Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Chương 3 Hàm số và đồ thị

Mô tả thêm:

Đề kiểm tra 15 phút Toán 10 Chương 3 Hàm số và đồ thị sách Cánh Diều giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Thông hiểu

    Chọn khẳng định đúng

    Cho hàm số y = f(x) có đồ thị như hình vẽ. Hãy so sánh f(2017) với số 0.

    Nhìn đồ thị, ta thấy đồ thị y = f(x) cắt trục hoành tại 2 điểm x = 1, x = 3 nên Δ > 0, dựa vào hình dạng parabol nên suy ra a < 0 và ta có bảng xét dấu như sau:

    Dựa vào bảng xét dấu thì f(x) < 0 khi x < 1 ∨ x > 3. Mà 2017 > 3 nên f(2017) < 0.

  • Câu 2: Vận dụng

    Tìm các giá trị tham số m thỏa mãn yêu cầu

    Tìm tất cả các giá trị của tham số m để phương trình \sqrt{2x + m} = x - 1\ \
(*) có hai nghiệm phân biệt lớn hơn 1?

    Phương trình

    \sqrt{2x + m} = x - 1

    \Leftrightarrow \left\{ \begin{matrix}
x - 1 \geq 0 \\
2x + m = (x - 1)^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 1 \\
x^{2} - 4x + 1 - m = 0\ (**) \\
\end{matrix} ight.

    Phương trình (*) có hai nghiệm phân biệt lớn hơn 1 \Leftrightarrow (**) có hai nghiệm phân biệt lớn hơn 1.

    \Leftrightarrow \left\{ \begin{matrix}
\Delta > 0 \\
1 < x_{1} < x_{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\Delta > 0 \\
0 < x_{1} - 1 < x_{2} - 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
3 + m > 0 \\
\left( x_{1} - 1 ight).\left( x_{2} - 1 ight) > 0 \\
x_{1} + x_{2} > 2 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m > - 3 \\
x_{1}x_{2} - \left( x_{1} + x_{2} ight) + 1 > 0 \\
x_{1} + x_{2} > 2 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m > - 3 \\
1 - m - 4 + 1 > 0 \\
4 > 2 \\
\end{matrix} ight.\  \Leftrightarrow - 3 < m < 2

  • Câu 3: Nhận biết

    Tìm điểm thuộc đồ thị hàm số

    Điểm nào sau đây thuộc đồ thị hàm số y = 4x + 1?

     Thay tọa độ (0;1) vào y=4x+1 ta được 1=1 thỏa mãn. Suy ra điểm này thuộc đồ thị hàm số y=4x+1.

  • Câu 4: Thông hiểu

    Tìm tập xác định

    Cho hàm số: y =
\left\{ \begin{matrix}
\frac{1}{x - 1} & x \leq 0 \\
\sqrt{x + 2} & x > 0 \\
\end{matrix} ight.. Tập xác định của hàm số là tập hợp nào sau đây?

    Với x ≤ 0 ta có: y = \frac{1}{x - 1} xác định với mọi x ≠ 1 nên xác định với mọi x ≤ 0.

    Với x > 0 ta có: y = \sqrt{x + 2} xác định với mọi x ≥  − 2 nên xác định với mọi x > 0.

    Vậy tập xác định của hàm số là D = ℝ.

  • Câu 5: Nhận biết

    Tìm điểm không thuộc đồ thị

    Xác định điểm không thuộc đồ thị của hàm số y = \frac{1}{2}x^{2}?

    Ta thấy các điểm nằm trên đồ thị của hàm số là: (0;0); (2;2); ( -
2;2).

    Vậy điểm không thuộc đồ thị hàm số đã cho là: (1;2).

  • Câu 6: Thông hiểu

    Tìm số nghiệm của phương trình

    Phương trình \sqrt{3x + 1} + \sqrt{5 - x} = 4 có bao nhiêu nghiệm

    Đkxđ: - \frac{1}{3} \leq x \leq5.

    \sqrt{3x + 1} + \sqrt{5 - x} =4

    \Leftrightarrow 2x + 6 + 2\sqrt{(3x +1)(5 - x)} = 16

    \Leftrightarrow \sqrt{(3x + 1)(5 - x)} =5 - x

    \Leftrightarrow \left\lbrack\begin{matrix}\sqrt{5 - x} = 0 \\\sqrt{3x + 1} = \sqrt{5 - x} \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = 5 \\3x + 1 = 5 - x \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = 5(TM) \\x = 1(TM) \\\end{matrix} ight..

    Vậy phương trình có hai nghiệm.

  • Câu 7: Thông hiểu

    Chọn kết luận đúng

    Cho hàm số y=ax^{2}+bx+c(a≠0)có đồ thị như hình sau. Khẳng định nào sau đây đúng?

     Từ đồ thị hàm số, nhận xét:

    Bề lõm hướng lên trên suy ra a>0.

    Hàm số cắt trục tung tại tung độ âm c<0.

    Chọn đáp án a>0;b<0;c<0.

  • Câu 8: Vận dụng

    Tìm tọa độ trung điểm I

    Biết đường thẳng d : y = mx cắt Parabol (P) : y = x2 − x + 1 tại hai điểm phân biệt A, B. Khi đó tọa độ trung điểm I của đoạn thẳng AB

    Xét phương trình hoành độ giao điểm của d(P):

    mx = x2 − x + 1 ⇔ x2 − (m+1)x + 1 = 0

    Vì hoành độ giao điểm xA, xB là hai nghiệm của phương trình nên ta có tọa độ trung điểm I\left\{ \begin{matrix}
x_{I} = \frac{x_{A} + x_{B}}{2} \\
y_{I} = \frac{y_{A} + y_{B}}{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{I} = \frac{x_{A} + x_{B}}{2} \\
y_{I} = \frac{m\left( x_{A} + x_{B} ight)}{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x_{I} = \frac{m + 1}{2} \\
y_{I} = \frac{m^{2} + m}{2} \\
\end{matrix} ight.\  \Rightarrow I\left( \frac{1 + m}{2};\frac{m^{2} +
m}{2} ight).

  • Câu 9: Nhận biết

    Phương trình có nghiệm là

    Phương trình \sqrt{x^{2} + 4x - 1} = x - 3 có nghiệm là bao nhiêu?

    \sqrt{x^{2} + 4x - 1} = x - 3\Leftrightarrow \left\{ \begin{matrix}x - 3 \geq 0 \\x^{2} + 4x - 1 = x^{2} - 6x + 9 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq 3 \\x = 1\ \ (L) \\\end{matrix} ight..

    Vậy phương trình vô nghiệm.

  • Câu 10: Thông hiểu

    Tìm tập xác định

    Tập xác định của hàm số y = \frac{\sqrt{x + 1}}{x - 3} là:

    Hàm số y = \frac{\sqrt{x + 1}}{x -
3}.

    Điều kiện xác định: \left\{ \begin{matrix}
x + 1 \geq 0 \\
x - 3 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq - 1 \\
x eq 3 \\
\end{matrix} ight..

    Vậy tập xác định của hàm số D = [ − 1; 3) ∪ (3;+∞).

  • Câu 11: Nhận biết

    Tìm trục đối xứng

    Parabol y =  − x2 + 2x + 3 có phương trình trục đối xứng là

    Parabol y =  − x2 + 2x + 3 có trục đối xứng là đường thẳng x = -
\frac{b}{2a}  ⇔ x = 1.

  • Câu 12: Nhận biết

    Tìm hàm số thỏa mãn điều kiện

    Đồ thị của hàm số nào sau đây là parabol có đỉnh I(−1; 3).

    Đỉnh Parabol là I\left( -
\frac{b}{2a};\  - \frac{\Delta}{4a} ight) = \left( - \frac{b}{2a};\  -
\frac{b^{2} - 4ac}{4a} ight).

    Do đó chỉ có đáp án y = 2x2 + 4x + 5 thỏa mãn.

  • Câu 13: Thông hiểu

    Tìm công thức Parabol

    Xác định parabol (P) : y = ax2 + bx + c, biết rằng (P) đi qua ba điểm A(1;1), B(−1;−3)O(0;0).

    (P) đi qua ba điểm A(1;1), B(−1;−3), O(0;0) nên có hệ

    \left\{ \begin{matrix}
a + b + c = 1 \\
a - b + c = - 3 \\
c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 1 \\
b = 2 \\
c = 0 \\
\end{matrix} ight..

    Vậy (P) : y =  − x2 + 2x.

  • Câu 14: Nhận biết

    Chọn khẳng định đúng

    Dấu của tam thức bậc 2: f(x) = –x2+ 5x – 6 được xác định như sau:

    f(x) = - x^{2} + 5x - 6 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \\
x = 3 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp án f(x) > 0với  2< x < 3 f(x) < 0với x < 2 ∨ x > 3 .

  • Câu 15: Nhận biết

    Tổng các nghiệm của phương tình bằng

    Tổng các nghiệm của phương trình \sqrt{x^{2} + 2x + 4} = \sqrt{2 - x} bằng:

    \sqrt{x^{2} + 2x + 4} = \sqrt{2 - x}\Leftrightarrow \left\{ \begin{matrix}2 - x \geq 0 \\x^{2} + 2x + 4 = 2 - x \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \leq 2 \\\left\lbrack \begin{matrix}x = - 1 \\x = - 2 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = - 1 \\x = - 2 \\\end{matrix} ight..

    Vậy, tổng các nghiệm của phương trình là ( - 1) + ( - 2) = - 3.

  • Câu 16: Nhận biết

    Tìm m để biểu thức là tam thức bậc hai

    Xác định m để biểu thức f(x) = (m + 2)x^{2} – 3mx + 1 là tam thức bậc hai.

     Để biểu thức f(x) = (m + 2)x^{2} – 3mx + 1 là tam thức bậc hai ta có:

    m + 2 e 0 \Leftrightarrow m e  - 2

  • Câu 17: Nhận biết

    Xác định tập nghiệm bất phương trình

    Tập nghiệm của bất phương trình x^{2} - x
- 12 \leq 0 là?

    Ta có f(x) = x^{2} - x - 12 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 4 \\
x = - 3 \\
\end{matrix} ight.

    Bảng xét dấu:

    Dựa vào bảng xét dấu f(x) \leq 0
\Leftrightarrow - 3 \leq x \leq 4.

  • Câu 18: Vận dụng cao

    Tìm số nghiệm nguyên của phương trình

    Phương trình 2\left( x^{2} - 3x + 2 ight) = 3\sqrt{x^{3} +
8} có mấy nghiệm nguyên ?

    Điều kiện: x ≥  − 2

    PT đã cho tương đương với: 2\left( x^{2} -
2x + 4 ight) - 2(x + 2) = 3\sqrt{(x + 2)\left( x^{2} - 2x + 4
ight)}

    Do x =  − 2 không là nghiệm của PT đã cho nên chia hai vế cho x + 2 ta được:

    \frac{2\left( x^{2} - 2x + 4 ight)}{x +
2} - 3\sqrt{\frac{x^{2} - 2x + 4}{x + 2}} - 2 = 0

    Đặt t = \sqrt{\frac{x^{2} - 2x + 4}{x +
2}}\ \ \ \ (t \geq 0) ta có: 2t^{2} -
3t - 2 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
t = 2\ \ \ (t/m) \\
t = - \frac{1}{2}\ \ \ \ (l) \\
\end{matrix} ight.

    Với t = 2 ta được

    \begin{matrix}
\sqrt{\frac{x^{2} - 2x + 4}{x + 2}} = 2 \Leftrightarrow \frac{x^{2} - 2x
+ 4}{x + 2} = 4 \\
\Leftrightarrow x^{2} - 6x - 4 = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 3 + \sqrt{13} \\
x = 3 - \sqrt{13} \\
\end{matrix} ight.\ (TM) \\
\end{matrix}

    Vậy phương trình có 0 nghiệm nguyên.

  • Câu 19: Thông hiểu

    Tìm tập nghiệm của bất phương trình

    Tập nghiệm S của bất phương trình 5(x+1)−x(7−x)>−2x là:

     Ta có: 5(x+1)−x(7−x)>−2x \Leftrightarrow x^2+5>0 (hiển nhiên).

    Vậy S = \mathbb{R}.

  • Câu 20: Thông hiểu

    Tìm mệnh đề đúng.

    Cho f(x)=ax^{2}+bx+c(a≠0)Δ=b^{2}−4ac<0. Khi đó mệnh đề nào đúng?

     Khi \Delta<0 thì f(x) luôn cùng dấu với hệ số a \text{       } \forall x\in \mathbb{R}. Do đó nó không đổi dấu.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 3 Hàm số và đồ thị Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo