Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 4 Hệ thức lượng trong tam giác. Vectơ

Mô tả thêm:

Đề kiểm tra 45 phút Toán 10 Chương 4 Hệ thức lượng trong tam giác. Vectơ sách Cánh Diều giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Chọn đẳng thức sai

    Cho hình bình hành ABCD tâm O. Mệnh đề nào sau đây là sai?

     

    Ta có: \overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{OC}+\overrightarrow{OD} \Leftrightarrow \overrightarrow{OA}-\overrightarrow{OC}=\overrightarrow{OD}-\overrightarrow{OB}\Leftrightarrow \overrightarrow{CA}= \overrightarrow{BD} (Sai).

  • Câu 2: Nhận biết

    Chọn đáp án chính xác

    Giá trị của \cos60^{0} +\sin30^{0} bằng bao nhiêu?

    Ta có: cos60^{0} + sin30^{0} =
\frac{1}{2} + \frac{1}{2} = 1.

  • Câu 3: Nhận biết

    Chọn đáp án đúng

    Biết \overrightarrow{a},\overrightarrow{b}eq \overrightarrow{0}\overrightarrow{a}\times \overrightarrow{b}=-|\overrightarrow{a}|\times |\overrightarrow{b}|. Câu nào sau đây đúng?

     Ta có:

    \begin{matrix}  \vec a.\vec b =  - |\vec a|.|\vec b| = |\vec a|.|\vec b|.\cos {180^0} \hfill \\   \Rightarrow \left( {\vec a,\vec b} ight) = {180^0} \hfill \\ \end{matrix}

    => \overrightarrow{a}\overrightarrow{b} ngược hướng.

  • Câu 4: Thông hiểu

    Tính giá trị lượng giác

    Cho góc \alpha thỏa mãn \cos\alpha = - \frac{\sqrt{5}}{3}\pi < \alpha <
\frac{3\pi}{2}. Tính \tan\alpha.

    Ta có \left\{ \begin{matrix}
\sin\alpha = \pm \sqrt{1 - cos^{2}\alpha} = \pm \frac{2}{3} \\
\pi < \alpha < \frac{3\pi}{2} \\
\end{matrix} ight. \overset{}{ightarrow}\sin\alpha = -
\frac{2}{3}\overset{}{ightarrow}\tan\alpha =
\frac{\sin\alpha}{\cos\alpha} = \frac{2}{\sqrt{5}}.

  • Câu 5: Nhận biết

    Tính độ dài cạnh BC

    Tam giác ABCAB =
2,\ \ AC = 1\widehat{A} =
60{^\circ}. Tính độ dài cạnh BC.

    Theo định lí hàm cosin, ta có BC^{2} =
AB^{2} + AC^{2} - 2AB.AC.cos\widehat{A} = 2^{2} + 1^{2} - 2.2.1.cos60{^\circ} = 3
\Rightarrow BC = \sqrt{3}.

  • Câu 6: Nhận biết

    Chọn khẳng định đúng

    Chọn khẳng định đúng:

    Khẳng định đúng là: “Nếu G là trọng tâm tam giác ABC thì \overrightarrow{GA} + \overrightarrow{GB} +
\overrightarrow{GC} = \overrightarrow{0}.”

  • Câu 7: Vận dụng

    Tìm tọa độ điểm M

    Cho hai điểm A(2,2), B(5,
- 2). Tìm M trên tia Ox sao cho \widehat{AMB\ } = \
90^{o}.

    Gọi M(x;0), với x\mathbb{\in R}.

    Khi đó \overrightarrow{AM} = (x - 2; -
2),\ \ \overrightarrow{BM} = (x - 5;2).

    Theo yêu cầu đề bài ta có \overrightarrow{AM}.\overrightarrow{BM} = 0
\Leftrightarrow (x - 2)(x - 5) - 4
= x^{2} - 7x + 6 = 0 \Rightarrow
\left\lbrack \begin{matrix}
x = 1 \Rightarrow M(1;0) \\
x = 6 \Rightarrow M(6;0) \\
\end{matrix} ight..

  • Câu 8: Thông hiểu

    Tính góc giữa hai vecto

    Cho hai vectơ \overrightarrow{u} = ( - 4; - 3)\overrightarrow{v} = ( - 1; - 7). Góc giữa hai vectơ \overrightarrow{u}\overrightarrow{v} là:

    \cos\left( \overrightarrow{u},\overrightarrow{v} ight) = \dfrac{( - 4)(- 1) + ( - 3).( - 7)}{\sqrt{4^{2} + 3^{2}}.\sqrt{1^{2} + 7^{2}}} =\dfrac{\sqrt{2}}{2}

    \Rightarrow \left( \overrightarrow{u},\overrightarrow{v} ight) =45^{0}

  • Câu 9: Nhận biết

    Tính tích vô hướng của hai vectơ

    Trong mặt phẳng tọa độ Oxy, cho hai điểm A(3; - 1)B(2;10). Tính tích vô hướng \overrightarrow{AO}.\overrightarrow{OB}

    Ta có \overrightarrow{AO} = ( - 3;1),\
\overrightarrow{OB} = (2;10).

    Suy ra \overrightarrow{AO}.\overrightarrow{OB} = - 3.2 +
1.10 = 4.

  • Câu 10: Thông hiểu

    Tìm cặp vectơ cùng hướng

    Gọi M,\ \ N lần lượt là trung điểm của các cạnh AB,\ \ AC của tam giác đều ABC. Hỏi cặp vectơ nào sau đây cùng hướng?

    Cặp vectơ nào sau đây cùng hướng là: \overrightarrow{AB}\overrightarrow{MB}.

  • Câu 11: Nhận biết

    Tính diện tích tam giác

    Cho \Delta ABCa = 6,b = 8,c = 10. Diện tích S của tam giác trên là:

    Ta có: Nửa chu vi \Delta ABC: p = \frac{a + b + c}{2}.

    Áp dụng công thức Hê-rông:

    S = \sqrt{p(p - a)(p - b)(p -
c)}= \sqrt{12(12 - 6)(12 - 8)(12 - 10)} =
24.

  • Câu 12: Thông hiểu

    Tìm khẳng định sai

    Cho hình bình hành ABCD tâm O. Khẳng định nào sau đây sai?

    Hình vẽ minh họa

    Ta có: \overrightarrow{AO} +
\overrightarrow{BO} + \overrightarrow{CO} + \overrightarrow{DO} =
\overrightarrow{AO} + \overrightarrow{CO} + \overrightarrow{BO} +
\overrightarrow{DO} = \overrightarrow{0}.

    Suy ra \overrightarrow{AO} +
\overrightarrow{BO} + \overrightarrow{CO} + \overrightarrow{DO} =
\overrightarrow{0} đúng.

    Ta có: \overrightarrow{AO} +
\overrightarrow{DA} = \overrightarrow{OC} + \overrightarrow{CB} =
\overrightarrow{OB}. Suy ra \overrightarrow{AO} + \overrightarrow{DA} =
\overrightarrow{OB} đúng.

    Ta có: \overrightarrow{OA} -
\overrightarrow{BO} = \overrightarrow{OA} + \overrightarrow{OB} eq
\overrightarrow{AB}. Suy ra \overrightarrow{OA} - \overrightarrow{BO} =
\overrightarrow{AB} sai.

    Ta có: \overrightarrow{AB} =
\overrightarrow{DC} đúng.

  • Câu 13: Thông hiểu

    Tính độ dài vectơ

    Gọi G là trọng tâm tam giác vuông ABC với cạnh huyền BC = 12. Tổng hai vectơ \overrightarrow{GB} + \overrightarrow{GC} có độ dài bằng bao nhiêu?

    Dựng hình bình hành GBDC. Gọi M là trung điểm BC.

    Khi đó ta có

    \left| \overrightarrow{GB} +
\overrightarrow{GC} \right| = \left| \overrightarrow{GD} \right| = GD =
2GM

    = \frac{2}{3}AM = \frac{1}{3}BC =
\frac{1}{3}.12 = 4

  • Câu 14: Thông hiểu

    Tính khoảng cách AB

    Từ một đỉnh tháp chiều cao CD =
80m, người ta nhìn hai điểm A và B trên mặt đất dưới các góc nhìn là 72^{0}12'34^{0}26'. Ba điểm A; B; D thẳng hàng. Tính khoảng cách AB?

    Ta có: Trong tam giác vuông :

    \tan72^{0}12' =\frac{CD}{AD}\Rightarrow AD =\frac{CD}{\tan72^{0}12'} \approx 25,7

    Trong tam giác vuông :

    \tan34^{0}12' =\frac{CD}{BD}\Rightarrow BD =\frac{CD}{\tan34^{0}12'} \approx 116,7

    Suy ra: khoảng cách AB = 116,7 - 25,7 =
91(m)

  • Câu 15: Nhận biết

    Chọn phương án thích hợp

    Cho \overrightarrow{a},\ \
\overrightarrow{b}\không cùng phương, \overrightarrow{\ x\ } = - 2\ \overrightarrow{\ a\
\ } + \overrightarrow{\ b\ }. Vectơ cùng hướng với \overrightarrow{\ x\ \ }là:

    Ta có:

    - \ \overrightarrow{\ a\ \ } +
\frac{1}{2}\overrightarrow{\ b\ } = \frac{1}{2}\left( - 2\
\overrightarrow{\ a\ \ } + \overrightarrow{\ b\ } \right) =
\frac{1}{2}\overrightarrow{\ x\ }.

    Vậy đáp án cần tìm là: - \
\overrightarrow{\ a\ \ } + \frac{1}{2}\overrightarrow{\ b\
}

  • Câu 16: Vận dụng

    Tính giá trị của biểu thức P

    Cho góc \alpha thỏa mãn \sin(\pi + \alpha) = - \frac{1}{3}\frac{\pi}{2} < \alpha < \pi. Tính P = \tan\left( \frac{7\pi}{2} - \alpha
ight).

    Ta có P = \tan\left( \frac{7\pi}{2} -
\alpha ight) = \tan\left( 3\pi + \frac{\pi}{2} - \alpha
ight) = \tan\left( \frac{\pi}{2}
- \alpha ight) = \cot\alpha =
\frac{\cos\alpha}{\sin\alpha}.

    Theo giả thiết: \sin(\pi + \alpha) = -
\frac{1}{3} \Leftrightarrow -
\sin\alpha = - \frac{1}{3} \Leftrightarrow \sin\alpha =
\frac{1}{3}.

    Ta có \left\{ \begin{matrix}
\cos\alpha = \pm \sqrt{1 - sin^{2}\alpha} = \pm \frac{2\sqrt{2}}{3} \\
\frac{\pi}{2} < \alpha < \pi \\
\end{matrix} ight. \overset{}{ightarrow}\cos\alpha = -
\frac{2\sqrt{2}}{3}\overset{}{ightarrow}P = - 2\sqrt{2}.

  • Câu 17: Nhận biết

    Chọn đáp án đúng

    Cho tam giác ABC có thể xác định được bao nhiêu vectơ (khác vectơ không) có điểm đầu và điểm cuối là đỉnh A,B, C ?

    Hình vẽ minh họa:

    Ta có các vectơ đó là: \overrightarrow{AB},\overrightarrow{AC},\overrightarrow{BA},\overrightarrow{BC},\overrightarrow{CA},\overrightarrow{CB}.

  • Câu 18: Vận dụng

    Tính diện tích tam giác

    Tam giác ABC có BC = a, CA = b, AB = c và có diện tích S. Nếu tăng cạnh BC lên 2 lần đồng thời tăng cạnh AC lên 3 lần và giữ nguyên độ lớn của góc C thì khi đó diện tích của tam giác mới được tạo nên bằng:

    Ta có:

    Diện tích ban đầu của tam giác là:

    \begin{matrix}  S = \dfrac{1}{2}BC.CA.\sin \widehat C \hfill \\   \Rightarrow S = \dfrac{1}{2}a.b.\sin \widehat C \hfill \\ \end{matrix}

    Nếu tăng cạnh BC lên 2 lần đồng thời tăng cạnh AC lên 3 lần và giữ nguyên độ lớn của góc C thì khi đó diện tích của tam giác là:

    \begin{matrix}  S' = \dfrac{1}{2}\left( {2BC} ight).\left( {3.CA} ight).\sin \widehat C \hfill \\   \Rightarrow S' = 6.\dfrac{1}{2}a.b.\sin \widehat C = 6S \hfill \\   \Rightarrow S' = 6S \hfill \\ \end{matrix}

  • Câu 19: Thông hiểu

    Tính chiều dài hàng rào

    Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào MN150m, chiều dài của hàng rào MP230m. Góc giữa hai hàng rào MNMP110^{\circ} (như hình vẽ).

    Chiều dài hàng rào NP là bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?

    Áp dụng định li côsin ta

    NP^{2} = MN^{2} + MP^{2} - 2MN \cdot MP
\cdot \cos M

    = 150^{2} + 230^{2} - 2 \cdot 150 \cdot
230 \cdot cos110^{\circ} \approx
98999,39.

    Suy ra NP \approx \sqrt{98999,39} \approx
314,6(m).

    Vậy chiều dài hàng rào NP là khoảng 314,6m.

  • Câu 20: Thông hiểu

    Chọn phát biểu đúng

    Cho hình chữ nhật ABCD, gọi O là giao điểm của ACBD, phát biểu nào là đúng?

    Ta có:

    \overrightarrow{AC} + \overrightarrow{DA}
= \overrightarrow{DC} = \overrightarrow{AB}.

  • Câu 21: Thông hiểu

    Tìm tập hợp các điểm M thỏa mãn biểu thức

    Cho tam giác ABC. Tập hợp các điểm M thỏa mãn đẳng thức: \left| \overrightarrow{MB} - \overrightarrow{MC}
\right| = \left| \overrightarrow{BM} - \overrightarrow{BA}
\right| là?

    Ta có:

    \left| \overrightarrow{MB} -\overrightarrow{MC} \right| = \left| \overrightarrow{BM} -\overrightarrow{BA} \right|

    \Leftrightarrow \left| \overrightarrow{CB}\right| = \left| \overrightarrow{AM} \right| \Rightarrow AM =BC

    A,\ \ B,\ \ C cố định \Rightarrow Tập hợp điểm M là đường tròn tâm A, bán kính BC.

  • Câu 22: Thông hiểu

    Xét tính đúng sai của các khẳng định

    Cho hình vuông ABCD tâm O có cạnh 1.

    a) \overrightarrow{BA} -
\overrightarrow{BC} = \overrightarrow{AC}. Sai||Đúng

    b) \overrightarrow{BO} -
\overrightarrow{BC} = \overrightarrow{OA}. Đúng||Sai

    c) Điểm M di động thỏa mãn \left| \overrightarrow{MA} - \overrightarrow{CA}
\right| = \left| \overrightarrow{MB} - \overrightarrow{MC} +
\overrightarrow{CD} \right|. Khi đó điểm M thuộc một đường tròn cố định có bán kính bằng \sqrt{2}. Đúng||Sai

    d) \left| \overrightarrow{CB} -
\overrightarrow{OC} \right| = \frac{\sqrt{2}}{2}. Sai||Đúng

    Đáp án là:

    Cho hình vuông ABCD tâm O có cạnh 1.

    a) \overrightarrow{BA} -
\overrightarrow{BC} = \overrightarrow{AC}. Sai||Đúng

    b) \overrightarrow{BO} -
\overrightarrow{BC} = \overrightarrow{OA}. Đúng||Sai

    c) Điểm M di động thỏa mãn \left| \overrightarrow{MA} - \overrightarrow{CA}
\right| = \left| \overrightarrow{MB} - \overrightarrow{MC} +
\overrightarrow{CD} \right|. Khi đó điểm M thuộc một đường tròn cố định có bán kính bằng \sqrt{2}. Đúng||Sai

    d) \left| \overrightarrow{CB} -
\overrightarrow{OC} \right| = \frac{\sqrt{2}}{2}. Sai||Đúng

    Hình vẽ minh họa

    a. Sai

    Vì: \overrightarrow{BA} -
\overrightarrow{BC} = \overrightarrow{CA}.

    b. Đúng

    Vì: \overrightarrow{BO} -
\overrightarrow{BC} = \overrightarrow{CO} =
\overrightarrow{OA}

    c. Đúng

    \ \ \left| \overrightarrow{MA} -
\overrightarrow{CA} \right| = \left| \overrightarrow{MB} -
\overrightarrow{MC} + \overrightarrow{CD} \right|

    \Leftrightarrow \left|
\overrightarrow{MA} + \overrightarrow{AC} \right| = \left|
\overrightarrow{CB} + \overrightarrow{CD} \right|

    \Leftrightarrow \left|
\overrightarrow{MC} \right| = \left| \overrightarrow{CA} \right|
\Leftrightarrow CM = CA

    Khi đó điểm M thuộc đường tròn tâm C, bán kính R = CA = \sqrt{2}

    d. Sai

    \overrightarrow{CB} -
\overrightarrow{OC} = \overrightarrow{CB} +
\overrightarrow{CO}

    Dựng hình bình hành OCBE.

    Khi đó: \overrightarrow{CB} -
\overrightarrow{OC} = \overrightarrow{CB} + \overrightarrow{CO} =
\overrightarrow{CE}.

    Do đó: \left| \overrightarrow{CB} -
\overrightarrow{OC} \right| = \left| \overrightarrow{CE} \right| =
CE.

    Áp dụng định lí cô sin cho tam giác EBCta có:

    CE^{2} = CB^{2} + BE^{2} -
2CB.BE.cos\widehat{CBE}

    Trong đó: CB = 1;BE = CO = \frac{1}{2}AC
= \frac{\sqrt{2}}{2};\widehat{CBE}
= 135^{\circ}.

    Do đó: CE = \sqrt{1^{2} + \left(
\frac{\sqrt{2}}{2} \right)^{2} - 2.1.\frac{\sqrt{2}}{2}.cos135^{\circ}}
= \sqrt{2}.

  • Câu 23: Thông hiểu

    Biểu diễn một vectơ theo hai vectơ khác

    Cho tam giác ABC. Hai điểm M,\ \ N chia cạnh BC theo ba phần bằng nhau BM = MN = NC. Tính \overrightarrow{AM} theo \overrightarrow{AB}\overrightarrow{AC}.

    Ta có \overrightarrow{AM} =
\overrightarrow{AB} + \overrightarrow{BM} = \overrightarrow{AB} +
\frac{1}{3}\overrightarrow{BC} = \overrightarrow{AB} + \frac{1}{3}\left(
\overrightarrow{AC} - \overrightarrow{AB} ight) =
\frac{2}{3}\overrightarrow{AB} +
\frac{1}{3}\overrightarrow{AC}.

  • Câu 24: Nhận biết

    Tìm mệnh đề đúng

    Cho ba điểm A,\
B,\ C phân biệt. Khi đó:

    Chọn: Điều kiện cần và đủ để A,\ B,\
C thẳng hàng là \overrightarrow{AB} cùng phương với \overrightarrow{AC}.

  • Câu 25: Thông hiểu

    Tìm kết luận sai

    Trong mặt phẳng \left(
O;\overrightarrow{i},\overrightarrow{j} \right) cho 2 vectơ : \overrightarrow{a} = 3\overrightarrow{i} +
6\overrightarrow{j}\overrightarrow{b} = 8\overrightarrow{i} -4\overrightarrow{j}. Kết luận nào sau đây sai?

    Ta có: \overrightarrow{a} = (3;6);\ \
\overrightarrow{b} = (8; - 4)

    Phương án \overrightarrow{a}.\overrightarrow{b} =
0.:\overrightarrow{a}.\overrightarrow{b} = 24 - 24 =
0 nên loại đáp án này.

    Phương án \overrightarrow{a}\bot\overrightarrow{b}:

    \overrightarrow{a}.\overrightarrow{b} =
0 suy ra \overrightarrow{a} vuông góc \overrightarrow{b}nên loại đáp án này.

    Phương án \left| \overrightarrow{a}
\right|.\left| \overrightarrow{b} \right| = 0:

    \left| \overrightarrow{a} \right|.\left|
\overrightarrow{b} \right| = \sqrt{3^{2} + 6^{2}}.\sqrt{8^{2} + ( -
4)^{2}} \neq 0 nên chọn đáp án này.

  • Câu 26: Vận dụng cao

    Tính giá trị biểu thức

    Với mọi góc \alpha, giá trị của biểu thức

    \cos\alpha + \cos\left( \alpha +
\frac{\pi}{5} ight) + \cos\left( \alpha + \frac{2\pi}{5} ight) + ...
+ \cos\left( \alpha + \frac{9\pi}{5} ight)

    Ta có:

    \cos\alpha = - \cos\left( \alpha +
\frac{5\pi}{5} ight)

    \cos\left( \alpha + \frac{\pi}{5}
ight) = - \cos\left( \alpha + \frac{6\pi}{5} ight)

    \cos\left( \alpha + \frac{2\pi}{5}
ight) = - \cos\left( \alpha + \frac{7\pi}{5} ight)

    \cos\left( \alpha + \frac{3\pi}{5}
ight) = - \cos\left( \alpha + \frac{8\pi}{5} ight)

    \cos\left( \alpha + \frac{4\pi}{5}
ight) = - \cos\left( \alpha + \frac{9\pi}{5} ight)

    Do đó:

    \cos\alpha + \cos\left( \alpha +
\frac{\pi}{5} ight) + \cos\left( \alpha + \frac{2\pi}{5} ight) + ...
+ \cos\left( \alpha + \frac{9\pi}{5} ight) = 0

  • Câu 27: Nhận biết

    Tính tích vô hướng hai vecto

    Trong mặt phẳng tọa độ Oxy, cho hai vecto \overrightarrow{u} = (1;3)\overrightarrow{v} = ( - 2;2). Tính \overrightarrow{u}.\overrightarrow{v}?

    Theo bài ra ta có:

    \overrightarrow{u} = (1;3)\overrightarrow{v} = ( - 2;2)

    Khi đó: \overrightarrow{u}.\overrightarrow{v} = 1.( - 2) +3.2 = 4

  • Câu 28: Nhận biết

    Xác định câu sai

    Tìm khẳng định sai trong các khẳng định sau:

    Đáp án sai là: cos75^{0} >
cos50^{0}.

  • Câu 29: Vận dụng cao

    Tính độ dài vectơ

    Cho tam giác ABC\widehat{A} = 90^{0}. Gọi các vectơ \overrightarrow{\alpha};\overrightarrow{\beta};\overrightarrow{\lambda} theo thư tự là các vectơ có giá vuông góc với các đường thẳng AB.AC,BC\left| \overrightarrow{\alpha} ight| = AB;\left|
\overrightarrow{\beta} ight| = AC;\left| \overrightarrow{\lambda}
ight| = BC. Tính độ dài vectơ \overrightarrow{\alpha} + \overrightarrow{\beta} -
\overrightarrow{\lambda}, biết AB =
3,AC = 4.

    Hình vẽ minh họa:

    Gọi D là điểm thuộc miền trong tam giác ABC, dựng các vectơ \overrightarrow{\alpha} =
\overrightarrow{DG};\overrightarrow{\beta} =
\overrightarrow{DE};\overrightarrow{\lambda} =
\overrightarrow{DF} dựng hình chữ nhật DGHE ta có: \overrightarrow{\alpha} + \overrightarrow{\beta} =
\overrightarrow{DH}

    Ta lại có: \Delta GDH = \Delta ABC
\Rightarrow \widehat{GDH} = \widehat{ABC}

    Mặt khác \widehat{GDF} + \widehat{ABC} =
180^{0}

    \Rightarrow \widehat{GDF} +
\widehat{GDH} = 180^{0}

    => Ba điểm H, D, F thẳng hàng.

    Khi đó: \left| \overrightarrow{\alpha} +
\overrightarrow{\beta} - \overrightarrow{\lambda} ight| = \left|
\overrightarrow{DH} + \overrightarrow{FD} ight| = \left|
\overrightarrow{FH} ight| = 10

  • Câu 30: Thông hiểu

    Chọn đáp án đúng

    Cho M,\ \ N,\ \ P lần lượt là trung điểm các cạnh AB,\ \ BC,\ \
CA của tam giác ABC. Hỏi vectơ \overrightarrow{MP} +
\overrightarrow{NP} bằng vectơ nào?

    Hình vẽ minh họa

    Ta có:

    \overrightarrow{NP} =
\overrightarrow{BM}\ \ \ \ \overset{}{\rightarrow}\ \ \ \
\overrightarrow{MP} + \overrightarrow{NP} = \overrightarrow{MP} +
\overrightarrow{BM} = \overrightarrow{BP}.

  • Câu 31: Nhận biết

    Chọn đáp án đúng

    Cho tam giác ABC thỏa mãn: 2\cos A = 1. Khi đó:

    Ta có:

    2\cos A = 1 \Leftrightarrow \cos A =\frac{1}{2} \Rightarrow \widehat{A} = 60^{0}.

  • Câu 32: Nhận biết

    Chọn khẳng định đúng

    Trong các khẳng định sau, khẳng định nào là đúng?

     Ta có: \sin157^{\circ} =\sin (180^{\circ} -157^{\circ} )=\sin 23^{\circ}. Vì \sin \alpha =\sin (180^{\circ} -\alpha ).

  • Câu 33: Thông hiểu

    Tính giá trị lượng giác

    Cho \cos\alpha =
\frac{4}{5} với 0 < \alpha <
\frac{\pi}{2}. Tính \sin\alpha.

    Ta có: sin^{2}\alpha = 1 - cos^{2}\alpha
= 1 - \left( \frac{4}{5} ight)^{2} = \frac{9}{25} \Rightarrow \sin\alpha = \pm
\frac{3}{5}.

    Do 0 < \alpha <
\frac{\pi}{2} nên \sin\alpha >
0. Suy ra, \sin\alpha =
\frac{3}{5}

  • Câu 34: Nhận biết

    Chọn khẳng định đúng

    Cho ba vectơ \overrightarrow{a},\ \ \
\overrightarrow{b}\ và\ \overrightarrow{c} đều khác vectơ – không. Trong đó hai vectơ \overrightarrow{a},\ \ \
\overrightarrow{b} cùng hướng, hai vectơ \overrightarrow{a}\ ,\
\overrightarrow{c}đối nhau. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Khẳng định đúng là: “Hai vectơ \ \
\overrightarrow{b}\ \ \ và\ \overrightarrow{c} ngược hướng”.

  • Câu 35: Vận dụng

    Tìm E sao cho B,C,E thẳng hàng

    Trong mặt phẳng tọa độ Oxy, cho hai điểm B( - 3;6),\ C(1; - 3). Xác định điểm E trên trục hoành sao cho ba điểm B,\ \ C,\ \ E thẳng hàng.

    Gọi E(x;0) khi đó \overrightarrow{BE}(x + 3; - 6),\ \
\overrightarrow{EC}(1 - x; - 3)

    Ba điểm B,C,E thẳng hàng khi và chỉ khi \overrightarrow{BE} cùng phương với \overrightarrow{EC}

    \Leftrightarrow \frac{x + 3}{1 - x} =
\frac{- 6}{- 3} \Leftrightarrow x = - \frac{1}{3}.

  • Câu 36: Vận dụng cao

    Tính góc giữa hai đường trung tuyến

    Tam giác ABCAB = c, BC = a, CA = b. Các cạnh a,\ b,\ c liên hệ với nhau bởi đẳng thức a^{2} + b^{2} = 5c^{2}. Góc giữa hai trung tuyến AMBN là góc nào?

    Gọi G là trọng tâm tam giác \Delta ABC.

    Ta có: AM^{2} = \frac{AC^{2} + AB^{2}}{2}
- \frac{BC^{2}}{4} = \frac{b^{2} + c^{2}}{2} -
\frac{a^{2}}{4}

    \Rightarrow AG^{2} = \frac{4}{9}AM^{2} =
\frac{2\left( b^{2} + c^{2} \right)}{9} - \frac{a^{2}}{9}

    BN^{2} = \frac{BA^{2} + BC^{2}}{2} -
\frac{AC^{2}}{4} = \frac{c^{2} + a^{2}}{2} -
\frac{b^{2}}{4}

    \Rightarrow GN^{2} = \frac{1}{9}BN^{2} =
\frac{c^{2} + a^{2}}{18} - \frac{b^{2}}{36}

    Trong tam giác \Delta AGN ta có:

    \cos\widehat{AGN} = \frac{AG^{2} +
GN^{2} - AN^{2}}{2.AG.GN}

    = \dfrac{\dfrac{2\left( b^{2} + c^{2}\right)}{9} - \dfrac{a^{2}}{9} + \dfrac{c^{2} + a^{2}}{18} -\dfrac{b^{2}}{36} - \dfrac{b^{2}}{4}}{2.\sqrt{\dfrac{2\left( b^{2} + c^{2}\right)}{9} - \dfrac{a^{2}}{9}}.\sqrt{\dfrac{c^{2} + a^{2}}{18} -\dfrac{b^{2}}{36}}}

    = \dfrac{\dfrac{2\left( b^{2} + c^{2}\right)}{9} - \dfrac{a^{2}}{9} + \dfrac{c^{2} + a^{2}}{18} -\dfrac{b^{2}}{36} - \dfrac{b^{2}}{4}}{2.\sqrt{\dfrac{2\left( b^{2} + c^{2}\right)}{9} - \dfrac{a^{2}}{9}}.\sqrt{\dfrac{c^{2} + a^{2}}{18} -\dfrac{b^{2}}{36}}}

    = \dfrac{10c^{2} - 2\left( a^{2} + b^{2}\right)}{36.2.\sqrt{\dfrac{2\left( b^{2} + c^{2} \right)}{9} -\dfrac{a^{2}}{9}}.\sqrt{\dfrac{c^{2} + a^{2}}{18} - \dfrac{b^{2}}{36}}} =0

    \Rightarrow \widehat{AGN} =
90^{0}.

  • Câu 37: Nhận biết

    Tìm khẳng định sai

    Cho hình bình hành ABCD với I là giao điểm của 2 đường chéo. Khẳng định nào sau đây là khẳng định sai?

    Ta có: \overrightarrow{AC},\
\overrightarrow{BD} không cùng phương và độ lớn nên \overrightarrow{AC} \neq
\overrightarrow{BD}.

  • Câu 38: Nhận biết

    Khẳng định nào sau đây đúng

    Cho hình bình hành ABCD tâm O và điểm M bất kỳ. Khẳng định nào sau đây đúng?

    Ta có: ABCD là hình bình hành tâm O

    => OA = OC, OB = OD

    \begin{matrix}   \Rightarrow \left\{ \begin{gathered}  \overrightarrow {MA}  + \overrightarrow {MC}  = 2\overrightarrow {MO}  \hfill \\  \overrightarrow {MB}  + \overrightarrow {MD}  = 2\overrightarrow {MO}  \hfill \\ \end{gathered}  ight. \hfill \\   \Rightarrow \overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD}  = 4\overrightarrow {MO}  \hfill \\ \end{matrix}

  • Câu 39: Vận dụng cao

    Tìm tập hợp điểm M thỏa mãn

    Cho tam giác ABC, biết rằng tồn tại duy nhất điểm I thỏa mãn: 2\overrightarrow{IA} +
3\overrightarrow{IB} + 4\overrightarrow{IC} =
\overrightarrow{0}. Tìm quỹ tích điểm M thỏa mãn:\left| 2\overrightarrow{MA} + 3\overrightarrow{MB}
+ 4\overrightarrow{MC} ight| = \left| \overrightarrow{MB} -
\overrightarrow{MA} ight|.

    Với điểm I thỏa mãn giả thiết, ta có:

    2\overrightarrow{MA} +3\overrightarrow{MB} + 4\overrightarrow{MC}= 9\overrightarrow{MI} +(2\overrightarrow{IA} + 3\overrightarrow{IB} + 4\overrightarrow{IC}) =9\overrightarrow{MI}\overrightarrow{MB} - \overrightarrow{MA} =
\overrightarrow{AB} nên

    |2\overrightarrow{MA} +3\overrightarrow{MB} + 4\overrightarrow{MC}| = |\overrightarrow{MB} -\overrightarrow{MA}|\Leftrightarrow |9\overrightarrow{MI}| =|\overrightarrow{AB}| \Leftrightarrow MI = \frac{AB}{9}

    Vậy quỹ tích của M là đường tròn tâm I bán kính \frac{AB}{9}.

  • Câu 40: Vận dụng

    Mệnh đề nào sau đây sai?

    Mệnh đề nào sau đây sai?

    Với ba điểm phân biệt A,\ \ B,\ \
C nằm trên một đường thẳng, đẳng thức \left| \overrightarrow{AB} ight| + \left|
\overrightarrow{BC} ight| = \left| \overrightarrow{AC} ight|
\Leftrightarrow AB + BC = AC xảy ra khi B nằm giữa AC.

    Chọn đáp án sai là: Nếu ba điểm phân biệt A,B,C nằm tùy ý trên một đường thẳng thì \left| \overrightarrow{AB} ight| + \left|\overrightarrow{BC} ight| = \left| \overrightarrow{AC}ight|.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 4 Hệ thức lượng trong tam giác. Vectơ Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo