {8.13^2} + {13.14^2} \hfill \\   + {19.15^2} + {24.16^2} + {14.17^2} + {10.18^2} + {2.19^2}) - {\left( {15,23} ight)^2} \hfill \\   \Rightarrow {S^2} \approx 3,96 \hfill \\ \end{matrix}

  • Câu 9: Nhận biết

    Tính phương sai

    Cho mẫu số liệu: 10; 8; 6; 2; 4. Tính phương sai của mẫu.

    Số trung bình là \overline{x} = \frac{10 + 8 + 6 + 2 + 4}{5} = 6.

    Phương sai là s^{2} = \frac{(10 - 6)^{2} + (8 - 6)^{2} + (6 - 6)^{2} +
(2 - 6)^{2} + (4 - 6)^{2}}{5} =
8.

  • Câu 10: Nhận biết

    Tính khoảng biến thiên

    Bảng dưới đây là sản lượng lúa gạo của nước ta giai đoạn 2007 – 2017 (đơn vị: triệu tấn).

    Khoảng biến thiên của mẫu số liệu là:

    Khoảng biến thiên là R = 7,72 - 4,53 =
3,19.

  • Câu 11: Vận dụng

    Tìm m và n

    Bảng sau đây cho ta biết số cuốn sách mà học sinh của một lớp ở trường Trung học phổ thông đã đọc:

    Số sách

    1

    2

    3

    4

    5

    6

     

    Số học sinh đọc

    10

    m

    8

    6

    n

    3

    n = 40

    Tìm m và n, biết phương sai của mẫu số liệu trên xấp xỉ 2,52.

     Số trung bình là: 

    \overline x  = \frac{{10.1 + 2.m + 8.3 + 4.6 + 5.n + 6.3}}{{40}} = \frac{{76 + 2m + 5n}}{{40}}

    Phương sai là:

    \begin{matrix}  {S^2} = \dfrac{1}{{40}}\left( {{{10.1}^2} + m{{.2}^2} + {{8.3}^2} + {{6.4}^2} + n{{.5}^2} + {{3.6}^2}} ight) - {\left( {\dfrac{{76 + 2m + 5n}}{{40}}} ight)^2} \hfill \\   \Rightarrow {S^2} = \dfrac{1}{{40}}\left( {286 + 4m + 25n} ight) - {\left( {\dfrac{{76 + 2m + 5n}}{{40}}} ight)^2} \hfill \\ \end{matrix}

    Theo bài ra ta có:

    Kiểm tra được: m = 8 và n = 5 thỏa mãn.

  • Câu 12: Thông hiểu

    Chọn đáp án chính xác

    Tính sản lượng lúa trung bình trong bảng thống kê dưới đây:

    Sản lượng (tạ)

    20

    21

    22

    23

    24

    Tần số

    5

    8

    11

    10

    6

    Sản lượng lúa trung bình là:

    \overline{x} = \frac{5.20 + 8.21 + 11.22
+ 10.23 + 6.24}{40} = 22,1

    Vậy sản lượng lúa trung bình là 22,1 tạ.

  • Câu 13: Thông hiểu

    Tìm phương sai của bảng số liệu

    Cho bảng thống kê sản lượng lúa (đơn vị: ha) của các thửa ruộng có cùng diện tích trong tỉnh A như sau:

    Sản lượng

    20

    21

    22

    23

    24

    Số thửa ruộng

    5

    8

    11

    10

    6

    Tìm phương sai của bảng số liệu?

    Số thửa ruộng được thống kê sản lượng là:

    N = 5 + 8 + 11 + 10 + 6 =
40

    Sản lượng lúa trung bình của 40 thửa ruộng là:

    \overline{x} = \frac{5.20 + 8.21 + 11.22
+ 10.23 + 6.24}{40} = 22,1

    Phương sai của sản lượng lúa của 40 thửa ruộng là:

    S^{2} = \frac{5.20^{2} + 8.21^{2} +
11.22^{2} + 10.23^{2} + 6.24^{2}}{40} - 22,1^{2} = 1,54

  • Câu 14: Thông hiểu

    Chọn kết luận thích hợp nhất

    Bạn A đo chiều dài của một sân bóng ghi được 250 \pm 0,2m. Bạn B đo chiều cao của một cột cờ được 15 \pm 0,1m. Trong 2 bạn A và B, bạn nào có phép đo chính xác hơn và sai số tương đối trong phép đo của bạn đó là bao nhiêu?

    Phép đo của bạn A có sai số tương đối \delta_{1} \leq \frac{0,2}{250} = 0,0008 =
0,08\%

    Phép đo của bạn B có sai số tương đối \delta_{2} \leq \frac{0,1}{15} = 0,0066 =
0,66\%

    Như vậy phép đo của bạn A có độ chính xác cao hơn.

  • Câu 15: Nhận biết

    Xác suất để được ít nhất một đồng tiền xuất hiện mặt sấp là bao nhiêu?

    Gieo đồng tiền 5lần cân đối và đồng chất. Xác suất để được ít nhất một đồng tiền xuất hiện mặt sấp là bao nhiêu?

    n(\Omega) = 2^{5} = 32.

    A: “được ít nhất một đồng tiền xuất hiện mặt sấp”.

    Xét biến cố đối \overline{A}: “không có đồng tiền nào xuất hiện mặt sấp”.

    \overline{A} = \left\{ (N,N,N,N,N)
ight\}, có n\left( \overline{A}
ight) = 1.

    Suy ra n(A) = 32 - 1 = 31.

    KL: P(A) = \frac{n(A)}{n(\Omega)} =
\frac{31}{32}.

  • Câu 16: Vận dụng

    Tìm xác suất để đề thi lấy ra là một đề thi “Tốt”.

    Một bộ đề thi Olympic Toán lớp 11 của Trường THPT Z mà mỗi đề gồm 5 câu được chọn từ 15 câu mức dễ, 10 câu mức trung bình và 5 câu mức khó. Một đề thi được gọi là “Tốt” nếu trong đề thi phải có cả mức dễ, mức trung bình và khó, đồng thời số câu mức khó không ít hơn 2. Lấy ngẫu nhiên một đề thi trong bộ đề trên. Tìm xác suất để đề thi lấy ra là một đề thi “Tốt”.

    Chọn 5 câu trong tổng số 30 câu nên ta có không gian mẫu n(\Omega) = C_{30}^{5}.

    Gọi A là biến cố “Lấy ra được một đề thi “Tốt””.

    TH1: 5 câu lấy ra có 2 câu khó, 1 câu dễ, 2 câu trung bình C_{5}^{2}.C_{15}^{1}.C_{10}^{2} (cách).

    TH2: 5 câu lấy ra có 2 câu khó, 2 câu dễ, 1 câu trung bình C_{5}^{2}.C_{15}^{2}.C_{10}^{1} (cách).

    TH3: 5 câu lấy ra có 3 câu khó, 1 câu dễ, 1 câu trung bình C_{5}^{3}.C_{15}^{1}.C_{10}^{1} (cách).

    Số kết quả thuận lợi của biến cố A là: n(A) = C_{5}^{2}.C_{15}^{1}.C_{10}^{2} +
C_{5}^{2}.C_{15}^{2}.C_{10}^{1} +
C_{5}^{3}.C_{15}^{1}.C_{10}^{1}.

    Xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{3125}{23751}.

  • Câu 17: Nhận biết

    Xác định mốt của mẫu số liệu

    Giá của một số bó hoa (đơn vị: nghìn đồng) trong cửa hàng được thống kê như sau: 350;300;650;300;450;500;300;250. Mốt của mẫu số liệu này là:

    Bó hoa có giá 300 nghìn đồng có tần số lớn nhất nên suy ra M_{0} = 300.

  • Câu 18: Nhận biết

    Mô tả không gian mẫu

    Tung một đồng xu hai lần liên tiếp. Không gian mẫu trong trò chơi trên là:

     Ta có: Ω = {SS; SN; NS; NN}

  • Câu 19: Nhận biết

    Xác định số phần tử của không gian mẫu.

    Xét phép thử tung con súc sắc 6 mặt hai lần. Xác định số phần tử của không gian mẫu.

    Không gian mẫu gồm các bộ (i;j), trong đó i,j \in \left\{ 1,2,3,4,5,6
ight\}.

    i nhận 6 giá trị, j cũng nhận 6 giá trị nên có 6.6 = 36 bộ (i;j).

    Vậy \Omega = \left\{ (i,j)|i,j =
1,2,3,4,5,6 ight\}n(\Omega) =
36.

  • Câu 20: Nhận biết

    Tìm sai số tuyệt đối

    Cho số gần đúng của \pi3,142. Sai số tuyệt đối của số gần đúng này là:

    Sai số tuyệt đối là: |\pi - 3,142| =
0,0004

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 6 Một số yếu tố thống kê và xác suất Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo