Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 45 phút Chương 4 Hệ thức lượng trong tam giác. Vectơ

Mô tả thêm:

Đề kiểm tra 45 phút Toán 10 Chương 4 Hệ thức lượng trong tam giác. Vectơ sách Cánh Diều giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!

  • Thời gian làm: 45 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Điều kiện cần và đủ để ba điểm thẳng hàng.

    Cho ba điểm A,\
B,\ C phân biệt. Điều kiện cần và đủ để ba điểm đó thẳng hàng là

    Ta có tính chất: Điều kiện cần và đủ để ba điểm A,\ B,\ C phân biệt thẳng hàng là \exists k \in R:\overrightarrow{AB} =
k\overrightarrow{AC}.

  • Câu 2: Thông hiểu

    Tính độ lớn vectơ

    Cho hình vuông ABCD cạnh a. Tính |\overrightarrow{AB}-\overrightarrow{DA}|

     Hình vẽ minh họa

    Tính độ lớn vectơ

    Ta có:\left| {\overrightarrow {AB}  - \overrightarrow {DA} } ight| = \left| {\overrightarrow {AB}  + \overrightarrow {AD} } ight| = \left| {\overrightarrow {AC} } ight| = AC

    Tam giác ACD vuông cân tại D ta có:

    \begin{matrix}  A{C^2} = A{D^2} + D{C^2} = {a^2} + {a^2} = 2{a^2} \hfill \\   \Rightarrow AC = a\sqrt 2  \hfill \\   \Rightarrow AC = \left| {\overrightarrow {AC} } ight| = a\sqrt 2  \hfill \\ \end{matrix}

  • Câu 3: Nhận biết

    Tìm hệ thức sai

    Cho M, N, P, Q là bốn điểm tùy ý. Trong các hệ thức sau, hệ thức nào sai?

    Hệ thức sai là: \overrightarrow{MP}\times \overrightarrow{MN}=-\overrightarrow{MN}\times \overrightarrow{MP}

    \overrightarrow {MP} .\overrightarrow {MN}  = \overrightarrow {MN} .\overrightarrow {MP} (tính chất giao hoán)

  • Câu 4: Vận dụng

    Tìm tọa độ điểm A

    Trong hệ tọa độ Oxy, cho tam giác ABCM(2;3),\ N(0; - 4),\ P( - 1;6) lần lượt là trung điểm của các cạnh BC,\ CA,\
AB. Tìm tọa độ đỉnh A?

    Gọi A(x;y).

    Từ giả thiết, ta suy ra \overrightarrow{PA} =
\overrightarrow{MN}. (*)

    Ta có \overrightarrow{PA} = (x + 1;y -
6)\overrightarrow{MN} = ( - 2;
- 7).

    Khi đó (*) \Leftrightarrow \left\{\begin{matrix}x + 1 = - 2 \\y - 6 = - 7 \\\end{matrix} ight.\ \overset{}{\leftrightarrow}\left\{ \begin{matrix}x = - 3 \\y = - 1 \\\end{matrix} ight.\ \overset{}{ightarrow}A( - 3; - 1).

  • Câu 5: Nhận biết

    Tính diện tích tam giác ABC

    Cho tam giác ABCAB =
12,AC = 13,BC = 5. Diện tích S của tam giác ABC là:

    Ta có: BA^{2} + BC^{2} = AC^{2} nên tam giác ABC vuông tại B.

    Diện tích tam giác là: S = \frac{1}{2}BA
\cdot BC = 30.

  • Câu 6: Vận dụng cao

    Tìm điều kiện góc C để diện tích tam giác đạt max

    Tam giác ABCBC = aCA=b. Tam giác ABC có diện tích lớn nhất khi góc C bằng:

    Diện tích tam giác ABC

    S_{\Delta ABC} =\frac{1}{2}.AC.BC.\sin\widehat{ACB} =\frac{1}{2}.ab.\sin\widehat{ACB}.

    a,\ \ b không đổi và \sin\widehat{ACB} \leq 1, \forall C nên suy ra S_{\Delta ABC} \leq
\frac{ab}{2}.

    Dấu "=" xảy ra khi và chỉ khi \sin\widehat{ACB} = 1
\Leftrightarrow \widehat{ACB} = 90^{0}.

    Vậy giá trị lớn nhất của diện tích tam giác ABCS =
\frac{ab}{2}.

  • Câu 7: Vận dụng cao

    Tìm giá trị nhỏ nhất của biểu thức

    Cho hình vuông ABCD cạnh a. Gọi M là trung điểm của AB, lấy các điểm P,Q,R lần lượt là các điểm thay đổi trên các cạnh BC,AC,AD sao cho \widehat{PMR} = 90^{0}. Tìm giá trị nhỏ nhất của biểu thức \left|\overrightarrow{MP} + \overrightarrow{MQ} + \overrightarrow{MR}ight|.

    Hình vẽ minh họa

    Tìm giá trị nhỏ nhất của biểu thức

    Đặt \left| {\overrightarrow {AR} } ight| = x;\left| {\overrightarrow {BP} } ight| = y;\left| {\overrightarrow {ME} } ight| = z;\left| {\overrightarrow {EQ} } ight| = t

    Khi đó \Delta AMR\sim\Delta BPM

    \Rightarrow \left\{ \begin{matrix}xy = \dfrac{a^{2}}{4} \\x + y \geq 2\sqrt{xy} = a \\\end{matrix} ight.

    Dấu bằng xảy ra khi và chỉ khi x =y hay P, Q là trung điểm của BC, DA

    Ta có:

    \left| \overrightarrow{MP} +\overrightarrow{MQ} + \overrightarrow{MR} ight|^{2} = (x + y + z)^{2}+ t^{2} \geq (1 + z)^{2} + t^{2} = \left| \overrightarrow{MH}ight|

    Khi P ≡ P∗, R ≡ R∗, Q thay đổi trên AC, H sẽ thay đổi trên đoạn thẳng DK sao cho tam giác DCK vuông cân tại C.

    Ta lại có: \widehat{MDH} \approx 108^{0}\Rightarrow MH \geq MD = \frac{a\sqrt{5}}{2}

  • Câu 8: Thông hiểu

    Tính số đo góc A

    Cho tam giác ABC, biết BC = 24, AC = 13, AB = 15. Số đo góc A là:

    Áp dụng hệ quả định lí cosin cho tam giác ABC ta có:

    \begin{matrix}  \cos \widehat A = \dfrac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}} \hfill \\   \Rightarrow \cos \widehat A = \dfrac{{{{15}^2} + {{13}^2} - {{24}^2}}}{{2.15.13}} =  - \dfrac{7}{{15}} \hfill \\   \Rightarrow \widehat A \approx {117^0}49\prime  \hfill \\ \end{matrix}

  • Câu 9: Nhận biết

    Tính tổng hai vectơ

    Cho hình bình hành ABCD tâm O. Khi đó \overrightarrow{OA} + \overrightarrow{BO}
=

    Ta có:  \overrightarrow{OA} + \overrightarrow{BO}
= \overrightarrow{BA} = \overrightarrow{CD} .

  • Câu 10: Nhận biết

    Xác định tích vô hướng giữa hai vectơ

    Cho tam giác ABC vuông tại A và có AB =c,\ AC = b. Tính \overrightarrow{BA}.\overrightarrow{BC}.

    Ta có:

    \overrightarrow{BA}.\overrightarrow{BC}= BA.BC.\cos\left( \overrightarrow{BA},\overrightarrow{BC} \right) =BA.BC.\cos\widehat{B}

    = c.\sqrt{b^{2} +
c^{2}}.\frac{c}{\sqrt{b^{2} + c^{2}}} = c^{2}

    Cách khác.

    Tam giác ABC vuông tại A suy ra AB\bot AC \Rightarrow \overrightarrow{AB}.\overrightarrow{AC} = 0

    Ta có:

    \overrightarrow{BA}.\overrightarrow{BC} =\overrightarrow{BA}.\left( \overrightarrow{BA} + \overrightarrow{AC}\right)= {\overrightarrow{BA}}^{2} +\overrightarrow{BA}.\overrightarrow{AC} = AB^{2} = c^{2}

  • Câu 11: Thông hiểu

    Tính tích vô hướng

    Cho tam giác ABCAB =
2\ \ cm,BC = 3\ \ cm,CA = 5\ \ cm. Tính \overrightarrow{CA}.\overrightarrow{CB}.

    Ta có \cos C = \frac{BC^{2} + AC^{2} -AB^{2}}{2.BC.AC}= \frac{3^{2} + 5^{2} - 2^{2}}{2.3.5} = 1

    \overrightarrow{CA}.\overrightarrow{CB}
= \left| \overrightarrow{CA} ight|.\left| \overrightarrow{CB}
ight|.cosC = 15

  • Câu 12: Thông hiểu

    Chọn đáp án đúng

    Rút gọn biểu thức P = \frac{1 -\sin^{2}x}{2\sin x.\cos x} ta được

    Ta có:

    P = \frac{1 - \sin^{2}x}{2\sin x.\cos x} =\frac{\cos^{2}x}{2\sin x.\cos x} = \frac{\cos x}{2\sin x} = \frac{1}{2}\cot x.

  • Câu 13: Nhận biết

    Chọn kết quả đúng

    Tính giá trị \overrightarrow{a}.\overrightarrow{b} biết rằng \overrightarrow{a} = (1; -
3),\overrightarrow{b} = (2;5)?

    Ta có:

    \overrightarrow{a}.\overrightarrow{b} =
1.2 + ( - 3).5 = - 13

  • Câu 14: Vận dụng cao

    Tìm tập hơp M thỏa mãn đẳng thức

    Cho hình chữ nhật ABCDI là giao điểm của hai đường chéo. Tìm tập hợp các điểm M thỏa mãn \left| \overrightarrow{MA} + \overrightarrow{MB}
\right| = \left| \overrightarrow{MC} + \overrightarrow{MD}
\right|.

    Gọi E,\ \ F lần lượt là trung điểm của AB,\ \ CD.

    Khi đó \left\{ \begin{matrix}
\overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{ME} \\
\overrightarrow{MC} + \overrightarrow{MD} = 2\overrightarrow{MF}
\end{matrix} \right.\ ,\ \ \forall M.

    Do đó \left| \overrightarrow{MA} +
\overrightarrow{MB} \right| = \left| \overrightarrow{MC} +
\overrightarrow{MD} \right|

    \Leftrightarrow 2\left|
\overrightarrow{ME} \right| = 2\left| \overrightarrow{MF} \right|
\Leftrightarrow \left| \overrightarrow{ME} \right| = \left|
\overrightarrow{MF} \right|\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
(*).

    E,\ \ F là hai điểm cố định nên từ đẳng thức (*) \Rightarrow tập hợp các điểm M là trung

    trực của đoạn thằng EF hay chính là trung trực của đoạn thẳng AD.

  • Câu 15: Thông hiểu

    Chọn phát biểu đúng

    Cho hình chữ nhật ABCD, gọi O là giao điểm của ACBD, phát biểu nào là đúng?

    Ta có:

    \overrightarrow{AC} + \overrightarrow{DA}
= \overrightarrow{DC} = \overrightarrow{AB}.

  • Câu 16: Nhận biết

    Tính giá trị lượng giác

    Cho biết \tan\alpha = \frac{1}{2}. Tính \cot\alpha.

    Ta có: \tan\alpha.cot\alpha = 1
\Rightarrow \cot\alpha =
\frac{1}{\tan\alpha} = \frac{1}{\frac{1}{2}} = 2.

  • Câu 17: Thông hiểu

    Tính tổng tọa độ vectơ

    Cho 6 điểm A,B,C,D,E,F. Tổng vectơ: \overrightarrow{AB} +
\overrightarrow{CD} + \overrightarrow{EF} bằng:

    Ta có:

    \overrightarrow{AB} +
\overrightarrow{CD} + \overrightarrow{EF}

    = \left( \overrightarrow{AD} +
\overrightarrow{DB} \right) + \left( \overrightarrow{CF} +
\overrightarrow{FD} \right) + \left( \overrightarrow{EB} +
\overrightarrow{BF} \right)

    = \overrightarrow{AD} +
\overrightarrow{CF} + \overrightarrow{EB}.

  • Câu 18: Thông hiểu

    Chọn đáp án đúng

    Xác định chiều cao của một tháp mà không cần lên đỉnh của tháp. Đặt kế giác thẳng đứng cách chân tháp một khoảng CD = 60m, giả sử chiều cao của giác kế là OC = 1m.

    Quay thanh giác kế sao cho khi ngắm theo thanh ta nhìn thấy đỉnh A của tháp. Đọc trên giác kế số đo của góc \widehat{AOB} = 60^{0}. Chiều cao của ngọn tháp gần với giá trị nào sau đây:

    Tam giác OAB vuông tại B, có:

    \tan\widehat{AOB} =
\frac{AB}{OB}\Rightarrow AB = \tan60^{0}.OB =60\sqrt{3}m.

    Vậy chiếu cao của ngọn tháp là: h = AB + OC = \left( 60\sqrt{3} + 1
\right)\ m.

  • Câu 19: Vận dụng

    Tính giá trị của biểu thức P

    Cho góc \alpha thỏa mãn \sin\alpha\cos\alpha = \frac{12}{25}\sin\alpha + \cos\alpha > 0. Tính P = sin^{3}\alpha +
cos^{3}\alpha.

    Áp dụng a^{3} + b^{3} = (a + b)^{3} -
3ab(a + b), ta có

    P = sin^{3}\alpha +
cos^{3}\alpha = \left( \sin\alpha +
\cos\alpha ight)^{3} - 3sin\alpha\cos\alpha\left( \sin\alpha +
\cos\alpha ight).

    Ta có \left( \sin\alpha + \cos\alpha
ight)^{2} = sin^{2}\alpha + 2sin\alpha\cos\alpha +
cos^{2}\alpha = 1 + \frac{24}{25} =
\frac{49}{25}

    \sin\alpha + \cos\alpha >
0 nên ta chọn \sin\alpha +
\cos\alpha = \frac{7}{5}.

    Thay \left\{ \begin{matrix}
\sin\alpha + \cos\alpha = \frac{7}{5} \\
\sin\alpha\cos\alpha = \frac{12}{25} \\
\end{matrix} ight. vào P, ta được P
= \left( \frac{7}{5} ight)^{3} - 3.\frac{12}{25}.\frac{7}{5} =
\frac{91}{125}.

  • Câu 20: Nhận biết

    Chọn công thức đúng

    Chọn công thức đúng trong các đáp án sau:

    Ta có: S = \frac{1}{2}bc\sin A = \frac{1}{2}ac\sin B = \frac{1}{2}ab\sin
C.

  • Câu 21: Thông hiểu

    Xác định đẳng thức đúng

    Cho lục giác đều ABCDEFO là tâm của nó. Đẳng thức nào sau đây đúng?

    Hình vẽ minh họa

    Ta có O A BC là hình bình hành.

    \Rightarrow \overrightarrow{OA} +
\overrightarrow{OC} = \overrightarrow{OB} \Rightarrow
\overrightarrow{OA} + \overrightarrow{OC} + \overrightarrow{OB} =
2\overrightarrow{OB}.

    O là trung điểm của EB \Rightarrow \overrightarrow{EB} =
2\overrightarrow{OB}.

    \Rightarrow \overrightarrow{OA} +
\overrightarrow{OC} + \overrightarrow{OB} = \overrightarrow{EB} =
2\overrightarrow{OB}.

  • Câu 22: Thông hiểu

    Đẳng thức nào sau đây đúng?

    Gọi M,\ \
N lần lượt là trung điểm của các cạnh AB,\ \ AC của tam giác đều ABC. Đẳng thức nào sau đây đúng?

    Ta có MN là đường trung bình của tam giác ABC.

    Do đó BC =
2MN\overset{}{ightarrow}\left| \overrightarrow{BC} ight| = 2\left|
\overrightarrow{MN} ight|.

  • Câu 23: Thông hiểu

    Chọn khẳng định đúng

    Tam giác đều ABC có đường cao AH. Khẳng định nào sau đây là đúng?

    Hình ảnh minh họa

    Chọn khẳng định đúng

    Do tam giác ABC là tam giác đều có AH là đường cao nên đồng thời là đường phân giác

    => \widehat {BAH} = \frac{1}{2}\widehat {BAC}=30^0;\widehat {ABC} = {60^0};\widehat {AHC} = {90^0}

    Do đó: \sin \widehat {BAH} = \frac{1}{2};\sin \widehat {BAH} = \frac{{\sqrt 3 }}{2}

    Ta có: \widehat {ABC} = {60^0} \Rightarrow \sin \widehat {ABC} = \frac{{\sqrt 3 }}{2}

  • Câu 24: Thông hiểu

    Tính độ dài vectơ

    Cho tam giác ABC vuông tại AAB = 3, AC = 4. Tính độ dài \overrightarrow{CB}+\overrightarrow{AB}.

     

    Đặt \overrightarrow {AB}=\overrightarrow {BD}.

    Ta có: \left| {\overrightarrow {CB}  + \overrightarrow {AB} } ight| = \left| {\overrightarrow {CB}  + \overrightarrow {BD} } ight| = \left| {\overrightarrow {CD} } ight| = CD.

    Áp dụng định lý Pytago trong tam giác ACD: CD = \sqrt {{6^2} + {4^2}}  = 2\sqrt {13}.

  • Câu 25: Nhận biết

    Tính giá trị của biểu thức

    Giá trị của \tan45^{0} +\cot135^{0} bằng bao nhiêu?

    Ta có: \tan45^{0} + \cot135^{0} = 1 - 1 =0

  • Câu 26: Vận dụng

    Chọn vectơ chính xác

    Gọi O là tâm của hình vuông ABCD. Vectơ nào trong các vectơ dưới đây bằng \overrightarrow{CA}?

    Xét các đáp án:

    Đáp án \overrightarrow{BC} +
\overrightarrow{AB}.Ta có \overrightarrow{BC} + \overrightarrow{AB} =
\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC} = -
\overrightarrow{CA}.

    Đáp án - \overrightarrow{OA} +
\overrightarrow{OC}.Ta có -
\overrightarrow{OA} + \overrightarrow{OC} = \overrightarrow{OC} -
\overrightarrow{OA} = \overrightarrow{AC} = -
\overrightarrow{CA}.

    Đáp án \overrightarrow{BA} +
\overrightarrow{DA}. Ta có \overrightarrow{BA} + \overrightarrow{DA} = -
\left( \overrightarrow{AD} + \overrightarrow{AB} ight) = -
\overrightarrow{AC} = \overrightarrow{CA}. Chọn đáp án này.

    Đáp án \overrightarrow{DC} -
\overrightarrow{CB}. Ta có \overrightarrow{DC} - \overrightarrow{CB} =
\overrightarrow{DC} + \overrightarrow{BC} = - \left( \overrightarrow{CD}
+ \overrightarrow{CB} ight) = - \overrightarrow{CA}.

  • Câu 27: Nhận biết

    Tính diện tích tam giác

    Cho \Delta
ABCa = 6,b = 8,c = 10. Diện tích S của tam giác trên là:

    Ta có: Nửa chu vi \Delta ABC: p = \frac{a + b + c}{2}.

    Áp dụng công thức Hê-rông: S = \sqrt{p(p
- a)(p - b)(p - c)} = \sqrt{12(12 -
6)(12 - 8)(12 - 10)} =
24.

  • Câu 28: Nhận biết

    Chọn phương án thích hợp

    Cho đoạn thẳng AB và điểm I thỏa mãn \overrightarrow{IB} +3\overrightarrow{IA} =\overrightarrow{0}. Hình nào sau đây mô tả đúng giả thiết này?

    Ta có: \overrightarrow{IB} +
3\overrightarrow{IA} = \overrightarrow{0} \Leftrightarrow
\overrightarrow{IB} = - 3\overrightarrow{IA}.

    Do đó IB = 3.IA;\overrightarrow{IA}\overrightarrow{IB} ngược hướng.

    Chọn Hình 4.

  • Câu 29: Vận dụng

    Tính bán kính của chiếc đĩa

    Trong khi khai quật một ngôi mộ cổ, các nhà khảo cổ học đã tìm được một chiếc đĩa cổ hình tròn bị vỡ, các nhà khảo cổ muốn khôi phục hình dạng chiếc đĩa này. Để xác định bán kính của chiếc đĩa, các nhà khảo cổ lấy 3 điểm trên chiếc đĩa và tiến hành đo đạc thu được kết quả như hình vẽ (AB = 4,3 cm; BC = 3,7 cm; CA = 7,5 cm).

    Tính bán kinh của chiếc đĩa

    Bán kính của chiếc đĩa này bằng (kết quả làm tròn đến chữ số thập phân thứ hai):

    Ta có: Bán kính của chiếc đĩa bằng bán kính đường tròn ngoại tiếp tam giác ABC.

    Nửa chu vi tam giác ABC: 

    \begin{matrix}  p = \dfrac{{AB + AC + BC}}{2} \hfill \\   = \dfrac{{4,3 + 7,5 + 3,7}}{2} = \dfrac{{31}}{4}\left( {cm} ight) \hfill \\ \end{matrix}

    Áp dụng công thức Hê - rông tính diện tích tam giác ABC:

    \begin{matrix}  S = \sqrt {p\left( {p - AB} ight)\left( {p - AC} ight)\left( {p - BC} ight)}  \hfill \\   \Rightarrow S \approx 5,2\left( {c{m^2}} ight) \hfill \\ \end{matrix}

    Mặt khác 

    \begin{matrix}  S = \dfrac{{AB.AC.BC}}{{4R}} \Rightarrow R = \dfrac{{AB.AC.BC}}{{4s}} \hfill \\   \Rightarrow R \approx 5,73\left( {cm} ight) \hfill \\ \end{matrix}

  • Câu 30: Nhận biết

    Chọn khẳng định đúng

    Cho góc \alpha tù. Điều khẳng định nào sau đây là đúng?

    Học sinh ghi nhớ bảng xét dấu giá trị lượng giác dưới đây:

    Vì góc \alpha tù nên \alpha > 90^{0}nên \left\{ \begin{matrix}
\sin\alpha > 0 \\
\cos\alpha < 0
\end{matrix} \right.\  \Rightarrow \cot\alpha < 0.

  • Câu 31: Thông hiểu

    Đẳng thức nào sau đây là đẳng thức sai?

    Gọi O là giao điểm hai đường chéo ACBD của hình bình hành ABCD. Đẳng thức nào sau đây là đẳng thức sai?

    Từ hình vẽ ta thấy đẳng thức sai là \overrightarrow{OA} =
\overrightarrow{OC}.

  • Câu 32: Nhận biết

    Xác định đẳng thức đúng

    Chọn đẳng thức đúng:

    Đẳng thức đúng là: \overrightarrow{AB} =\overrightarrow{CB}+ \overrightarrow{AC}.

  • Câu 33: Nhận biết

    Tìm khẳng định sai

    Hình bình hành ABCD tâm O. Khẳng định sai là:

    Ta có: \overrightarrow{OA} -
\overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{BO} =
\overrightarrow{BA}.

    Chọn đáp án sai \overrightarrow{OA} -
\overrightarrow{OD} = \overrightarrow{BC}.

  • Câu 34: Vận dụng

    Xét tính đúng sai của các khẳng định

    Cho hình vuông ABCD tâm O, có cạnh a. Biết M là trung điểm của AB,G là trọng tâm tam giác ADM. Khi đó:

    a) \overrightarrow{AB} \cdot
\overrightarrow{CA} = a^{2}. Sai||Đúng

    b) \overrightarrow{AM} \cdot
\overrightarrow{AC} = \frac{a^{2}}{3}. Sai||Đúng

    c) \overrightarrow{AD} \cdot
\overrightarrow{BD} + \overrightarrow{OM} \cdot \overrightarrow{AC} =
\frac{a^{2}}{2}. Đúng||Sai

    d) (\overrightarrow{AB} +
\overrightarrow{AD})(\overrightarrow{BD} + \overrightarrow{BC}) =
a^{2}. Đúng||Sai

    Đáp án là:

    Cho hình vuông ABCD tâm O, có cạnh a. Biết M là trung điểm của AB,G là trọng tâm tam giác ADM. Khi đó:

    a) \overrightarrow{AB} \cdot
\overrightarrow{CA} = a^{2}. Sai||Đúng

    b) \overrightarrow{AM} \cdot
\overrightarrow{AC} = \frac{a^{2}}{3}. Sai||Đúng

    c) \overrightarrow{AD} \cdot
\overrightarrow{BD} + \overrightarrow{OM} \cdot \overrightarrow{AC} =
\frac{a^{2}}{2}. Đúng||Sai

    d) (\overrightarrow{AB} +
\overrightarrow{AD})(\overrightarrow{BD} + \overrightarrow{BC}) =
a^{2}. Đúng||Sai

    a) Sai

    b) Sai

    c) Đúng

    d) Đúng

    Hình vẽ minh họa

    Độ dài đường chéo hình vuông ABCD cạnh a là:

    AC = BD = \sqrt{a^{2} + a^{2}} =
a\sqrt{2}.

    Ta có: \overrightarrow{AB}.\overrightarrow{CA} = -
\overrightarrow{AB}.\overrightarrow{AC} = -
|\overrightarrow{AB}|.|\overrightarrow{AC}|.cos(\overrightarrow{AB},\overrightarrow{AC})

    = - AB.AC.cos\widehat{BAC} = -
a.a\sqrt{2}.cos45^{0} = - a^{2}

    \overrightarrow{AM}.\overrightarrow{AC}
=
|\overrightarrow{AM}|.|\overrightarrow{AC}|.cos(\overrightarrow{AM},\overrightarrow{AC})

    = AM.AC.cos\widehat{CAM} =
\frac{a}{2}.a\sqrt{2}.cos45^{0} = \frac{a^{2}}{2}

    Ta có:

    \overrightarrow{AD}.\overrightarrow{BD}
+ \overrightarrow{OM}.\overrightarrow{AC} =
\overrightarrow{DA}.\overrightarrow{DB} +
\frac{1}{2}\overrightarrow{DA}.\overrightarrow{AC}

    =
|\overrightarrow{DA}|.|\overrightarrow{DB}|.cos(\overrightarrow{DA},\overrightarrow{DB})
- \frac{1}{2}\overrightarrow{AD}.\overrightarrow{AC}

    = DA.DB.cos\widehat{ADB} -
\frac{1}{2}AD.AC.cos\widehat{CAD}

    = a.a\sqrt{2}.cos45^{0} -\frac{1}{2}a.a\sqrt{2}.cos45^0 =
a^{2} - \frac{1}{2}a^{2} = \frac{1}{2}a^{2}.

    Ta có \overrightarrow{AB} +
\overrightarrow{AD} = \overrightarrow{AC} (quy tắc hình bình hành).

    Do đó: (\overrightarrow{AB} +
\overrightarrow{AD})(\overrightarrow{BD} + \overrightarrow{BC}) =
\overrightarrow{AC}(\overrightarrow{BD} +
\overrightarrow{BC})

    =
\underset{0}{\overset{\overrightarrow{AC}.\overrightarrow{BD}}{︸}} +
\overrightarrow{AC}.\overrightarrow{BC} =
\overrightarrow{CA}.\overrightarrow{CB}

    =
|\overrightarrow{CA}|.|\overrightarrow{CB}|cos\widehat{ACB} =
a.a\sqrt{2}cos45^{0} = a^{2} (trong đó \overrightarrow{AC} \cdot \overrightarrow{BD} =
0\overrightarrow{AC}\bot\overrightarrow{BD} ).

  • Câu 35: Nhận biết

    Tìm khẳng định sai

    Cho hình bình hành ABCD với I là giao điểm của 2 đường chéo. Khẳng định nào sau đây là khẳng định sai?

    Ta có: \overrightarrow{AC},\
\overrightarrow{BD} không cùng phương và độ lớn nên \overrightarrow{AC} \neq
\overrightarrow{BD}.

  • Câu 36: Thông hiểu

    Chọn mệnh đề sai

    Cho hình vuông ABCD có tâm là O. Mệnh đề nào sau đây sai ?

    Ta có \overrightarrow{OA} +
\overrightarrow{OB} = - \ \overrightarrow{OC} + \overrightarrow{OB} =
\overrightarrow{OB} - \overrightarrow{OC} = \overrightarrow{CB} (vì \overrightarrow{OA} +
\overrightarrow{OC} = \overrightarrow{0}).

  • Câu 37: Vận dụng cao

    Tính giá trị biểu thức

    Tính giá trị biểu thức P = \left\lbrack \tan\frac{17\pi}{4} + \tan\left(
\frac{7\pi}{2} - x ight) ightbrack^{2} + \left\lbrack
\cot\frac{13\pi}{4} + \cot(7\pi - x) ightbrack^{2}.

    Ta có:

    \tan\frac{17\pi}{4} = \tan\left(
\frac{\pi}{4} + 4\pi ight) = \tan\frac{\pi}{4} = 1

    \tan\left( \frac{7\pi}{2} - x ight) =
\cot x

    \cot\frac{13\pi}{4} = \cot\left(
\frac{\pi}{4} + 3\pi ight) = \cot\frac{\pi}{4} = 1

    \cot(7\pi - x) = - \cot x

    Khi đó:

    P = \left\lbrack \tan\frac{17\pi}{4} +
\tan\left( \frac{7\pi}{2} - x ight) ightbrack^{2} + \left\lbrack
\cot\frac{13\pi}{4} + \cot(7\pi - x) ightbrack^{2}

    P = \left( 1 + \cot x ight)^{2} +
\left( 1 - \cot x ight)^{2}

    P = 2 + 2\cot^{2}x =\dfrac{2}{\sin^{2}x}

  • Câu 38: Nhận biết

    Tìm khẳng định sai

    Cho hình bình hành ABCD. Trong các khẳng định sau hãy tìm khẳng định sai?

    Hình vẽ minh họa

    Ta có ABCD là hình bình hành. Suy ra: \overrightarrow{AD} =
\overrightarrow{BC}.

    Vậy đáp án sai là: \overrightarrow{AD} =
\overrightarrow{CB}

  • Câu 39: Nhận biết

    Đẳng thức nào sau đây đúng?

    Cho hình bình hành ABCD. Đẳng thức nào sau đây đúng?

    Ta có:

    \overrightarrow{AC} - \overrightarrow{AD}
= \overrightarrow{CD} sai do \overrightarrow{AC} - \overrightarrow{AD} =
\overrightarrow{DC}.

    \overrightarrow{AC} - \overrightarrow{BD}
= 2\overrightarrow{CD} sai do \overrightarrow{AC} - \overrightarrow{BD} =2\overrightarrow{CD}\Leftrightarrow \left( \overrightarrow{AB} +\overrightarrow{AD} ight) - \left( \overrightarrow{AD} -\overrightarrow{AB} ight)\mathbf{=}2\overrightarrow{CD}\Leftrightarrow 2\overrightarrow{AB} =2\overrightarrow{CD}.

    \overrightarrow{AC} + \overrightarrow{BC}
= \overrightarrow{AB} sai do \overrightarrow{AC} + \overrightarrow{BC} =\overrightarrow{AB} \Leftrightarrow \overrightarrow{AC} -\overrightarrow{AB} = - \overrightarrow{BC}\Leftrightarrow\overrightarrow{BC} = \overrightarrow{CB}.

    \overrightarrow{AC} + \overrightarrow{BD}
= 2\overrightarrow{BC} đúng do \overrightarrow{AC} + \overrightarrow{BD} =\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{BC} +\overrightarrow{CD}\mathbf{=}2\overrightarrow{BC} + \left(\overrightarrow{AB} + \overrightarrow{CD} ight) = 2\overrightarrow{BC}+ \overrightarrow{0} = 2\overrightarrow{BC}.

  • Câu 40: Thông hiểu

    Xét tính đúng sai của các khẳng định

    Cho các véc-tơ \overrightarrow{a} = ( -
2;3), \overrightarrow{b} =
(4;1), \overrightarrow{c} =
k\overrightarrow{a} + m\overrightarrow{b}\overrightarrow{d} = n\overrightarrow{a} +
\overrightarrow{b}.

    a) \overrightarrow{a}.\overrightarrow{b}
= 5. Sai||Đúng

    b) \cos\left(
\overrightarrow{a},\overrightarrow{b} \right) = \frac{-
5\sqrt{221}}{221}. Đúng||Sai

    c) Với 2k + 3m = 0 thì \overrightarrow{c}\bot\left( \overrightarrow{a} +\overrightarrow{b} \right). Đúng||Sai

    d) Có 2 giá trị nguyên n để \cos\left(
\overrightarrow{d},\overrightarrow{e} \right) = 45^{0}với \overrightarrow{e} = \overrightarrow{i} +
\overrightarrow{j}. Sai||Đúng

    Đáp án là:

    Cho các véc-tơ \overrightarrow{a} = ( -
2;3), \overrightarrow{b} =
(4;1), \overrightarrow{c} =
k\overrightarrow{a} + m\overrightarrow{b}\overrightarrow{d} = n\overrightarrow{a} +
\overrightarrow{b}.

    a) \overrightarrow{a}.\overrightarrow{b}
= 5. Sai||Đúng

    b) \cos\left(
\overrightarrow{a},\overrightarrow{b} \right) = \frac{-
5\sqrt{221}}{221}. Đúng||Sai

    c) Với 2k + 3m = 0 thì \overrightarrow{c}\bot\left( \overrightarrow{a} +\overrightarrow{b} \right). Đúng||Sai

    d) Có 2 giá trị nguyên n để \cos\left(
\overrightarrow{d},\overrightarrow{e} \right) = 45^{0}với \overrightarrow{e} = \overrightarrow{i} +
\overrightarrow{j}. Sai||Đúng

    a)Saib)Đúngc)Đúngd)Sai

    a) \overrightarrow{a}.\overrightarrow{b}
= ( - 2).4 + 3.1 = - 5.

    b) Ta có:

    \cos\left(\overrightarrow{a},\overrightarrow{b} \right) =\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}\right|.\left| \overrightarrow{b} \right|}= \frac{( - 2).4 +3.1}{\sqrt{( - 2)^{2} + 3^{2}}.\sqrt{4^{2} + 1}} = \frac{-5\sqrt{221}}{221}.

    c) Ta có \overrightarrow{c} =
k.\overrightarrow{a} + m.\overrightarrow{b} = ( - 2k + 4m;3k + m),\ \
\overrightarrow{a} + \overrightarrow{b} = (2;4).

    Để \overrightarrow{c}\bot\left(\overrightarrow{a} + \overrightarrow{b} \right)\Leftrightarrow\overrightarrow{c}.\left( \overrightarrow{a} + \overrightarrow{b}\right) = 0

    \Leftrightarrow 2( - 2k + 4m) + 4(3k + m) = 0\Leftrightarrow 2k + 3m = 0

    Vậy với 2k + 3m = 0 thì \overrightarrow{c}\bot\left( \overrightarrow{a} +\overrightarrow{b} \right).

    d) Ta có: \overrightarrow{d} =
n\overrightarrow{a} + \overrightarrow{b} = ( - 2n + 4;3n + 1),\ \
\overrightarrow{e} = \overrightarrow{i} + \overrightarrow{j} =
(1;1).

    \mathbf{\cos}\left(
\overrightarrow{\mathbf{d}}\mathbf{,}\overrightarrow{\mathbf{e}}
\right)\mathbf{=}\mathbf{4}\mathbf{5}^{\mathbf{0}}

    \Leftrightarrow \frac{- 2n + 4 + 3n +
1}{\sqrt{( - 2n + 4)^{2} + (3n + 1)^{2}}.\sqrt{2}} =
\frac{\sqrt{2}}{2}

    \Leftrightarrow n + 5 = \sqrt{13n^{2} -
10n + 17}

    \Leftrightarrow \left\{ \begin{matrix}
n \geq - 5 \\
12n^{2} - 20n - 8 = 0
\end{matrix} \right. \Leftrightarrow \left\{ \begin{gathered}
  n \geqslant  - 5 \hfill \\
  \left[ \begin{gathered}
  n = \frac{{ - 1}}{3} \hfill \\
  n = 2 \hfill \\ 
\end{gathered}  \right. \hfill \\ 
\end{gathered}  \right. \Leftrightarrow \left[ \begin{gathered}
  n = \frac{{ - 1}}{3} \notin \mathbb{Z} \hfill \\
  n = 2 \in \mathbb{Z} \hfill \\ 
\end{gathered}  \right..

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 45 phút Chương 4 Hệ thức lượng trong tam giác. Vectơ Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo