Chọn công thức đúng
Khoảng biến thiên tứ phân vị
được xác định bởi:
Khoảng biến thiên tứ phân vị được xác định bởi
.
Đề kiểm tra 15 phút Toán 10 Chương 6 Một số yếu tố thống kê và xác suất sách Cánh Diều giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!
Chọn công thức đúng
Khoảng biến thiên tứ phân vị
được xác định bởi:
Khoảng biến thiên tứ phân vị được xác định bởi
.
Tìm giá trị nguyên dương của x
Cho mẫu số liệu
(đã sắp xếp thứ tự và
). Biết rằng trung vị của mẫu số liệu bằng
. Tìm
?
Dãy số liệu có 8 số liệu nên
Vậy thỏa mãn điều kiện đề bài.
Viết số quy tròn
Hãy viết số quy tròn của số a với độ chính xác d được cho sau đây:
= 28658 ± 100.
Vì độ chính xác đến hàng trăm nên ta phải quy tròn số 17638 đến hàng nghìn. Vậy số quy tròn là 29000 (hay viết ≈ 29000).
Tìm mốt của bảng số liệu
Cho bảng số liệu số máy tính bán được trong quý I đầu năm 2022 của một cửa hàng:
|
Hãng |
HP |
Lenovo |
Asus |
Apple |
Dell |
Razer |
|
Số máy tính bán được |
55 |
45 |
42 |
36 |
60 |
15 |
Mốt của bảng số liệu trên là hãng máy tính nào?
Số máy tính bán được nhiều nhất là 60 máy thuộc hãng Dell
=> Mốt của bảng số liệu trên là hãng Dell.
Tính số phần tử của biến cố A
Một hộp đựng 10 thẻ, đánh số từ 1 đến 10. Chọn ngẫu nhiên 3 thẻ. Gọi A là biến cố để tổng số của 3 thẻ được chọn không vượt quá 8. Số phần tử của biến cố A là:
Các cặp số thỏa mãn tổng số ba thẻ được chọn không vượt quá 8 là: {1; 2; 3}, {1; 2; 4}, {1; 2; 5}, {1; 3; 4}.
Vậy số phần tử của A là 4 phần tử.
Số phần tử của không gian mẫu là bao nhiêu?
Gieo một đồng tiền và một con súc sắc. Số phần tử của không gian mẫu là bao nhiêu?
Mô tả không gian mẫu ta có: .
Tính xác suất của biến cố
Gieo ngẫu nhiên một đồng tiên cân đối, đồng chất 3 lần liên tiếp. Xác suất để ít nhất một lần xuất hiện mặt sấp là:
Ta có:
Gọi A là biến cố “ít nhất một lần xuất hiện mặt sấp”
Vậy
Xác định số quy tròn
Viết số quy tròn của số gần đúng
có độ chính xác
.
Vì nhỏ hơn một đơn vị ở hàng phần trăm nên ta làm tròn số đến hàng phần trăm. Số quy tròn là:
.
Chọn đáp án chính xác
Chọn ngẫu nhiên một số nguyên dương không lớn hơn 30. Xác suất để số được chọn là một số nguyên tố bằng:
Số phần tử không gian mẫu là:
Gọi A là biến cố: “học sinh được chọn là học sinh nam?”
Vậy xác suất của biến cố A là:
Tính xác suất của biến cố
Có bốn hành khách bước lên một đoàn tàu gồm 4 toa. Mỗi hành khách độc lập với nhau và chọn ngẫu nhiên một toa. Tính xác suất để 1 toa có 3 người, 1 toa có 1 người và 2 toa còn lại không có người?
Vì mỗi hành khách có 4 cách chọn toa tàu nên:
Để xếp theo yêu cầu của bài toán ta thực hiện các bước liên tiếp như sau:
Chọn 1 toa để xếp 3 người ta có:
Chọn 3 người để xếp vào toa đó là:
Chọn 1 toa từ 3 toa còn lại để xếp người còn lại vào:
Theo quy tắc nhân ta có:
Vậy xác suất cần tìm là:
Tính tứ phân vị thứ ba
Cho mẫu số liệu:
. Tứ phân vị thứ ba của mẫu số liệu là:
Sắp xếp lại mẫu số liệu theo thứ tự không giảm ta được:
Tứ phân vị thứ ba là trung vị của mẫu
Do đó .
Tìm các giá trị bất thường của mẫu số liệu
Cho mẫu số liệu:
. Có bao nhiêu giá trị bất thường của mẫu số liệu đã cho?
Ta có
Suy ra
Nhận thấy trong mẫu số liệu đã cho không có giá trị nào nhỏ hơn 2 và lớn hơn 10.
Vậy không có giá trị nào bất thường trong mẫu số liệu.
Chọn đáp án đúng
Cho mẫu số liệu:
. Giá trị phương sai và độ lệch chuẩn của mẫu số liệu lần lượt là:
Trung bình cộng của mẫu số liệu là:
Phương sai của mẫu số liệu là:
Độ lệch chuẩn của mẫu số liệu là:
.
Tính xác suất sao cho trong các bạn được chọn luôn có bạn nữ
Một nhóm có 6 nam và 4 nữ. Cần chọn 3 bạn để đi trực nhật. Tính xác suất sao cho trong các bạn được chọn luôn có bạn nữ.
Chọn 3 bạn bất kì từ 10 bạn, suy ra .
Gọi A là biến cố "3 bạn đi trực nhật luôn có mặt bạn nữ".
Trường hợp 1: 3 bạn nữ
Có: (cách)
Trường hợp 2: 2 bạn nữ + 1 bạn nam
Có: (cách)
Trường hợp 3: 1 bạn nữ + 2 bạn nam
Có: (cách)
Vậy .
Xác suất .
Tính phương sai
Cho mẫu số liệu: 6; 7; 8; 9; 10. Tính phương sai của mẫu.
Số trung bình là
.
Phương sai là
.
Tính giá trị gần đúng
Khi sử dụng máy tính bỏ túi với 10 chữ số thập phân ta được
. Giá trị gần đúng của
chính xác đến hàng phần trăm là:
Cần lấy chính xác đến hàng phần trăm nên ta phải lấy hai chữ số thập phân. Vì đứng sau số 4 ở hàng phần trăm là số 5 nên theo nguyên lý làm tròn ra được kết quả là:
Xác định công thức đúng
Cho
là một biến cố trong phép thử
. Xác suất của biến cố đối
liên hệ với xác suất của biến cố
được xác định theo công thức nào sau đây?
Xác suất của biến cố đối liên hệ với xác suất của biến cố
theo công thức:
Tìm giá trị ngoại lệ
Số cuộn phim mà 20 nhà nhiếp ảnh nghiệp dư sử dụng trong một tháng được cho trong bảng sau:
0 | 5 | 7 | 6 | 2 | 5 | 9 | 7 | 6 | 9 |
20 | 6 | 10 | 7 | 5 | 8 | 9 | 7 | 8 | 5 |
Giá trị ngoại lệ trong mẫu số liệu trên là:
Ta có bảng tần số sau:
Số cuộn phim | 0 | 2 | 5 | 6 | 7 | 8 | 9 | 10 | 20 |
|
Số nhiếp ảnh gia | 1 | 1 | 4 | 3 | 4 | 2 | 3 | 1 | 1 | n = 20 |
Vì cỡ mẫu n = 20 = 2.10 là số chẵn. Nên giá trị tứ phân vị thứ hai bằng trung bình cộng của số liệu thứ 10 và số liệu thứ 11.
Khi sắp xếp mẫu số liệu đã cho theo thứ tự không giảm, ta được số liệu thứ 10 và số liệu thứ 11 cùng bằng 7.
=> Q2 = 7.
- Ta tìm tứ phân vị thứ nhất là trung vị của nửa mẫu số liệu bên trái Q2.
Vì cỡ mẫu lúc này n = 10 = 2.5 là số chẵn, nên giá trị tứ phân vị thứ nhất là trung bình cộng của số liệu thứ 5 và số liệu thứ 6.
Khi sắp xếp mẫu số liệu theo thứ tự không giảm, ta được số liệu thứ 5 và số liệu thứ 6 cùng bằng 5.
=> Q1 = 5.
Ta tìm tứ phân vị thứ ba là trung vị của nửa mẫu số liệu bên phải Q2.
Vì cỡ mẫu lúc này n = 10 = 2.5 là số chẵn, nên giá trị tứ phân vị thứ ba là trung bình cộng của số liệu thứ 5 và số liệu thứ 6 (tính từ số liệu thứ 11 trở đi). Tức là giá trị tứ phân vị thứ ba là trung bình cộng của số liệu thứ 15 và số liệu thứ 16.
Khi sắp xếp mẫu số liệu theo thứ tự không giảm, ta được số liệu thứ 15 và số liệu thứ 16 lần lượt là 8 và 9.
=> Q3 = (8 + 9) : 2 = 8,5.
Ta suy ra khoảng tứ phân vị ∆Q = Q3 – Q1 = 8,5 – 5 = 3,5.
Ta có Q3 + 1,5.∆Q = 13,75 và Q1 – 1,5.∆Q = – 0,25.
Số liệu x trong mẫu là giá trị ngoại lệ nếu x > Q3 + 1,5.∆Q (1) hoặc x < Q1 – 1,5.∆Q (2)
Quan sát bảng số liệu ta thấy có số liệu x = 20 thoả mãn điều kiện (1) : 20 > 13,75.
Vậy mẫu số liệu có giá trị ngoại lệ là 20.
Tính các tứ phân vị của mẫu số liệu
Cho kết quả ném phi tiêu của Hùng như sau:
. Hãy các tứ phân vị của mẫu số liệu đã cho?
Sắp xếp điểm ném phi tiêu theo thứ tự không giảm như sau:
Ta có: là số đứng thứ 7.
là trung bình cộng 2 số đứng thứ
.
là trung bình cộng 2 số đứng thứ
.
Tính xác suất để trong ba số chọn ra không có hai số nào là hai số nguyên liên tiếp.
Cho tập hợp
. Chọn ngẫu nhiên ba số từ tập đó. Tính xác suất để trong ba số chọn ra không có hai số nào là hai số nguyên liên tiếp.
Số phần tử không gian mẫu là .
Gọi là biến cố “Ba số chọn ra không có hai số nào là hai số nguyên liên tiếp”.
là biến cố “Ba số được chọn có ít nhất hai số là các số tự nhiên liên tiếp”.
+ Bộ ba số dạng , với
: có
bộ ba số.
+ Bộ ba số có dạng , với
: có
bộ ba số.
+ Tương tự mỗi bộ ba số dạng ,
,
,
,
,
,
đều có
bộ.
.
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: