Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề thi học kì 1 Toán 10 Cánh Diều Đề 1

Mô tả thêm:

Mời các bạn học cùng thử sức với Đề thi học kì 1 môn Toán lớp 10 theo chương trình sách Cánh Diều nha!

  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Vận dụng cao

    Tính độ dài vectơ

    Cho tam giác ABC, kẻ đường cao AHAH =
3,cos\widehat{ACB} = \frac{3}{5};tan\widehat{ABC} = 3. Gọi M là trung điểm của BC, K là điểm thỏa mãn KA = \frac{5}{2}\left| \overrightarrow{KA} - \overrightarrow{KB} +
\overrightarrow{KC} - \overrightarrow{AC} ight| = \left|
\overrightarrow{CK} ight|. Khi đó độ dài vectơ \overrightarrow{MK} bằng bao nhiêu?

    Hình vẽ minh họa

    Tính độ dài vectơ

    Gọi E là điểm đối xứng của B qua A, ta có:

    \left| \overrightarrow{KA} -
\overrightarrow{KB} + \overrightarrow{KC} - \overrightarrow{AC} ight|
= \left| \overrightarrow{CK} ight|

    \Rightarrow KE = CK

    Nên K thuộc đường thẳng a là trung trực của đoạn thẳng CE, mặt khác KA = \frac{5}{2}

    Suy ra K là giao điểm của a và đường tròn tâm A bán kính KA = \frac{5}{2}.

    Điểm K cần tìm là N hoặc P

    Ta có: MK = MP = AB =
\sqrt{10}.

  • Câu 2: Thông hiểu

    Tìm đẳng thức sai

    Cho lục giác đều ABCDEFO là tâm của nó. Đẳng thức nào dưới đây là đẳng thức sai?

    Hình vẽ minh họa:

    Ta có:

    \overrightarrow{AB} +
\overrightarrow{CD} - \overrightarrow{EF} = \overrightarrow{AB} +
\overrightarrow{BO} - \overrightarrow{OA}

    = \overrightarrow{AO} -
\overrightarrow{OA} = 2\overrightarrow{AO} \neq
\overrightarrow{0}.

  • Câu 3: Nhận biết

    Tìm hàm số thỏa mãn điều kiện

    Hàm số nào dưới đây đồng biến trên (3;4)?

    + Hàm số y = \frac{1}{2}x^{2} - 2x +
1 đồng biến trên (2;+∞) nên đồng biến trên (3;4). Chọn đáp án này.

    + Hàm số y = x2 − 7x + 2 đồng biến trên \left( \frac{7}{2}; + \infty
ight). Loại.

    + Hàm số y =  − 3x + 1 nghịc biến trên . Loại.

    + Hàm số y = - \frac{1}{2}x^{2} + x -
1 đồng biến trên (−∞;1). Loại.

  • Câu 4: Nhận biết

    Xác định hệ bất phương trình bậc nhất hai ẩn

    Hệ bất phương trình nào sau đây là hệ bất phương trình bậc nhất hai ẩn?

    Các hệ bất phương trình \left\{\begin{matrix}x^{2}+y<0\\ y-x>0\end{matrix}ight.\left\{\begin{matrix}2x-y^{2}<5\\ 4x+3y>10^{10}\end{matrix}ight. có chứa các bất phương trình bậc hai {x^2} + y < 0;2x - {y^2} < 5 => Các hệ bất phương trình trên không là hệ bất phương trình bậc nhất hai ẩn.

    Đáp án y - 2x <0 là bất phương trình bậc nhất hai ẩn không phải hệ bất phương trình bậc nhất hai ẩn.

    Đáp án \left\{\begin{matrix}x<1\\ y-1>2\end{matrix}ight. có hai bất phương trình đều là các bất phương trình bậc nhất hai ẩn.

  • Câu 5: Nhận biết

    Tìm giao của 2 tập hợp

    Cho X = \left\{
7;2;8;4;9;12 ight\};Y = \left\{ 1;3;7;4 ight\}. Tập nào sau đây bằng tập X \cap Y?

    Tập hợp X \cap Y gồm những phần tử vừa thuộc X vừa thuộc Y

    \Rightarrow X \cap Y = \left\{ 4;7
ight\}.

  • Câu 6: Thông hiểu

    Tìm công thức Parabol

    Xác định parabol (P) : y = 2x2 + bx + c, biết rằng (P) đi qua điểm M(0;4) và có trục đối xứng x = 1.

    Ta có M \in (P)\overset{}{ightarrow}c =
4.

    Trục đối xứng - \frac{b}{2a} =
1\overset{}{ightarrow}b = - 4.

    Vậy (P) : y = 2x2 − 4x + 4.

  • Câu 7: Nhận biết

    Tính tích vô hướng của hai vectơ

    Cho tam giác đều ABC có cạnh bằng a. Tính tích vô hướng \overrightarrow{AB}.\overrightarrow{AC}.

    Xác định được góc \left(
\overrightarrow{AB},\overrightarrow{AC} \right) là góc \widehat{A} nên \left( \overrightarrow{AB},\overrightarrow{AC}
\right) = 60^{0}.

    Do đó \overrightarrow{AB}.\overrightarrow{AC} =AB.AC.\cos\left( \overrightarrow{AB},\overrightarrow{AC} \right) =a.a.\cos60^{0} = \frac{a^{2}}{2}.

  • Câu 8: Thông hiểu

    Xác định các tập hợp bằng nhau

    Trong các tập hợp sau, tập hợp nào bằng nhau:

    • A = \left \{ {0; 2; 4; 6; 8} ight \}, B = {x| x ∈ \mathbb{ℕ}, x chia hết cho 2 và x < 12}

    => A = \left \{ {0; 2; 4; 6; 8} ight \}; B = \left \{ {0; 2; 4; 6; 8; 10} ight \}. Vậy tập hợp A không bằng tập hợp B.

    • A = {x| x ∈ \mathbb{ℕ}, x ⋮ 22< x < 6}, B = {x| x ∈ \mathbb{ℕ}, x chia hết cho 4 và 1 < x < 5}

    => A = \left \{ {4} ight \} ; B = \left \{ {4} ight \}. Vậy tập hợp A bằng tập hợp B. Đáp án đúng

    • A = \left \{ {2; 4; 6; 8} ight \}, B = {x| x ∈ \mathbb{ℕ}, x chia hết cho 2 và x < 10}

    => A = \left \{ {2; 4; 6; 8} ight \}; B =\left \{  {0; 2; 4; 6; 8} ight \}. Vậy tập hợp A không bằng tập hợp B.

    • A = {x| x ∈ \mathbb{ℕ}, x chia hết cho 3 và x < 12}, B = {x| x ∈ \mathbb{ℕ}, x chia hết cho 4 và x < 12}

    => A = \left \{{0; 3; 6; 9} ight \}; B =\left \{  {0; 4; 8} ight \}. Vậy tập hợp A không bằng tập hợp B.

  • Câu 9: Vận dụng

    Tìm m thỏa mãn điều kiện

    Tìm giá trị thực của tham số m để parabol (P) : y = mx2 − 2mx − 3m − 2 (m≠0) có đỉnh thuộc đường thẳng y = 3x − 1.

    Hoành độ đỉnh của (P)x = - \frac{b}{2a} = \frac{2m}{2m} =
1.

    Suy ra tung độ đỉnh y =  − 4m − 2. Do đó tọa độ đỉnh của (P)I(1;−4m−2).

    Theo giả thiết, đỉnh I thuộc đường thẳng y = 3x − 1 nên  − 4m − 2 = 3.1 − 1 ⇔ m =  − 1.

  • Câu 10: Nhận biết

    Chọn khẳng định đúng

    Cho bất phương trình 2x + 3y - 1 \leqslant 0 (1). Chọn khẳng định đúng trong các khẳng định sau:

    Bất phương trình bậc nhất hai ẩn luôn có vô số nghiệm.

  • Câu 11: Nhận biết

    Phủ định mệnh đề đã cho

    Mệnh đề: “Mọi động vật đều di chuyển” có mệnh đề phủ định là

    Mệnh đề: “Mọi động vật đều di chuyển” có mệnh đề phủ định là: “Có ít nhất một động vật không di chuyển”.

  • Câu 12: Thông hiểu

    Tính giá trị hàm số tại điểm

    Cho hàm số f(x) =
\left\{ \begin{matrix}
\frac{2\sqrt{x - 2} - 3}{x - 1} & khi & x \geq 2 \\
x^{2} + 2 & khi & x < 2 \\
\end{matrix} ight.. Tính P = f(2) + f(−2).

    Ta có: f(2) + f( - 2) = \frac{2\sqrt{2 -
2} - 3}{2 - 1} + ( - 2)^{2} + 2 \Rightarrow P = 3.

  • Câu 13: Thông hiểu

    Xác định điểm M

    Cho hình bình hành ABCD, điểm M thỏa mãn: 4\overrightarrow{AM} = \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AC}. Khi đó điểm M là:

    Hình vẽ minh họa

    Ta có:

    \overrightarrow{AB} + \overrightarrow{AD}
+ \overrightarrow{AC} = \overrightarrow{AC} + \overrightarrow{AC} =
2\overrightarrow{AC} = 4\overrightarrow{AM}

  • Câu 14: Thông hiểu

    Chọn đáp án đúng

    Cho bất phương trình x^{2}−8x+7≥0 . Trong các tập hợp sau đây, tập nào có chứa phần tử không phải là nghiệm của bất phương trình.

     Ta có: x^{2}−8x+7≥0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x \le 1}\\{x \ge 7}\end{array}} ight.. Suy ra S=[-\infty;1) \cup [7;+\infty).

    Nhận xét: [6;+\infty) không thuộc S.

  • Câu 15: Vận dụng

    Tính số nghiệm của phương trình

    Số nghiệm của phương trình \sqrt{60 - 24x - 5x^{2}} = x^{2} + 5x - 10 là:

    ĐKXĐ: 60 − 24x − 5x2 ≥ 0

    Đặt t = \sqrt{60 - 24x - 5x^{2}}, (t≥0)pt trở thành \frac{1}{6}t^{2} + t - \frac{1}{6}x^{2} - x =0

    \Leftrightarrow t^{2} + 6t - x^{2} - 6x= 0 \Leftrightarrow \left\lbrack \begin{matrix}t = x \\t = - x - 6 \\\end{matrix} ight.

    \bullet \sqrt{60 - 24x - 5x^{2}} = x\Leftrightarrow \left\{ \begin{matrix}x \geq 0 \\x^{2} + 4x - 10 = 0 \\\end{matrix} ight.

    \Leftrightarrow x = - 2 +\sqrt{14}

    \bullet \sqrt{60 - 24x - 5x^{2}} = - x -6 \Leftrightarrow \left\{ \begin{matrix}- x - 6 \geq 0 \\x^{2} + 6x - 4 = 0 \\\end{matrix} ight.

    \Leftrightarrow x = - 3 -\sqrt{13}

    Vậy pt ban đầu có hai nghiệm x_{1} = - 2 -\sqrt{14},x_{2} = - 3 - \sqrt{13}.

  • Câu 16: Nhận biết

    Chọn mệnh đề đúng

    Cho đường tròn O và hai tiếp tuyến song song với nhau tiếp xúc với (O) tại hai điểm AB. Mệnh đề nào sau đây đúng?

    Hình vẽ minh họa

    Do hai tiếp tuyến song song và A,\ \
B là hai tiếp điểm nên AB là đường kính.

    Do đó O là trung điểm của AB.

    Suy ra \overrightarrow{OA} = -
\overrightarrow{OB}.

  • Câu 17: Vận dụng cao

    Tính bán kính đường tròn

    Cho tam giác đều ABC cạnh a. Biết rằng tập hợp các điểm M thỏa mãn đẳng thức \left| 2\overrightarrow{MA} + 3\overrightarrow{MB}
+ 4\overrightarrow{MC} \right| = \left| \overrightarrow{MB} -
\overrightarrow{MA} \right| là đường tròn cố định có bán kính R. Tính bán kính R theo a.

    Gọi G là trọng tâm của tam giác ABC.

    Ta có 2\overrightarrow{MA} +
3\overrightarrow{MB} + 4\overrightarrow{MC} = 2\left(
\overrightarrow{MI} + \overrightarrow{IA} \right) + 3\left(
\overrightarrow{MI} + \overrightarrow{IB} \right) + 4\left(
\overrightarrow{MI} + \overrightarrow{IC} \right).

    Chọn điểm I sao cho 2\overrightarrow{IA} + 3\overrightarrow{IB} +
4\overrightarrow{IC} = \overrightarrow{0}

    \Leftrightarrow 3\left(
\overrightarrow{IA} + \overrightarrow{IB} + \overrightarrow{IC} \right)
+ \overrightarrow{IC} - \overrightarrow{IA} =
\overrightarrow{0}.

    G là trọng tâm của tam giác ABC \Rightarrow \overrightarrow{IA} +
\overrightarrow{IB} + \overrightarrow{IC} = 3\
\overrightarrow{IG}.

    Khi đó 9\ \overrightarrow{IG} +
\overrightarrow{IC} - \overrightarrow{IA} =
\overrightarrow{0}

    \Leftrightarrow 9\ \overrightarrow{IG} +
\overrightarrow{AI} + \overrightarrow{IC} = \overrightarrow{0}
\Leftrightarrow 9\ \overrightarrow{IG} = \overrightarrow{CA}\ \ \ \ \ \
\ \ \ \ \ \ \ \ \ \ \ \ (*).

    Do đó \left| 2\overrightarrow{MA} +
3\overrightarrow{MB} + 4\overrightarrow{MC} \right| = \left|
\overrightarrow{MB} - \overrightarrow{MA} \right|

    \Leftrightarrow \left|
9\overrightarrow{MI} + 2\overrightarrow{IA} + 3\overrightarrow{IB} +
4\overrightarrow{IC} \right| = \left| \overrightarrow{AB}
\right|

    \Leftrightarrow 9MI = AB.

    I là điểm cố định thỏa mãn (*) nên tập hợp các điểm M cần tìm là đường tròn tâm I, bán kính r
= \frac{AB}{9} = \frac{a}{9}.

  • Câu 18: Thông hiểu

    Chọn khẳng định đúng

    Cho A là tập hợp tất cả các nghiệm của phương trình x^{2} - 4x + 3\  =
0; B là tập hợp các số có giá trị tuyệt đối nhỏ hơn 4. Khẳng định nào sau đây đúng?

    Ta có x^{2} - 7x + 6\  = 0
\Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
x = 3 \\
\end{matrix} \right.\  \Rightarrow A = \left\{ 1;3 \right\}

    B = \left\{ - 3; - 2; - 1;0;1;2;3
\right\}.

    Do đó A\backslash B =
\varnothing.

  • Câu 19: Thông hiểu

    Tìm quỹ tích điểm M

    Cho tam giác ABC. Tập hợp các điểm M thỏa mãn \overrightarrow{MA}\times \overrightarrow{BC}=0 là:

    Ta có:

    \begin{matrix}  \overrightarrow {MA} .\overrightarrow {BC}  = 0 \Rightarrow \left| {\overrightarrow {MA} } ight|.\left| {\overrightarrow {BC} } ight|\cos \left( {\overrightarrow {MA} ,\overrightarrow {BC} } ight) = 0 \hfill \\   \Leftrightarrow \cos \left( {\overrightarrow {MA} ,\overrightarrow {BC} } ight) = 0 \hfill \\   \Leftrightarrow \left( {\overrightarrow {MA} ,\overrightarrow {BC} } ight) = {90^0} \hfill \\   \Leftrightarrow \overrightarrow {MA}  \bot \overrightarrow {BC}  \hfill \\   \Leftrightarrow MA \bot BC \hfill \\ \end{matrix}

    Vậy tập hợp các điểm M là đường thẳng đi qua A và vuông góc với BC.

  • Câu 20: Thông hiểu

    Chọn mệnh đề đúng

    Mệnh đề nào sau đây đúng?

    Mệnh đề « Hai tam giác bằng nhau là điều kiện cần để diện tích của chúng bằng nhau” sai vì : giả sử có hai tam giác diện tích đều bằng 6 nhưng một hình có chiều cao là 3, đáy là 4. Một hình có chiều cao là 2, đáy là 6. Hai tam giác đó không bằng nhau.

    Mệnh đề « Số tự nhiên chia hết cho 5 là điều kiện đủ để nó có tận cùng bằng 5 » sai vì : Số tự nhiên chia hết cho 5 thì nó có tận cùng là 0 hoặc 5.

    Mệnh đề « Điều kiện đủ để hình bình hành ABCD là hình thoi » sai vì : thiếu một vế.

  • Câu 21: Nhận biết

    Khẳng định nào sau đây là đúng?

    Điểm cuối của \alpha thuộc góc phần tư thứ tư của đường tròn lượng giác. Khẳng định nào sau đây là đúng?

    Điểm cuối của \alpha thuộc góc phần tư thứ hai ightarrow \left\{ \begin{matrix}
\sin\alpha < 0 \\
\cos\alpha > 0 \\
\tan\alpha < 0 \\
\cot\alpha < 0 \\
\end{matrix} ight..

  • Câu 22: Vận dụng

    Tính chiều cao của ngọn tháp

    Xác định chiều cao của một tháp mà không cần lên đỉnh của tháp. Đặt kế giác thẳng đứng cách chân tháp một khoảng CD = 60m, giả sử chiều cao của giác kế là OC = 1m.Quay thanh giác kế sao cho khi ngắm theo thanh ta nhình thấy đỉnh A của tháp. Đọc trên giác kế số đo của góc \widehat{AOB} = 60^{0}. Chiều cao của ngọn tháp gần với giá trị nào sau đây:

    Tam giác OAB vuông tại B,\tan\widehat{AOB} = \frac{AB}{OB} \Rightarrow AB = tan60^{0}.OB =
60\sqrt{3}m.

    Vậy chiếu cao của ngọn tháp là h = AB +
OC = \left( 60\sqrt{3} + 1 ight)\ m.

  • Câu 23: Vận dụng cao

    Tìm m để

    Tìm m để phương trình \sqrt{x^{2} + mx + 2} = 2x + 1 có hai nghiệm phân biệt là:

    Phương trình \Leftrightarrow \left\{
\begin{matrix}
x \geq - \frac{1}{2} \\
3x^{2} + (4 - m)x - 1 = 0(*) \\
\end{matrix} ight..

    Phương trình đã cho có hai nghiệm  ⇔ (*)có hai nghiệm phân biệt lớn hơn hoặc bằng - \frac{1}{2} \Leftrightarrow đồ thị hàm số y = 3x2 + (4−m)x − 1 trên \lbrack - \frac{1}{2}; + \infty) cắt trục hoành tại hai điểm phân biệt.

    Xét hàm số y = 3x2 + (4−m)x − 1 trên \lbrack - \frac{1}{2}; +
\infty). Ta có - \frac{b}{2a} =
\frac{m - 4}{6}

    + TH1: Nếu \frac{m - 4}{6} \leq -
\frac{1}{2} \Leftrightarrow m \leq 1 thì hàm số đồng biến trên \lbrack - \frac{1}{2}; + \infty) nên m ≤ 1 không thỏa mãn yêu cầu bài toán.

    + TH2: Nếu \frac{m - 4}{6} > -
\frac{1}{2} \Leftrightarrow m > 1 :

    Ta có bảng biến thiên

    Đồ thị hàm số y = 3x2 + (4−m)x − 1 trên \lbrack - \frac{1}{2}; + \infty) cắt trục hoành tại hai điểm phân biệt \Leftrightarrow y{(-\frac12)}\geq0>y{(\frac{m-4}6)}

    \Leftrightarrow\frac{2m-9}4\geq0>\frac1{12}{(-m^2+8m-28)\;}(1)

     − m2 + 8m − 28 =  − (m−4)2 − 12 < 0,  ∀m nên

    (1) \Leftrightarrow 2m - 9 \geq 0
\Leftrightarrow m \geq \frac{9}{2} (thỏa mãn m > 1).

    Vậy m \geq \frac{9}{2} là giá trị cần tìm.

  • Câu 24: Thông hiểu

    Tam thức bậc hai nhận giá trị dương khi nào

    Tam thức bậc hai f(x)=x^{2}+(\sqrt{5}-1)x-\sqrt{5} nhận giá trị dương khi và chỉ khi:

     Ta có: \Delta >0a=1>0.

     Phương trình f(x)=0 có hai nghiệm phân biệt x=-\sqrt5 ;x=1.

    Do đó f(x)>0 khi x∈(−∞;-\sqrt{5})∪(1;+∞).

  • Câu 25: Vận dụng

    Tìm tọa độ điểm M

    Trong mặt phẳng tọa độ Oxy, cho ba điểm A(–4;0),B(–5;0)C(3;0). Tìm điểm M thuộc trục hoành sao cho \overrightarrow{MA} + \overrightarrow{MB} +
\overrightarrow{MC} = \overrightarrow{0}.

    M \in Ox \Rightarrow
M(a;0).

    Ta có: \overrightarrow{MA} = ( - 4 -
a;0); \overrightarrow{MB} = ( - 5 -
a;0) ;\overrightarrow{MC} = (3 -
a;0).

    Ta có: \overrightarrow{MA} +
\overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{0} \Leftrightarrow - 3a - 6 = 0 \Leftrightarrow
a = - 2 \Rightarrow M( - 2;0).

  • Câu 26: Thông hiểu

    Khẳng định nào sau đây là đúng?

    Cho \overrightarrow{u} = (3; - 2),\ \overrightarrow{v}= (1;6). Khẳng định nào sau đây là đúng?

    Ta có \overrightarrow{u} +\overrightarrow{v} = (4;4)\overrightarrow{u} - \overrightarrow{v} = (2; -8).

    Xét tỉ số \frac{4}{- 4} eq\frac{4}{4}\overset{}{ightarrow}\overrightarrow{u} +\overrightarrow{v}\overrightarrow{a} = ( - 4;4) không cùng phương. Loại đáp án \overrightarrow{u} +\overrightarrow{v}\overrightarrow{a} = ( - 4;4) ngược hướng.

    Xét tỉ số \frac{3}{1} eq \frac{-2}{6}\overset{}{ightarrow}\overrightarrow{u},\\overrightarrow{v} không cùng phương. Loại đáp án Hai vectơ \overrightarrow{u} = (2; - 1)\ và\\overrightarrow{v} = ( - 2; - 1) đối nhau.

    Xét tỉ số \frac{2}{6} = \frac{- 8}{- 24}= \frac{1}{3} > 0\overset{}{ightarrow}\overrightarrow{u} -\overrightarrow{v}\overrightarrow{b} = (6; - 24) cùng hướng.

    Chọn đáp án \overrightarrow{\mathbf{u}}\mathbf{-}\overrightarrow{\mathbf{v}}\overrightarrow{b} = (6; - 24) cùng hướng.

  • Câu 27: Thông hiểu

    Tìm điểm thỏa mãn

    Cho hệ bất phương trình \left\{ \begin{matrix}
5x - 2y - 1 > 0 \\
2x + 2y + 5 > 0 \\
x + y + 1 < 0 \\
\end{matrix} ight.. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?

    Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.

    Với O(0;0) \Rightarrow \left\{
\begin{matrix}
5.0 - 2.0 - 1 > 0 \\
2.0 + 2.0 + 5 > 0 \\
0 + 0 + 1 < 0 \\
\end{matrix} ight.. Bất phương trình thứ nhất sai nên không thỏa mãn.

    Với M(1;0) \Rightarrow \left\{
\begin{matrix}
5.1 - 2.0 - 1 > 0 \\
2.1 + 2.0 + 5 > 0 \\
1 + 0 + 1 < 0 \\
\end{matrix} ight.. Bất phương trình thứ ba sai nên không thỏa mãn.

    Với N(0; - 2) \Rightarrow \left\{
\begin{matrix}
5.0 - 2. - 2 - 1 > 0 \\
2.0 + 2. - 2 + 5 > 0 \\
0 - 2 + 1 < 0 \\
\end{matrix} ight.. Đúng. Chọn đáp án này.

  • Câu 28: Vận dụng

    Tính tổng hợp lực

    Cho hai lực \overrightarrow{F1}\overrightarrow{F2} cùng tác động vào một vật đứng tại điểm O, biết hai lực \overrightarrow{F1}\overrightarrow{F2} đều có cường độ là 50 (N) và chúng hợp với nhau một góc 60°. Hỏi vật đó phải chịu một lực tổng hợp có cường độ bằng bao nhiêu?

    Hình vẽ minh họa

    Tính tổng hợp lực

    Theo quy tắc hình bình hành ta có:

    \overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  = \overrightarrow {{F_{hl}}}

    \begin{matrix}   \Rightarrow {\left| {\overrightarrow {{F_{hl}}} } ight|^2} = {\left| {\overrightarrow {{F_1}} } ight|^2} + {\left| {\overrightarrow {{F_2}} } ight|^2} + 2\left| {\overrightarrow {{F_1}} } ight|.\left| {\overrightarrow {{F_2}} } ight|.\cos {60^0} \hfill \\   \Rightarrow {\left| {\overrightarrow {{F_{hl}}} } ight|^2} = {50^2} + {50^2} + 2.50.50.\dfrac{1}{2} = 7500 \hfill \\   \Rightarrow \left| {\overrightarrow {{F_{hl}}} } ight| = 50\sqrt 3  \hfill \\ \end{matrix}

  • Câu 29: Nhận biết

    Tìm tọa độ trung điểm

    Trong hệ tọa độ Oxy cho tọa độ hai điểm A(2; - 3),B(4;7). Tìm tọa độ trung điểm I của đoạn thẳng AB?

    Tọa độ trung điểm của AB là: \left\{\begin{matrix}x_{I} = \dfrac{2 + 4}{2} = 3 \\y_{I} = \dfrac{- 3 + 7}{2} = 2 \\\end{matrix} ight.\  \Rightarrow I(3;2)

  • Câu 30: Nhận biết

    Chọn đáp án đúng

    Sử dụng các kí hiệu đoạn, khoảng, nửa khoảng để viết tập hợp A=\{x∈R|−3≤x≤5\}.

     Ta có: A=\{x∈R|−3≤x≤5\} =[-3;5].

  • Câu 31: Thông hiểu

    Tìm điểm thỏa mãn

    Miền nghiệm của bất phương trình - 3x + y + 2 \leq 0 không chứa điểm nào sau đây?

    Xét điểm A(1\ \ ;\ \ 2). Ta có: - 3.1 + 2 + 2 = 1 > 0 nên miền nghiệm của bất phương trình trên không chứa điểm A(1\ \ ;\ \ 2).

  • Câu 32: Vận dụng

    Chọn khẳng định sai

    Cho hai khoảng A
= ( - \infty;m)B = (5; +
\infty). Khẳng định nào sau đây là sai?

    Vậy A \cap B = (5;m) khi m\ \  \geq 5.

  • Câu 33: Thông hiểu

    Tính hiệu của hai góc B và A

    Cho tam giác ABCAB=\sqrt{3}+1, AC=\sqrt{6}, BC = 2. Số đo của \widehat{B}-\widehat{A} là:

    Áp dụng hệ quả của định lí cosin ta có:

    \begin{matrix}  \cos \widehat A = \dfrac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}} \hfill \\   \Rightarrow \cos \widehat A = \dfrac{{{{\left( {\sqrt 3  + 1} ight)}^2} + {{\left( {\sqrt 6 } ight)}^2} - {2^2}}}{{2.\left( {\sqrt 3  + 1} ight).\sqrt 6 }} = \dfrac{{\sqrt 2 }}{2} \hfill \\   \Rightarrow \widehat A = {45^0} \hfill \\ \end{matrix}

    \begin{matrix}  \cos \widehat B = \dfrac{{A{B^2} + B{C^2} - A{C^2}}}{{2AB.BC}} \hfill \\   \Rightarrow \cos \widehat B = \dfrac{{{{\left( {\sqrt 3  + 1} ight)}^2} + {2^2} - {{\left( {\sqrt 6 } ight)}^2}}}{{2.\left( {\sqrt 3  + 1} ight).2}} = \dfrac{1}{2} \hfill \\   \Rightarrow \widehat B = {60^0} \hfill \\   \Rightarrow \widehat B - \widehat A = {60^0} - {45^0} = {25^0} \hfill \\ \end{matrix}

  • Câu 34: Thông hiểu

    Tìm m thỏa mãn điều kiện

    Cho f(x)=-2x^{2}+(m+2)x+m-4. Tìm m để f(x) âm với mọi giá trị x.

     Để f(x) <0 \forall x \in \mathbb {R} thì \left\{ {\begin{array}{*{20}{c}}{a < 0}\\{\Delta  < 0}\end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - 2 < 0}\\{{{(m + 2)}^2} + 8(m - 4) < 0}\end{array}} ight. \Leftrightarrow m^2+12m-28<0 \Leftrightarrow -14< m <2.

  • Câu 35: Nhận biết

    Tìm khẳng định sai

    Khẳng định nào về hàm số y = 3x + 5 là sai?

    Hàm số y = 3x + 5 có hệ số a = 3 > 0 nên đồng biến trên , suy ra chọn đáp án Hàm số nghịch biến trên .

  • Câu 36: Thông hiểu

    Xét tính đúng sai của các khẳng định

    Gọi G là trọng tâm tam giác đều ABC có cạnh bằng 4a. Các khẳng định sau đúng hay sai?

    a) \overrightarrow{AB}.\overrightarrow{AC} =
16a^{2}. Sai||Đúng

    b) \overrightarrow{AC}.\overrightarrow{CB} = -
8a^{2}. Đúng||Sai

    c) \overrightarrow{AG}.\overrightarrow{GB} =
\frac{4a^{2}}{3}. Sai||Đúng

    d) Với điểm M tùy ý, giá trị nhỏ nhất của 3MA^{2} + MB^{2} bằng 8a^{2}. Sai||Đúng

    Đáp án là:

    Gọi G là trọng tâm tam giác đều ABC có cạnh bằng 4a. Các khẳng định sau đúng hay sai?

    a) \overrightarrow{AB}.\overrightarrow{AC} =
16a^{2}. Sai||Đúng

    b) \overrightarrow{AC}.\overrightarrow{CB} = -
8a^{2}. Đúng||Sai

    c) \overrightarrow{AG}.\overrightarrow{GB} =
\frac{4a^{2}}{3}. Sai||Đúng

    d) Với điểm M tùy ý, giá trị nhỏ nhất của 3MA^{2} + MB^{2} bằng 8a^{2}. Sai||Đúng

    Hình vẽ minh họa

    a) SAI.

    Ta có \overrightarrow{AB}.\overrightarrow{AC} = \left|
\overrightarrow{AB} \right|.\left| \overrightarrow{AC} \right|.cos\left(
\overrightarrow{AB};\overrightarrow{AC} \right)

    = 4a.4a.cos60^{0} = 8a^{2}

    b) ĐÚNG.

    Ta có: \overrightarrow{AC}.\overrightarrow{CB} = -
\overrightarrow{CA}.\overrightarrow{CB} = - \left| \overrightarrow{CA}
\right|.\left| \overrightarrow{CB} \right|.cos\left(
\overrightarrow{CA};\overrightarrow{CB} \right)

    = - 4a.4a.cos60^{0} = -
8a^{2}.

    c) SAI.

    Ta có:

    \overrightarrow{AG}.\overrightarrow{GB}
= - \overrightarrow{GA}.\overrightarrow{GB}

    = - \left| \overrightarrow{GA}
\right|.\left| \overrightarrow{GB} \right|.cos\left(
\overrightarrow{GA};\overrightarrow{GB} \right)

    = - GA.GB.cos120^{0}

    = -
\frac{2}{3}.\frac{4a\sqrt{3}}{2}.\frac{2}{3}.\frac{4a\sqrt{3}}{2}. -
\frac{1}{2} = \frac{8a^{2}}{3}

    d) SAI.

    Gọi I là điểm thuộc đoạn AB sao cho 3\overrightarrow{IA} + \overrightarrow{IB} =
\overrightarrow{0} \Rightarrow \overrightarrow{AI} =
\frac{1}{4}\overrightarrow{AB}.

    Ta có:

    T = 3MA^{2} + MB^{2} =
3\overrightarrow{MA^{2}} + \overrightarrow{MB^{2}}

    = 3\left( \overrightarrow{MI} +
\overrightarrow{IA} \right)^{2} + \left( \overrightarrow{MI} +
\overrightarrow{IB} \right)^{2}

    = 4{\overrightarrow{MI}}^{2} +
2\overrightarrow{MI}\left( 3\overrightarrow{IA} + \overrightarrow{IB}
\right) + 3IA^{2} + IB^{2}

    = 4{\overrightarrow{MI}}^2 + 3IA^{2} +IB^{2}

    Vì I;A;B cố định nên: T \geq 3IA^{2} + IB^{2}, dấu bằng xảy ra \Leftrightarrow MI = 0 \Leftrightarrow M
\equiv I

    Suy ra T_{MIN} = 3IA^{2} + IB^{2} =
3a^{2} + 9a^{2} = 12a^{2} đạt được khi M \equiv I.

  • Câu 37: Nhận biết

    Chọn khẳng định đúng

    Tam thức bậc hai f(x) = \left( 1 - \sqrt{2} ight)x^{2} + \left( 5
- 4\sqrt{2} ight)x - 3\sqrt{2} + 6

    f(x) = \left( 1 - \sqrt{2} ight)x^{2}
+ \left( 5 - 4\sqrt{2} ight)x - 3\sqrt{2} + 6 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = \sqrt{2} \\
x = - 3 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp án Dương với mọi x \in \left( - 3;\sqrt{2} ight).

  • Câu 38: Thông hiểu

    Xét tính đúng sai của các khẳng định

    Cho hình vuông ABCD tâm O có cạnh 1.

    a) \overrightarrow{BA} -
\overrightarrow{BC} = \overrightarrow{AC}. Sai||Đúng

    b) \overrightarrow{BO} -
\overrightarrow{BC} = \overrightarrow{OA}. Đúng||Sai

    c) Điểm M di động thỏa mãn \left| \overrightarrow{MA} - \overrightarrow{CA}
\right| = \left| \overrightarrow{MB} - \overrightarrow{MC} +
\overrightarrow{CD} \right|. Khi đó điểm M thuộc một đường tròn cố định có bán kính bằng \sqrt{2}. Đúng||Sai

    d) \left| \overrightarrow{CB} -
\overrightarrow{OC} \right| = \frac{\sqrt{2}}{2}. Sai||Đúng

    Đáp án là:

    Cho hình vuông ABCD tâm O có cạnh 1.

    a) \overrightarrow{BA} -
\overrightarrow{BC} = \overrightarrow{AC}. Sai||Đúng

    b) \overrightarrow{BO} -
\overrightarrow{BC} = \overrightarrow{OA}. Đúng||Sai

    c) Điểm M di động thỏa mãn \left| \overrightarrow{MA} - \overrightarrow{CA}
\right| = \left| \overrightarrow{MB} - \overrightarrow{MC} +
\overrightarrow{CD} \right|. Khi đó điểm M thuộc một đường tròn cố định có bán kính bằng \sqrt{2}. Đúng||Sai

    d) \left| \overrightarrow{CB} -
\overrightarrow{OC} \right| = \frac{\sqrt{2}}{2}. Sai||Đúng

    Hình vẽ minh họa

    a. Sai

    Vì: \overrightarrow{BA} -
\overrightarrow{BC} = \overrightarrow{CA}.

    b. Đúng

    Vì: \overrightarrow{BO} -
\overrightarrow{BC} = \overrightarrow{CO} =
\overrightarrow{OA}

    c. Đúng

    \ \ \left| \overrightarrow{MA} -
\overrightarrow{CA} \right| = \left| \overrightarrow{MB} -
\overrightarrow{MC} + \overrightarrow{CD} \right|

    \Leftrightarrow \left|
\overrightarrow{MA} + \overrightarrow{AC} \right| = \left|
\overrightarrow{CB} + \overrightarrow{CD} \right|

    \Leftrightarrow \left|
\overrightarrow{MC} \right| = \left| \overrightarrow{CA} \right|
\Leftrightarrow CM = CA

    Khi đó điểm M thuộc đường tròn tâm C, bán kính R = CA = \sqrt{2}

    d. Sai

    \overrightarrow{CB} -
\overrightarrow{OC} = \overrightarrow{CB} +
\overrightarrow{CO}

    Dựng hình bình hành OCBE.

    Khi đó: \overrightarrow{CB} -
\overrightarrow{OC} = \overrightarrow{CB} + \overrightarrow{CO} =
\overrightarrow{CE}.

    Do đó: \left| \overrightarrow{CB} -
\overrightarrow{OC} \right| = \left| \overrightarrow{CE} \right| =
CE.

    Áp dụng định lí cô sin cho tam giác EBCta có:

    CE^{2} = CB^{2} + BE^{2} -
2CB.BE.cos\widehat{CBE}

    Trong đó: CB = 1;BE = CO = \frac{1}{2}AC
= \frac{\sqrt{2}}{2};\widehat{CBE}
= 135^{\circ}.

    Do đó: CE = \sqrt{1^{2} + \left(
\frac{\sqrt{2}}{2} \right)^{2} - 2.1.\frac{\sqrt{2}}{2}.cos135^{\circ}}
= \sqrt{2}.

  • Câu 39: Vận dụng cao

    Tính diện tích tam giác ABC

    Tam giác ABC có độ dài ba trung tuyến lần lượt là 9;\ 12;\ 15. Diện tích của tam giác ABC bằng:

    Ta có:

    \left\{ \begin{matrix}m_{a}^{2} = \dfrac{b^{2} + c^{2}}{2} - \dfrac{a^{2}}{4} = 81 \\m_{b}^{2} = \dfrac{a^{2} + c^{2}}{2} - \dfrac{b^{2}}{4} = 144 \\m_{c}^{2} = \dfrac{a^{2} + b^{2}}{2} - \dfrac{c^{2}}{4} = 225\end{matrix} \right. \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 292 \\
b^{2} = 208 \\
c^{2} = 100
\end{matrix} \right. \Rightarrow
\left\{ \begin{matrix}
a = 2\sqrt{73} \\
b = 4\sqrt{13} \\
c = 10
\end{matrix} \right.

    Ta có:

    \cos A = \frac{b^{2} + c^{2} -
a^{2}}{2bc} = \frac{208 + 100 - 292}{2.4\sqrt{13}.10} =
\frac{1}{5\sqrt{13}}

    \sin A = \sqrt{1 - \cos^{2}A} = \sqrt{1 -\left( \frac{1}{5\sqrt{13}} \right)^{2}} =\frac{18\sqrt{13}}{65}.

    Diện tích tam giác \Delta
ABC:

    S_{\Delta ABC} = \frac{1}{2}bc\sin A =
\frac{1}{2}.4\sqrt{13}.10.\frac{18\sqrt{13}}{65} = 72

  • Câu 40: Thông hiểu

    Xác dịnh tọa độ điểm M thỏa mãn yêu cầu

    Trong mặt phẳng Oxy, cho hai điểm A(0;2),B(1;4). Tìm tọa độ điểm M thỏa mãn\overrightarrow{AM} = -
2\overrightarrow{AB} là:

    Ta có: \overrightarrow{AM} = -
2\overrightarrow{AB} \Leftrightarrow \left\{ \begin{matrix}
x_{M} - 0 = - 2(1 - 0) \\
y_{M} - 2 = - 2(4 - 2)
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
x_{M} = - 2 \\
y_{M} = - 2
\end{matrix} \right.\  \Rightarrow M( - 2; - 2).

  • Câu 41: Nhận biết

    Tìm khẳng định sai

    Chọn khẳng định sai:

    Ta có: \overrightarrow{IA} -
\overrightarrow{IB} = \overrightarrow{BA} \neq
\overrightarrow{0}.

  • Câu 42: Nhận biết

    Tính độ dài cạnh b

    Cho \Delta
ABCB = 60^{0},a = 8,c =
5. Độ dài cạnh b bằng:

    Ta có: b^{2} = a^{2} + c^{2} - 2ac\cos
B = 8^{2} + 5^{2} - 2.8.5.cos60^{0}
= 49 \Rightarrow b =
7.

  • Câu 43: Thông hiểu

    Hoàn thành định lí

    Nếu tam giác ABCBC^{2} < AB^{2} + AC^{2} thì:

    Nếu tam giác ABC có BC^{2} < AB^{2} + AC^{2} thì \widehat{A} là góc nhọn

  • Câu 44: Nhận biết

    Xác định hai vectơ cùng phương

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} không cùng phương. Hai vectơ nào sau đây cùng phương?

    Ta có:

    \frac{1}{2}\overrightarrow{a} -
\overrightarrow{b} = - \left( - \frac{1}{2}\overrightarrow{a} +
\overrightarrow{b} \right)

    => Đáp án cần tìm là: \frac{1}{2}\overrightarrow{a} -
\overrightarrow{b}-
\frac{1}{2}\overrightarrow{a} + \overrightarrow{b}..

  • Câu 45: Vận dụng

    Tìm hệ bất phương trình thỏa mãn

    Phần không gạch chéo ở hình sau đây là biểu diễn miền nghiệm của hệ bất phương trình nào trong bốn hệ A, B, C, D?

    Dựa vào hình vẽ ta thấy đồ thị gồm hai đường thẳng \left( d_{1} ight):y = 0 và đường thẳng \left( d_{2} ight):3x + 2y =
6.

    Miền nghiệm gồm phần y nhận giá trị dương.

    Lại có (0\ \ ;\ \ 0) thỏa mãn bất phương trình 3x + 2y <
6.

    Chọn đáp án \left\{ \begin{matrix}
y > 0 \\
3x + 2y < 6 \\
\end{matrix} ight..

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Cánh Diều Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo