Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 4 Hệ thức lượng trong tam giác. Vectơ

Mô tả thêm:

Đề kiểm tra 45 phút Toán 10 Chương 4 Hệ thức lượng trong tam giác. Vectơ sách Cánh Diều giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Tìm đẳng thức đúng

    Cho 4 điểm bất kỳ A,\ B,\ C,\ O. Đẳng thức nào sau đây là đúng:

    Ta có: \overrightarrow{OA} =
\overrightarrow{CA} - \overrightarrow{CO} (quy tắc 3 điểm).

  • Câu 2: Vận dụng

    Phân tích một vectơ theo hai vectơ khác

    Trong mặt phẳng tọa độ Oxy cho\overrightarrow{a} = (2;1),\overrightarrow{\ b} =
(3;4),\ \overrightarrow{c} = (7;2). Cho biết \overrightarrow{c} = m.\overrightarrow{a} +
n.\overrightarrow{b}. Khi đó

    Ta có: \overrightarrow{c} =m.\overrightarrow{a} + n.\overrightarrow{b} \Leftrightarrow \left\{\begin{matrix}7 = 2m + 3n \\2 = m + 4n \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m = \frac{22}{5} \ = - \frac{3}{5} \\\end{matrix} ight..

  • Câu 3: Nhận biết

    Xác định câu sai

    Tìm khẳng định sai trong các khẳng định sau:

    Đáp án sai là: cos75^{0} >
cos50^{0}.

  • Câu 4: Thông hiểu

    Chọn đáp án thích hợp nhất

    Cho hình bình hành ABCD. Tập hợp các điểm M thỏa mãn \overrightarrow{MA} + \overrightarrow{MB} -
\overrightarrow{MC} = \overrightarrow{MD} là?

    Hình vẽ minh họa

    Ta có:

    \overrightarrow{MA} +
\overrightarrow{MB} - \overrightarrow{MC} =
\overrightarrow{MD}

    \Leftrightarrow \overrightarrow{MB} -
\overrightarrow{MC} = \overrightarrow{MD} -
\overrightarrow{MA}

    \Leftrightarrow \overrightarrow{CB} =
\overrightarrow{AD} sai

    \Rightarrow Không có điểm M thỏa mãn

  • Câu 5: Thông hiểu

    Khẳng định nào sau đây đúng?

    Cho 0 < \alpha
< \frac{\pi}{2}. Khẳng định nào sau đây đúng?

    Ta có: 0 < \alpha < \frac{\pi}{2}
ightarrow - \pi < \alpha - \pi < -
\frac{\pi}{2}\overset{}{ightarrow} điểm cuối cung \alpha - \pi thuộc góc phần tư thứ III\overset{}{ightarrow} \sin(\alpha - \pi) < 0.

  • Câu 6: Nhận biết

    Tìm hệ thức sai

    Tam giác ABC vuông ở A và có góc \widehat{B} = 50^{0}. Hệ thức nào sau đây sai?

    Ta có:

    \left( \overrightarrow{AC},\
\overrightarrow{CB} \right) = 180^{0} - \widehat{ACB} = 180^{0} - 40^{0}
= 140^{0}

  • Câu 7: Nhận biết

    Chọn khẳng định đúng

    Cho hình vuông ABCD, khẳng định nào sau đây đúng?

    Ta có ABCD là hình vuông. Suy ra: \left| \overrightarrow{AB} \right| =
\left| \overrightarrow{BC} \right|.

    Vậy khẳng định đúng là: \left|
\overrightarrow{AB} \right| = \left| \overrightarrow{BC}
\right|.

  • Câu 8: Thông hiểu

    Tìm khẳng định sai

    Cho hình bình hành ABCD tâm O. Khẳng định nào sau đây sai?

    Hình vẽ minh họa

    Ta có: \overrightarrow{AO} +
\overrightarrow{BO} + \overrightarrow{CO} + \overrightarrow{DO} =
\overrightarrow{AO} + \overrightarrow{CO} + \overrightarrow{BO} +
\overrightarrow{DO} = \overrightarrow{0}.

    Suy ra \overrightarrow{AO} +
\overrightarrow{BO} + \overrightarrow{CO} + \overrightarrow{DO} =
\overrightarrow{0} đúng.

    Ta có: \overrightarrow{AO} +
\overrightarrow{DA} = \overrightarrow{OC} + \overrightarrow{CB} =
\overrightarrow{OB}. Suy ra \overrightarrow{AO} + \overrightarrow{DA} =
\overrightarrow{OB} đúng.

    Ta có: \overrightarrow{OA} -
\overrightarrow{BO} = \overrightarrow{OA} + \overrightarrow{OB} eq
\overrightarrow{AB}. Suy ra \overrightarrow{OA} - \overrightarrow{BO} =
\overrightarrow{AB} sai.

    Ta có: \overrightarrow{AB} =
\overrightarrow{DC} đúng.

  • Câu 9: Thông hiểu

    Xác định câu sai

    Gọi M,\ N lần lượt là trung điểm các cạnh AD,\ BC của tứ giácABCD. Đẳng thức nào sau đây sai?

    Do M là trung điểm các cạnh AD nên \overrightarrow{MD} + \overrightarrow{MA} =
\overrightarrow{0}

    Do N lần lượt là trung điểm các cạnh BC nên 2\overrightarrow{MN} = \overrightarrow{MC} +
\overrightarrow{MB}.

    Nên \overrightarrow{MB} +
\overrightarrow{MC} = 2\overrightarrow{MN} đúng.

    Ta có

    2\overrightarrow{MN} =
\overrightarrow{MC} + \overrightarrow{MB}

    = \overrightarrow{MD} +
\overrightarrow{DC} + \overrightarrow{MA} +
\overrightarrow{AB}

    = \overrightarrow{AB} +
\overrightarrow{DC} + \left( \overrightarrow{MD} + \overrightarrow{MA}
\right) = \overrightarrow{AB} + \overrightarrow{DC}.

    Vậy \overrightarrow{AB} +
\overrightarrow{DC} = 2\overrightarrow{MN}.

    Nên \overrightarrow{AB} +
\overrightarrow{DC} = 2\overrightarrow{MN} đúng

    \overrightarrow{AB} +
\overrightarrow{DC} = \overrightarrow{AC} + \left( \overrightarrow{CB} +
\overrightarrow{DC} \right) = \overrightarrow{AC} + \overrightarrow{DB}
= 2\overrightarrow{MN}.

    Nên \overrightarrow{AC} +
\overrightarrow{DB} = 2\overrightarrow{MN} đúng.

    Vậy \overrightarrow{AC} +
\overrightarrow{BD} = 2\overrightarrow{MN} sai.

  • Câu 10: Nhận biết

    Điều kiện cần và đủ để ba điểm thẳng hàng

    Cho ba điểm A,\
B,\ C phân biệt. Điều kiện cần và đủ để ba điểm đó thẳng hàng là

    Ta có tính chất: Điều kiện cần và đủ để ba điểm A,\ B,\ C phân biệt thẳng hàng là \exists k \in R:\overrightarrow{AB} =
k\overrightarrow{AC}.

  • Câu 11: Nhận biết

    Tính độ dài cạnh AC

    Tam giác ABC\widehat{B} = 60^{\circ},\widehat{C} =
45^{\circ}AB = 5. Tính độ dài cạnh AC.

    Theo định lí sin ta có:

    \frac{AB}{\sin C} = \frac{AC}{\sin B}
\Leftrightarrow \frac{5}{\sin 45^{\circ}} = \frac{AC}{\sin
60^{\circ}}

    \Leftrightarrow AC =
\frac{5\sqrt{6}}{2}.

  • Câu 12: Nhận biết

    Đẳng thức nào sau đây đúng?

    Cho hình bình hành ABCD. Đẳng thức nào sau đây đúng?

    Ta có:

    \overrightarrow{AC} - \overrightarrow{AD}
= \overrightarrow{CD} sai do \overrightarrow{AC} - \overrightarrow{AD} =
\overrightarrow{DC}.

    \overrightarrow{AC} - \overrightarrow{BD}
= 2\overrightarrow{CD} sai do \overrightarrow{AC} - \overrightarrow{BD} =2\overrightarrow{CD}\Leftrightarrow \left( \overrightarrow{AB} +\overrightarrow{AD} ight) - \left( \overrightarrow{AD} -\overrightarrow{AB} ight)\mathbf{=}2\overrightarrow{CD}\Leftrightarrow 2\overrightarrow{AB} =2\overrightarrow{CD}.

    \overrightarrow{AC} + \overrightarrow{BC}
= \overrightarrow{AB} sai do \overrightarrow{AC} + \overrightarrow{BC} =\overrightarrow{AB} \Leftrightarrow \overrightarrow{AC} -\overrightarrow{AB} = - \overrightarrow{BC}\Leftrightarrow\overrightarrow{BC} = \overrightarrow{CB}.

    \overrightarrow{AC} + \overrightarrow{BD}
= 2\overrightarrow{BC} đúng do \overrightarrow{AC} + \overrightarrow{BD} =\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{BC} +\overrightarrow{CD}\mathbf{=}2\overrightarrow{BC} + \left(\overrightarrow{AB} + \overrightarrow{CD} ight) = 2\overrightarrow{BC}+ \overrightarrow{0} = 2\overrightarrow{BC}.

  • Câu 13: Nhận biết

    Tìm đẳng thức sai

    Gọi O là giao điểm của hai đường chéo của hình bình hành ABCD. Đẳng thức nào sau đây sai?

    Đẳng thức sai là \overrightarrow{OA} =
\overrightarrow{OC}.

  • Câu 14: Thông hiểu

    Khẳng định nào sau đây sai?

    Cho tam giác ABC cân ở A, đường cao AH. Khẳng định nào sau đây sai?

    Tam giác ABC cân ở A, đường cao AH. Do đó, H là trung điểm BC.

    Ta có:

    AB = AC \Rightarrow \left|
\overrightarrow{AB} ight| = \left| \overrightarrow{AC}
ight|

    H là trung điểm BC \Rightarrow \left\{ \begin{matrix}
\overrightarrow{HC} = - \overrightarrow{HB} \\
\overrightarrow{BC} = 2\overrightarrow{HC} \\
\end{matrix} ight..

    Chọn đáp án sai là \overrightarrow{AB} =
\overrightarrow{AC}.

  • Câu 15: Thông hiểu

    Chọn kết luận đúng

    Cho hình bình hành ABCD, điểm M thoả mãn: \overrightarrow{MA} + \overrightarrow{MC} =
\overrightarrow{AB}. Khi đó M là trung điểm của:

    Ta có \overrightarrow{MA} +
\overrightarrow{MC} = 2\overrightarrow{MI} =
\overrightarrow{AB}.

    Vậy M là trung điểm của AD.

  • Câu 16: Nhận biết

    Chọn kết quả đúng

    Cho tam giác ABC có trung tuyến BM và trọng tâm G. Khi đó \overrightarrow{BG} =

    Hình vẽ minh họa

    Ta có

    \overrightarrow{BG} =
\frac{2}{3}\overrightarrow{BM} = \frac{2}{3} \cdot \frac{1}{2}\left(
\overrightarrow{BA} + \overrightarrow{BC} \right) = \frac{1}{3}\left(
\overrightarrow{BA} + \overrightarrow{BC} \right).

  • Câu 17: Thông hiểu

    Hãy chọn kết quả đúng

    Điểm cuối của góc lượng giác \alpha ở góc phần tư thứ mấy nếu \cos\alpha = \sqrt{1 -
sin^{2}\alpha}.

    Ta có \cos\alpha = \sqrt{1 -
sin^{2}\alpha} \Leftrightarrow \cos\alpha =
\sqrt{cos^{2}\alpha} \Leftrightarrow \cos\alpha = \left| \cos\alpha
ight| \Leftrightarrow \cos\alpha.

    Đẳng thức \left| \cos\alpha ight|
\Leftrightarrow \cos\alpha\overset{}{ightarrow}\cos\alpha \geq
0\overset{}{ightarrow}điểm cuối của góc lượng giác \alpha ở góc phần tư thứ I hoặc IV.

  • Câu 18: Vận dụng

    Khẳng định nào sau đây đúng?

    Cho đường tròn O và hai tiếp tuyến MT,\ \ MT' (TT' là hai tiếp điểm). Khẳng định nào sau đây đúng?

    Do MT,\ \ MT' là hai tiếp tuyến (TT' là hai tiếp điểm) nên MT = MT'.

  • Câu 19: Nhận biết

    Tính độ dài cạnh b

    Cho \Delta
ABCB = 60^{0},a = 8,c =
5. Độ dài cạnh b bằng:

    Ta có: b^{2} = a^{2} + c^{2} - 2ac\cos
B = 8^{2} + 5^{2} - 2.8.5.cos60^{0}
= 49 \Rightarrow b =
7.

  • Câu 20: Nhận biết

    Tính tích vô hướng của hai vce y

    Cho tam giác ABC cân tại A, \widehat{A} = 120^{o}AB = a. Tính \overrightarrow{BA}.\overrightarrow{CA}.

    Ta có:

    \overrightarrow{BA}.\overrightarrow{CA} =
BA.CA.cos120^{0} = - \frac{1}{2}a^{2}.

  • Câu 21: Thông hiểu

    Chọn mệnh đề sai

    Cho tam giác đều ABC. Mệnh đề nào sau đây sai?

    Ta có: Tam giác đều ABC \Rightarrow
\overrightarrow{AB},\overrightarrow{BC} không cùng hướng

    \Rightarrow \overrightarrow{AB} \neq
\overrightarrow{BC}.

  • Câu 22: Thông hiểu

    Tính giá trị biểu thức P

    Cho tam giác ABC có BC = a, CA = b, AB = c. Tính P=(\overrightarrow{AB}+\overrightarrow{AC})\times \overrightarrow{BC}

    Ta có: 

    \begin{matrix}  P = \left( {\overrightarrow {AB}  + \overrightarrow {AC} } ight).\overrightarrow {BC}  \hfill \\   \Rightarrow P = \left( {\overrightarrow {AB}  + \overrightarrow {AC} } ight).\left( {\overrightarrow {BA}  + \overrightarrow {AC} } ight) \hfill \\   \Rightarrow P = \left( {\overrightarrow {AB}  + \overrightarrow {AC} } ight).\left( { - \overrightarrow {AB}  + \overrightarrow {AC} } ight) \hfill \\   \Rightarrow P = {\left( {\overrightarrow {AC} } ight)^2} - {\left( {\overrightarrow {AB} } ight)^2} = {\left| {\overrightarrow {AC} } ight|^2} - {\left| {\overrightarrow {AB} } ight|^2} \hfill \\   \Rightarrow P = {b^2} - {c^2} \hfill \\ \end{matrix}

  • Câu 23: Nhận biết

    Chọn đáp án thích hợp

    Cho \Delta ABC thỏa mãn: 2cosB = \sqrt{2}. Khi đó:

    Ta có: 2\cos B = \sqrt{2} \Leftrightarrow\cos B = \frac{\sqrt{2}}{2} \Rightarrow \widehat{B} =45^{0}.

  • Câu 24: Thông hiểu

    Chọn mệnh đề đúng

    Gọi S = m_{a}^{2} + m_{b}^{2} +
m_{c}^{2} là tổng bình phương độ dài ba trung tuyến của tam giác ABC. Trong các mệnh đề sau mệnh đề nào đúng?

    Ta có:

    S = m_{a}^{2} + m_{b}^{2} +
m_{c}^{2}

    = \frac{b^{2} + c^{2}}{2} -
\frac{a^{2}}{4} + \frac{a^{2} + c^{2}}{2} - \frac{b^{2}}{4} +
\frac{a^{2} + b^{2}}{2} - \frac{c^{2}}{4}

    = \frac{3}{4}\left( a^{2} + b^{2} + c^{2}
\right)

  • Câu 25: Thông hiểu

    Chọn đẳng thức đúng

    Cho 4 điểm bất kỳ A,\ B,\ C,\ D. Đẳng thức nào sau đây là đúng:

    Ta có:

    \overrightarrow{BC} -
\overrightarrow{AC} + \overrightarrow{AB} = \overrightarrow{AB} +
\overrightarrow{BC} - \overrightarrow{AC} = \overrightarrow{AC} -
\overrightarrow{AC} = \overrightarrow{0}.

  • Câu 26: Vận dụng

    Tính giá trị biểu thức

    Cho biết \cos\alpha = -
\frac{2}{3}. Giá trị của biểu thức E = \frac{\cot\alpha - 3\tan\alpha}{2\cot\alpha -\tan\alpha} bằng bao nhiêu?

    Ta có:

    E = \frac{\cot\alpha -3\tan\alpha}{2\cot\alpha - \tan\alpha} = \frac{1 - 3\tan^{2}\alpha}{2 -\tan^{2}\alpha}

    = \dfrac{4 - 3\left( \tan^{2}\alpha + 1\right)}{3 - \left( 1 + \tan^{2}\alpha \right)} = \frac{4 -\dfrac{3}{\cos^{2}\alpha}}{3 - \dfrac{1}{\cos^{2}\alpha}}

    = \frac{4\cos^{2}\alpha -3}{3\cos^{2}\alpha - 1} = - \frac{11}{3}.

  • Câu 27: Vận dụng cao

    Tính bán kính của đường tròn

    Cho hình vuông ABCD tâm O cạnh a. Biết rằng tập hợp điểm M thỏa mãn 2MA^{2} + MB^{2} + 2MC^{2} + MD^{2} =
9a^{2} là một đường tròn. Tính bán kính của đường tròn.

    Ta có: 

    2MA^{2} + MB^{2} + 2MC^{2} + MD^{2} =
9a^{2}

    \Leftrightarrow 2\left(
\overrightarrow{MO} + \overrightarrow{OA} ight)^{2} + \left(
\overrightarrow{MO} + \overrightarrow{OB} ight)^{2} + 2\left(
\overrightarrow{MO} + \overrightarrow{OC} ight)^{2} + \left(
\overrightarrow{MO} + \overrightarrow{OD} ight)^{2} =
9a^{2}

    \Leftrightarrow 6MO^{2} + 2OA^{2} +
OB^{2} + 2OC^{2} + OD^{2}

    +
2\overrightarrow{MO}\left( 2\overrightarrow{OA} + \overrightarrow{OB} +
2\overrightarrow{OC} + \overrightarrow{OD} ight) = 9a^{2}

    Do 2\overrightarrow{OA} +
\overrightarrow{OB} + 2\overrightarrow{OC} + \overrightarrow{OD} =
\overrightarrow{0}

    \Leftrightarrow 6MO^{2} + 3a^{2} =
9a^{2}

    \Leftrightarrow MO = a

    Vậy tập hợp các điểm M là đường tròn tâm O, bán kính R = a.

  • Câu 28: Nhận biết

    Xác định đẳng thức đúng

    Chọn đẳng thức đúng:

    Đẳng thức đúng là: \overrightarrow{AB} =\overrightarrow{CB}+ \overrightarrow{AC}.

  • Câu 29: Nhận biết

    Tìm khẳng định sai

    Trong các khẳng định sau, khẳng định nào sai?

    Giá trị lượng giác của góc đặc biệt ta có: 

    \left\{ \begin{matrix}cos60^{0} = \frac{1}{2} \\ \sin120^{0} = \dfrac{\sqrt{3}}{2}\end{matrix} \right.\  \Rightarrow \cos60^{0} \neq \sin120^{0}

  • Câu 30: Nhận biết

    Tính góc giữa hai vectơ

    Cho các vectơ \overrightarrow{a} = (1; -
2),\ \ \overrightarrow{b} = ( - 2; - 6). Khi đó góc giữa chúng là

    Ta có: \overrightarrow{a} = (1; - 2),\ \
\overrightarrow{b} = ( - 2; - 6)

    Suy ra \cos\left( \overrightarrow{a};\overrightarrow{b}
\right) = \frac{\overrightarrow{a}.\overrightarrow{b}}{\left|
\overrightarrow{a} \right|.\left| \overrightarrow{b} \right|} =
\frac{10}{\sqrt{5}.\sqrt{40}} = \frac{\sqrt{2}}{2}

    \Rightarrow \left(
\overrightarrow{a};\overrightarrow{b} \right) = 45^{0}.

  • Câu 31: Nhận biết

    Tìm đẳng thức đúng

    Trong các đẳng thức sau đây, đẳng thức nào đúng?

    Mối liên hệ hai cung bù nhau.

  • Câu 32: Vận dụng cao

    Chọn đáp án thích hợp

    Cho hai điểm A,\ \ B phân biệt và cố định, với I là trung điểm của AB. Tìm tập hợp các điểm M thỏa mãn đẳng thức \left| 2\overrightarrow{MA} + \overrightarrow{MB}
\right| = \left| \overrightarrow{MA} + 2\overrightarrow{MB}
\right|.

    Chọn điểm E thuộc đoạn AB sao cho EB
= 2EA

    \Rightarrow 2\overrightarrow{EA} +
\overrightarrow{EB} = \overrightarrow{0}.

    Chọn điểm F thuộc đoạn AB sao cho FA
= 2FB

    \Rightarrow 2\overrightarrow{FB} +
\overrightarrow{FA} = \overrightarrow{0}.

    Ta có \left| 2\overrightarrow{MA} +
\overrightarrow{MB} \right| = \left| \overrightarrow{MA} +
2\overrightarrow{MB} \right|

    \Leftrightarrow \left|
2\overrightarrow{ME} + 2\overrightarrow{EA} + \overrightarrow{ME} +
\overrightarrow{EB} \right| = \left| 2\overrightarrow{MF} +
2\overrightarrow{FB} + \overrightarrow{MF} + \overrightarrow{FA}
\right|

    \Leftrightarrow \left| 3\
\overrightarrow{ME} + \underset{\overrightarrow{0}}{\overset{2\
\overrightarrow{EA} + \overrightarrow{EB}}{︸}} \right| = \left| 3\
\overrightarrow{MF} + \underset{\overrightarrow{0}}{\overset{2\
\overrightarrow{FA} + \overrightarrow{FB}}{︸}} \right|

    \Leftrightarrow \left| 3\
\overrightarrow{ME} \right| = \left| 3\ \overrightarrow{MF} \right|
\Leftrightarrow ME = MF\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (*).

    E,\ \ F là hai điểm cố định nên từ đẳng thức (*) suy ra tập hợp các điểm M là trung trực của đoạn thẳng EF.

    Gọi I là trung điểm của AB suy ra I cũng là trung điểm của EF. lời g

    Vậy tập hợp các điểm M thỏa mãn \left| 2\overrightarrow{MA} +
\overrightarrow{MB} \right| = \left| \overrightarrow{MA} +
2\overrightarrow{MB} \right| là đường trung trực của đoạn thẳng AB.

  • Câu 33: Vận dụng

    Tính độ lớn của vectơ

    Cho 2 vectơ \overrightarrow{a}\overrightarrow{b}\left| \overrightarrow{a} ight| = 4, \left| \overrightarrow{b} ight| =
5\left(
\overrightarrow{a},\overrightarrow{b} ight) = 120^{o}. Tính \left| \overrightarrow{a} +
\overrightarrow{b} ight|.

    Ta có \left| \overrightarrow{a} +
\overrightarrow{b} ight| = \sqrt{\left( \overrightarrow{a} +
\overrightarrow{b} ight)^{2}} =
\sqrt{{\overrightarrow{a}}^{2} + {\overrightarrow{b}}^{2} +
2\overrightarrow{a}.\overrightarrow{b}} = \sqrt{\left| \overrightarrow{a} ight|^{2} +
\left| \overrightarrow{b} ight|^{2} + 2\left| \overrightarrow{a}
ight|\left| \overrightarrow{b} ight|\ \ \cos\left(
\overrightarrow{a},\overrightarrow{b} ight)} = \sqrt{21}.

  • Câu 34: Thông hiểu

    Tìm mệnh đề sai

    Cho hình vuông ABCD cạnh a . Hỏi mệnh đề nào sau đây sai?

    Phương án \overrightarrow{DA}.\overrightarrow{CB} =
a^{2}:

    Do \overrightarrow{DA}.\overrightarrow{CB} =
DA.CB.\cos 0^{0} = a^{2}nên loại.

    Phương án \overrightarrow{AB}.\overrightarrow{CD} = -
a^{2}:

    Do \overrightarrow{AB}.\overrightarrow{CD} =AB.CD.\cos180^{o} = - a^{2} nên chọn.

  • Câu 35: Vận dụng cao

    Tính độ dài cạnh AB

    Tam giác ABC có trọng tâm G. Hai trung tuyến BM = 6, CN = 9\widehat{BGC} = 120^{0}. Tính độ dài cạnh AB.

    Hình vẽ minh họa:

    Ta có: \widehat{BGC}\widehat{BGN} là hai góc kề bù mà \widehat{BGC} = 120^{0} \Rightarrow \widehat{BGN}
= 120^{0}.

    G là trọng tâm của tam giác \Delta ABC\Rightarrow \left\{ \begin{matrix}BG = \dfrac{2}{3}BM = 4. \\GN = \dfrac{1}{3}CN = 3.\end{matrix} \right.

    Trong tam giác \Delta BGN ta có:

    BN^{2} = GN^{2} + BG^{2} -2GN.BG.\cos\widehat{BGN}

    \Rightarrow BN^{2} = 9 + 16 -
2.3.4.\frac{1}{2} = 13 \Rightarrow BN = \sqrt{13}.

    N là trung điểm của AB \Rightarrow AB = 2BN = 2\sqrt{13}.

  • Câu 36: Vận dụng cao

    Tính giá trị biểu thức

    Biểu thức lượng giác \left\lbrack \sin\left( \frac{\pi}{2} - x ight)
+ \sin(10\pi + x) ightbrack^{2} + \left\lbrack \cos\left(
\frac{3\pi}{2} - x ight) + \cos(8\pi - x) ightbrack^{2} có giá trị bằng bao nhiêu?

    Ta có:

    \sin\left( \frac{\pi}{2} - x ight) =
\cos x

    \sin(10\pi + x) = \sin x

    \cos\left( \dfrac{3\pi}{2} - x ight) =\cos\left( 2\pi - \dfrac{\pi}{2} - x ight) = \cos\left( \dfrac{\pi}{2} +x ight) = - \sin x

    \cos(8\pi - x) = \cos x

    Khi đó

    \left\lbrack \sin\left( \frac{\pi}{2} -
x ight) + \sin(10\pi + x) ightbrack^{2} + \left\lbrack \cos\left(
\frac{3\pi}{2} - x ight) + \cos(8\pi - x)
ightbrack^{2}

    = \left( \cos x + \sin x ight)^{2} +
\left( \cos x - \sin x ight)^{2}

    = \cos x^{2} + 2\sin x\cos x + \sin^{2}x +\cos^{2}x - 2\sin x\cos x + \sin^{2}x = 2

  • Câu 37: Thông hiểu

    Tính độ dài đường cao

    Cho tam giác ABC có b = 7; c = 5, \cos A = \frac{3}{5}. Đường cao h_{a} của tam giác ABC là:

    Ta có: a^{2} = b^{2} + c^{2} - 2bc\cos A
= 7^{2} + 5^{2} - 2.7.5.\frac{3}{5}
= 32 \Rightarrow a = 4\sqrt{2}.

    Mặt khác: sin^{2}A + cos^{2}A = 1
\Rightarrow sin^{2}A = 1 - cos^{2}A = 1 - \frac{9}{25} = \frac{16}{25} \Rightarrow
\sin A = \frac{4}{5} (Vì \sin A
> 0).

    Mà: S_{\Delta ABC} = \frac{1}{2}b.c.sinA
= \frac{1}{2}a.h_{a} \Rightarrow
h_{a} = \frac{bc\sin A}{a} = \frac{7.5.\frac{4}{5}}{4\sqrt{2}} =
\frac{7\sqrt{2}}{2}.

  • Câu 38: Vận dụng

    Tính chiều cao của ngọn tháp

    Xác định chiều cao của một tháp mà không cần lên đỉnh của tháp. Đặt kế giác thẳng đứng cách chân tháp một khoảng CD = 60m, giả sử chiều cao của giác kế là OC = 1m.Quay thanh giác kế sao cho khi ngắm theo thanh ta nhình thấy đỉnh A của tháp. Đọc trên giác kế số đo của góc \widehat{AOB} = 60^{0}. Chiều cao của ngọn tháp gần với giá trị nào sau đây:

    Tam giác OAB vuông tại B,\tan\widehat{AOB} = \frac{AB}{OB} \Rightarrow AB = tan60^{0}.OB =
60\sqrt{3}m.

    Vậy chiếu cao của ngọn tháp là h = AB +
OC = \left( 60\sqrt{3} + 1 ight)\ m.

  • Câu 39: Thông hiểu

    Xác định vị trí điểm M thỏa mãn yêu c

    Cho tam giác ABC và điểm M thỏa mãn \overrightarrow{MB} + \overrightarrow{MC} =
\overrightarrow{AB}. Tìm vị trí điểm M.

    Hình vẽ minh họa:

    Gọi I là trung điểm của BC.

    \Rightarrow \overrightarrow{MB} +
\overrightarrow{MC} = 2\overrightarrow{MI}

    \Rightarrow \overrightarrow{AB} =
2\overrightarrow{MI} \Rightarrow
M là trung điểm AC.

  • Câu 40: Nhận biết

    Tính tổng hai vectơ

    Cho hình bình hành ABCD tâm O. Khi đó \overrightarrow{OA} + \overrightarrow{BO}
=

    Ta có:  \overrightarrow{OA} + \overrightarrow{BO}
= \overrightarrow{BA} = \overrightarrow{CD} .

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 4 Hệ thức lượng trong tam giác. Vectơ Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo