Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề thi học kì 1 Toán 10 Cánh Diều Đề 1

Mô tả thêm:

Mời các bạn học cùng thử sức với Đề thi học kì 1 môn Toán lớp 10 theo chương trình sách Cánh Diều nha!

  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Vận dụng cao

    Tính bán kính của đường tròn

    Cho hình vuông ABCD tâm O cạnh a. Biết rằng tập hợp điểm M thỏa mãn 2MA^{2} + MB^{2} + 2MC^{2} + MD^{2} =
9a^{2} là một đường tròn. Tính bán kính của đường tròn.

    Ta có: 

    2MA^{2} + MB^{2} + 2MC^{2} + MD^{2} =
9a^{2}

    \Leftrightarrow 2\left(
\overrightarrow{MO} + \overrightarrow{OA} ight)^{2} + \left(
\overrightarrow{MO} + \overrightarrow{OB} ight)^{2} + 2\left(
\overrightarrow{MO} + \overrightarrow{OC} ight)^{2} + \left(
\overrightarrow{MO} + \overrightarrow{OD} ight)^{2} =
9a^{2}

    \Leftrightarrow 6MO^{2} + 2OA^{2} +
OB^{2} + 2OC^{2} + OD^{2}

    +
2\overrightarrow{MO}\left( 2\overrightarrow{OA} + \overrightarrow{OB} +
2\overrightarrow{OC} + \overrightarrow{OD} ight) = 9a^{2}

    Do 2\overrightarrow{OA} +
\overrightarrow{OB} + 2\overrightarrow{OC} + \overrightarrow{OD} =
\overrightarrow{0}

    \Leftrightarrow 6MO^{2} + 3a^{2} =
9a^{2}

    \Leftrightarrow MO = a

    Vậy tập hợp các điểm M là đường tròn tâm O, bán kính R = a.

  • Câu 2: Nhận biết

    Tính bán kính R

    Tam giác ABC có BC = 10 và \widehat{A}=30°. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.

     Ta có: \frac {BC}{\sin A}=2R \Leftrightarrow R= \frac{BC}{2\sin A} =\frac {10}{2.sin30^{\circ}  }=10.

  • Câu 3: Thông hiểu

    Xét tính đúng sai của các khẳng định

    Cho các véc-tơ \overrightarrow{a} = ( -
2;3), \overrightarrow{b} =
(4;1), \overrightarrow{c} =
k\overrightarrow{a} + m\overrightarrow{b}\overrightarrow{d} = n\overrightarrow{a} +
\overrightarrow{b}.

    a) \overrightarrow{a}.\overrightarrow{b}
= 5. Sai||Đúng

    b) \cos\left(
\overrightarrow{a},\overrightarrow{b} \right) = \frac{-
5\sqrt{221}}{221}. Đúng||Sai

    c) Với 2k + 3m = 0 thì \overrightarrow{c}\bot\left( \overrightarrow{a} +\overrightarrow{b} \right). Đúng||Sai

    d) Có 2 giá trị nguyên n để \cos\left(
\overrightarrow{d},\overrightarrow{e} \right) = 45^{0}với \overrightarrow{e} = \overrightarrow{i} +
\overrightarrow{j}. Sai||Đúng

    Đáp án là:

    Cho các véc-tơ \overrightarrow{a} = ( -
2;3), \overrightarrow{b} =
(4;1), \overrightarrow{c} =
k\overrightarrow{a} + m\overrightarrow{b}\overrightarrow{d} = n\overrightarrow{a} +
\overrightarrow{b}.

    a) \overrightarrow{a}.\overrightarrow{b}
= 5. Sai||Đúng

    b) \cos\left(
\overrightarrow{a},\overrightarrow{b} \right) = \frac{-
5\sqrt{221}}{221}. Đúng||Sai

    c) Với 2k + 3m = 0 thì \overrightarrow{c}\bot\left( \overrightarrow{a} +\overrightarrow{b} \right). Đúng||Sai

    d) Có 2 giá trị nguyên n để \cos\left(
\overrightarrow{d},\overrightarrow{e} \right) = 45^{0}với \overrightarrow{e} = \overrightarrow{i} +
\overrightarrow{j}. Sai||Đúng

    a)Saib)Đúngc)Đúngd)Sai

    a) \overrightarrow{a}.\overrightarrow{b}
= ( - 2).4 + 3.1 = - 5.

    b) Ta có:

    \cos\left(\overrightarrow{a},\overrightarrow{b} \right) =\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}\right|.\left| \overrightarrow{b} \right|}= \frac{( - 2).4 +3.1}{\sqrt{( - 2)^{2} + 3^{2}}.\sqrt{4^{2} + 1}} = \frac{-5\sqrt{221}}{221}.

    c) Ta có \overrightarrow{c} =
k.\overrightarrow{a} + m.\overrightarrow{b} = ( - 2k + 4m;3k + m),\ \
\overrightarrow{a} + \overrightarrow{b} = (2;4).

    Để \overrightarrow{c}\bot\left(\overrightarrow{a} + \overrightarrow{b} \right)\Leftrightarrow\overrightarrow{c}.\left( \overrightarrow{a} + \overrightarrow{b}\right) = 0

    \Leftrightarrow 2( - 2k + 4m) + 4(3k + m) = 0\Leftrightarrow 2k + 3m = 0

    Vậy với 2k + 3m = 0 thì \overrightarrow{c}\bot\left( \overrightarrow{a} +\overrightarrow{b} \right).

    d) Ta có: \overrightarrow{d} =
n\overrightarrow{a} + \overrightarrow{b} = ( - 2n + 4;3n + 1),\ \
\overrightarrow{e} = \overrightarrow{i} + \overrightarrow{j} =
(1;1).

    \mathbf{\cos}\left(
\overrightarrow{\mathbf{d}}\mathbf{,}\overrightarrow{\mathbf{e}}
\right)\mathbf{=}\mathbf{4}\mathbf{5}^{\mathbf{0}}

    \Leftrightarrow \frac{- 2n + 4 + 3n +
1}{\sqrt{( - 2n + 4)^{2} + (3n + 1)^{2}}.\sqrt{2}} =
\frac{\sqrt{2}}{2}

    \Leftrightarrow n + 5 = \sqrt{13n^{2} -
10n + 17}

    \Leftrightarrow \left\{ \begin{matrix}
n \geq - 5 \\
12n^{2} - 20n - 8 = 0
\end{matrix} \right. \Leftrightarrow \left\{ \begin{gathered}
  n \geqslant  - 5 \hfill \\
  \left[ \begin{gathered}
  n = \frac{{ - 1}}{3} \hfill \\
  n = 2 \hfill \\ 
\end{gathered}  \right. \hfill \\ 
\end{gathered}  \right. \Leftrightarrow \left[ \begin{gathered}
  n = \frac{{ - 1}}{3} \notin \mathbb{Z} \hfill \\
  n = 2 \in \mathbb{Z} \hfill \\ 
\end{gathered}  \right..

  • Câu 4: Thông hiểu

    Chọn đáp án đúng

    Cho các tập hợp M = \lbrack - 3;\ \
6\rbrackN = ( - \infty;\ \  -
2) \cup (3;\ \  + \infty). Khi đó M
\cap N

    Biểu diễn trục số:

    M = \lbrack - 3;\ \ 6\rbrackN = ( - \infty;\ \  - 2) \cup (3;\ \  +
\infty).

    Khi đó: M \cap N = \lbrack - 3;\ \  - 2)
\cup (3;\ \ 6\rbrack.

  • Câu 5: Nhận biết

    Chọn kết quả đúng

    Cho hai tập hợp A = \left\{ a;\ \ b;\ \
c;\ \ d;\ \ m \right\},\ \ B = \left\{ c;\ \ d;\ \ m;\ \ k;\ \ l
\right\}. Tìm A \cap
B.

    Tập hợp A và tập hợp B có chung các phần tử c,\ \ d,\ \ m.

    Do đó A \cap B = \left\{ c;\ \ d;\ \ m
\right\}.

  • Câu 6: Vận dụng

    Tìm m thỏa mãn điều kiện

    Hỏi có bao nhiêu giá trị m nguyên trong nửa khoảng [ − 10;  − 4) để đường thẳng d : y =  − (m+1)x + m + 2 cắt Parabol (P) : y = x2 + x − 2 tại hai điểm phân biệt cùng phía với trục tung?

    Xét phương trình:  − (m+1)x + m + 2 = x2 + x − 2 ⇔ x2 + x(m+2) − m − 4 = 0

    Để đường thẳng d cắt Parabol(P) tại hai điểm phân biệt cùng phía với trục tung vậy điều kiện là \left\{ \begin{matrix}
\Delta > 0 \\
P > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
(m + 2)^{2} + 4(m + 4) > 0 \\
- m - 4 > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m^{2} + 8m + 20 > 0\ ,\ \forall m \\
m < - 4 \\
\end{matrix} ight.

    Vậy trong nửa khoảng[ − 10;  − 4)6 giá trị nguyên m.

  • Câu 7: Vận dụng cao

    Tìm số nghiệm nguyên của phương trình

    Phương trình x^{2} = \sqrt{2 - x} + 2 có mấy nghiệm nguyên ?

    Đặt t = \sqrt{2 - x}\ \ \ (t \geq
0). Ta có hệ phương trình:

    \left\{ \begin{matrix}
x^{2} = t + 2 \\
t^{2} = - x + 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
t = - x \\
t = x - 1 \\
\end{matrix} ight.

    Với t =  − x ta được \left\lbrack \begin{matrix}
x = 1 \Rightarrow t = - 1(L) \\
x = - 2 \Rightarrow t = 2(TM) \\
\end{matrix} ight.

    Với t = x − 1 ta được \left\lbrack \begin{matrix}
x = \frac{1 + \sqrt{5}}{2} \Rightarrow t = \frac{\sqrt{5} - 1}{2}(TM) \\
x = \frac{1 - \sqrt{5}}{2} \Rightarrow t = \frac{- \sqrt{5} - 1}{2}(L)
\\
\end{matrix} ight.

    Vậy phương trình có 2 nghiệm x =  − 2x = \frac{1 + \sqrt{5}}{2}.

  • Câu 8: Thông hiểu

    Tìm số nghiệm của phương trình

    Phương trình \left( x^{2} + 5x + 4 ight)\sqrt{x + 3} =0 có bao nhiêu nghiệm?

    Điều kiện xác định của phương trình là x ≥  − 3.

    Phương trình tương đương với \Leftrightarrow \left\{ \begin{matrix}x \geq - 3 \\\left\lbrack \begin{matrix}x = - 1 \\x = - 4 \\x = - 3 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = - 1 \\x = - 3 \\\end{matrix} ight..

    Vậy phương trình có hai nghiệm.

  • Câu 9: Vận dụng

    Xét tính đúng sai của khẳng định

    Cho tam giác ABC đều cạnh a, đường trung tuyếnAH, trọng tâm là G.

    a) \overrightarrow{AB} +
\overrightarrow{BC} = \overrightarrow{AC}. Đúng||Sai

    b) \left| \overrightarrow{AB} +
\overrightarrow{BC} \right| = 2a. Sai||Đúng

    c) \left| \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} \right| = 0. Đúng||Sai

    d) \left| \overrightarrow{AC} +
\overrightarrow{AH} \right| = a\sqrt{3}. Sai||Đúng

    Đáp án là:

    Cho tam giác ABC đều cạnh a, đường trung tuyếnAH, trọng tâm là G.

    a) \overrightarrow{AB} +
\overrightarrow{BC} = \overrightarrow{AC}. Đúng||Sai

    b) \left| \overrightarrow{AB} +
\overrightarrow{BC} \right| = 2a. Sai||Đúng

    c) \left| \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} \right| = 0. Đúng||Sai

    d) \left| \overrightarrow{AC} +
\overrightarrow{AH} \right| = a\sqrt{3}. Sai||Đúng

    a) Đúng: Vì đây là quy tắc ba điểm đối với phép cộng véc tơ.

    b) Sai: Vì \left| \overrightarrow{AB} +
\overrightarrow{BC} \right| = \left| \overrightarrow{AC} \right| = AC =
a.

    c) Đúng: Vì với G là trọng tâm tam giác ABCsuy ra \overrightarrow{GA} + \overrightarrow{GB} +
\overrightarrow{GC} = \overrightarrow{0}

    \Rightarrow \left| \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} \right| = \left|
\overrightarrow{0} \right| = 0.

    Minh họa bằng hình vẽ:

    d) Sai: 

    Dựng \overrightarrow{CM} =
\overrightarrow{AH} \Rightarrow AHMC là hình bình hành

    \Rightarrow \overrightarrow{AC} +\overrightarrow{AH}= \overrightarrow{AM} \Rightarrow \left| \overrightarrow{AC} +
\overrightarrow{AH} \right| = AM.

    Gọi K đối xứng với A qua BC \Rightarrow \Delta AKM vuông tại K.

    AK = 2AH = a\sqrt{3} ; KM = CH = \frac{a}{2}.

    AM = \sqrt{AK^{2} + KM^{2}} = \sqrt{\left( a\sqrt{3} \right)^{2} +
\left( \frac{a}{2} \right)^{2}} =
\frac{a\sqrt{13}}{2}

    \Rightarrow \left| \overrightarrow{AC} +
\overrightarrow{AH} \right| = \frac{a\sqrt{13}}{2}.

  • Câu 10: Vận dụng

    Tính giá trị biểu thức A

    Cho các véc tơ \overrightarrow{a},\ \
\overrightarrow{b}\overrightarrow{c} thỏa mãn các điều kiện \left| \overrightarrow{a} \right| = x,\ \
\left| \overrightarrow{b} \right| = y\left| \overrightarrow{z} \right| = c\overrightarrow{a} + \overrightarrow{b} +
3\overrightarrow{c} = \overrightarrow{0}. Tính A = \overrightarrow{a}.\overrightarrow{b} +
\overrightarrow{b}.\overrightarrow{c} +
\overrightarrow{c}.\overrightarrow{a}.

    Ta có:

    \overrightarrow{a} + \overrightarrow{b} +
3\overrightarrow{c} = \overrightarrow{0} \Rightarrow \overrightarrow{a}
+ \overrightarrow{b} + \overrightarrow{c} = -
2\overrightarrow{c}.

    \Rightarrow {\overrightarrow{a}}^{2} +
{\overrightarrow{b}}^{2} + {\overrightarrow{c}}^{2} + 2A =
4{\overrightarrow{c}}^{2}.

    \Rightarrow \left( \overrightarrow{a} +
\overrightarrow{b} + \overrightarrow{c} \right)^{2} = \left( -
2\overrightarrow{c} \right)^{2}.

    Sử dụng tính chất bình phương vô hướng bằng bình phương độ dài ta có:

    x^{2} + y^{2} + z^{2} + 2A =
4z^{2}

    \Rightarrow A = \frac{3z^{2} - x^{2} -
y^{2}}{2}.

  • Câu 11: Vận dụng

    Tính tổng bình phương các nghiệm của phương trình

    Tính tổng bình phương các nghiệm của phương trính x^{2} - 1 = 2x\sqrt{x^{2} - 2x} bằng:

    ĐK: \left\lbrack \begin{matrix}x \geq 2 \\x \leq 0 \\\end{matrix} ight.

    x^{2} - 1 = 2x\sqrt{x^{2} - 2x}\Leftrightarrow x^{2} - 2x - 2x\sqrt{x^{2} - 2x} + 2x - 1 =0.

    Đặt t = \sqrt{x^{2} - 2x} , (t≥0)Phương trình thành t^{2} - 2xt + 2x - 1 = 0 \Leftrightarrow\left\lbrack \begin{matrix}t = 1 \\t = 2x - 1 \\\end{matrix} ight. .

    t = 1 ⇒ x2 − 2x − 1 = 0 \Leftrightarrow x = 1 \pm\sqrt{2}(TM)

    t = 2x - 1 \Rightarrow \left\{\begin{matrix}2x - 1 \geq 0 \\x^{2} - 2x = (2x - 1)^{2} \\\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}2x - 1 \geq 0 \\3x^{2} - 2x + 1 = 0\left( VN_{0} ight) \\\end{matrix} ight..

    Vậy phương trình đã cho có hai nghiệm là x_{1,2} = 1 \pm \sqrt{2} \Rightarrow {x_{1}}^{2} +{x_{2}}^{2} = 6 .

  • Câu 12: Nhận biết

    Xác định số mệnh đề

    Trong các câu sau, có bao nhiêu câu là mệnh đề?

    (I) Hãy mở cửa ra!                            (II) Số 25 chia hết cho 8.

    (III) Số 17 là số nguyên tố.               (IV) Bạn thích ăn phở không?

    Các câu (III) và (II) là mệnh đề.

  • Câu 13: Nhận biết

    Tìm biểu thức sai

    Cho M là trung điểm AB, tìm biểu thức sai?

    Phương án \overrightarrow{MA}.\overrightarrow{AB} = -
MA.AB: \overrightarrow{MA},\overrightarrow{AB} ngược hướng suy ra

    \overrightarrow{MA}.\overrightarrow{AB} =MA.AB.\cos180^{o} = - MA.AB nên loại \overrightarrow{MA}.\overrightarrow{AB} = -
MA.AB.

    Phương án \overrightarrow{MA}.\overrightarrow{MB} = -
MA.MB :\overrightarrow{MA},\overrightarrow{MB} ngược hướng suy ra

    \overrightarrow{MA}.\overrightarrow{MB} =MA.MB.\cos180^{o} = - MA.MB nên loại \overrightarrow{MA}.\overrightarrow{MB} = -
MA.MB.

    Phương án \overrightarrow{AM}.\overrightarrow{AB} =
AM.AB: \overrightarrow{AM},\overrightarrow{AB} cùng hướng suy ra

    \overrightarrow{AM}.\overrightarrow{AB} =AM.AB.\cos0^{o} = AM.AB nên loại \overrightarrow{AM}.\overrightarrow{AB} =
AM.AB.

    Phương án \overrightarrow{MA}.\overrightarrow{MB} =
MA.MB: \overrightarrow{MA},\overrightarrow{MB} ngược hướng suy ra

    \overrightarrow{MA}.\overrightarrow{MB} = MA.MB.\cos180^{o} = - MA.MB nên chọn \overrightarrow{MA}.\overrightarrow{MB} =
MA.MB.

  • Câu 14: Thông hiểu

    Tìm số tập X thỏa mãn yêu cầu bài toán

    Cho tập hợp A = \left\{ 1;2;3;4;5
\right\}. Tìm số tập hợp X sao cho A\backslash X = \left\{ 1;3;5 \right\}X\backslash A = \left\{ 6;7
\right\}.

    A\backslash X = \left\{ 1;3;5
\right\} nên X phải chứa hai phần tử 2; 4 và X không chứa các phần tử 1; 3; 5.

    Mặt khác X\backslash A = \left\{ 6;7
\right\} vậy X phải chứa 6; 7 và các phần tử khác nếu có phải thuộc A.

    Vậy X = \left\{ 2;4;6;7
\right\}.

  • Câu 15: Thông hiểu

    Xác định góc giữa hai vectơ

    Cho tam giác đều ABC có đường cao AH. Tính \left( \overrightarrow{AH},\overrightarrow{BA}
\right).

    Hình vẽ minh họa

    Vẽ \overrightarrow{AE} =
\overrightarrow{BA}.

    Khi đó \left(
\overrightarrow{AH},\overrightarrow{AE} \right) = \widehat{HAE} =
\alpha (hình vẽ)

    \left(\overrightarrow{AH},\overrightarrow{BA} \right) = \left(\overrightarrow{AH},\overrightarrow{AE} \right)= 180^{o} -\widehat{BAH} = 180^{o} - 30^{o} = 150^{o}.

  • Câu 16: Nhận biết

    Chọn đáp án sai

    Cho hàm số có đồ thị như hình vẽ.

    Chọn đáp án sai.

    Từ đồ thị hàm số ta thấy:

    Hàm số nghịch biến trong các khoảng: (−∞;−1)(0;1).

    Hàm số đồng biến trong các khoảng: (−1;0)(1;+∞).

    Đáp án sai là Hàm số nghịch biến trên khoảng (−1;1).

  • Câu 17: Thông hiểu

    Tìm x thỏa mãn điều kiện

    Giá trị nguyên dương lớn nhất của x để hàm số y = \sqrt{5 - 4x - x^{2}} xác định là

    Hàm số đã cho xác định khi và chỉ khi 5 − 4x − x2 ≥ 0 ⇔ x ∈ [− 5; 1].

    Vậy giá trị nguyên dương lớn nhất của xđể hàm số xác định là x = 1.

  • Câu 18: Thông hiểu

    Tìm tọa độ của vectơ thỏa mãn

    Trong hệ tọa độ Oxy, cho ba điểm A(1;3),\ B( - 1;2),\ C( - 2;1). Tìm tọa độ của vectơ \overrightarrow{AB} -
\overrightarrow{AC}.

    Ta có \left\{ \begin{matrix}\overrightarrow{AB} = ( - 2; - 1) \\\overrightarrow{AC} = ( - 3; - 2) \\\end{matrix} ight.\ \overset{}{ightarrow}\overrightarrow{AB} -\overrightarrow{AC} = \left( - 2 - ( - 3); - 1 - ( - 2) ight) =(1;1).

    Cách khác: \overrightarrow{AB} -
\overrightarrow{AC} = \overrightarrow{CB} = (1;1).

  • Câu 19: Vận dụng cao

    Tìm điều kiện của x và y

    Cho hình bình hành ABCD. Lấy hai điểm M,N sao cho \overrightarrow{CM} =
\frac{1}{2}\overrightarrow{CB};\overrightarrow{CN} =
\frac{1}{3}\overrightarrow{CD}, lấy tiếp hai điểm I,J sao cho \overrightarrow{CI} =
x\overrightarrow{CD};\overrightarrow{BJ} =
y\overrightarrow{BI}. Để J là trọng tâm tam giác AMN thì x,y thỏa mãn điều kiện nào sau đây:

    Hình vẽ minh họa

    Tìm điều kiện của x và y

    \overrightarrow{JA} +
\overrightarrow{JM} + \overrightarrow{JN} = \overrightarrow{BA} -
\overrightarrow{BJ} + \overrightarrow{JB} + \overrightarrow{BM} +
\overrightarrow{JI} + \overrightarrow{IN}

    = \overrightarrow{BA} -
2\overrightarrow{BJ} + \frac{\overrightarrow{BC}}{2} +
\overrightarrow{BI} - \overrightarrow{BJ} + \overrightarrow{CN} -
\overrightarrow{CI}

    = \overrightarrow{BA} +
\frac{\overrightarrow{BC}}{2} + ( - 3y + 1).\overrightarrow{BI} +
\overrightarrow{CN} - \overrightarrow{CI}

    = \overrightarrow{BA} +
\frac{\overrightarrow{BC}}{2} + ( - 3y + 1).\left( \overrightarrow{BC} +
\overrightarrow{CI} ight) + \overrightarrow{CN} -
\overrightarrow{CI}

    = \overrightarrow{BA} + \left(
\frac{3}{2} - 3y ight)\left( \overrightarrow{AC} - \overrightarrow{AB}
ight) + \overrightarrow{CN} - 3y.\overrightarrow{CI}

    = \overrightarrow{BA} + \left(
\frac{3}{2} - 3y ight)\left( \overrightarrow{AC} - \overrightarrow{AB}
ight) + \frac{1}{3}\overrightarrow{CD} -
3xy.\overrightarrow{CD}

    = \overrightarrow{BA} + \left(
\frac{3}{2} - 3y ight)\left( \overrightarrow{AC} - \overrightarrow{AB}
ight) + \left( \frac{1}{3} - 3xy
ight).\overrightarrow{BA}

    = \left( - \frac{17}{6} + 3y + 3xy
ight).\overrightarrow{AB} + \left( \frac{3}{2} - 3y
ight).\overrightarrow{AC}

    Để J là trọng tâm tam giác AMN thì

    \overrightarrow{JA} +
\overrightarrow{JM} + \overrightarrow{JN} =
\overrightarrow{0}

    \Leftrightarrow \left( - \frac{17}{6} +
3y + 3xy ight).\overrightarrow{AB} + \left( \frac{3}{2} - 3y
ight).\overrightarrow{AC} = \overrightarrow{0}

    Mặt khác do \overrightarrow{AB};\overrightarrow{AC} không cùng phương nên ta suy ra:

    \left\{ \begin{matrix}- \dfrac{17}{6} + 3y + 3xy = 0 \\\dfrac{3}{2} - 3y = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = \dfrac{8}{9} \\y = \dfrac{1}{2} \\\end{matrix} ight.

    Vậy với x = \frac{8}{9};y =
\frac{1}{2} thì điểm J là trọng tâm tam giác AMN.

  • Câu 20: Vận dụng

    Giải hệ bất phương trình

    Cho hệ bất phương trình \left\{\begin{matrix}x+5y<1\\ 5x-4y>6\end{matrix}ight.. Hỏi khi cho y = 0, x có thể nhận mấy giá trị nguyên nào?

    Khi y=0 hệ bất phương trình trở thành:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {x + 5.0 < 1} \\   {5x - 4.0 > 6} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x < 1} \\   {5x > 6} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x < 1} \\   {x > \dfrac{6}{5}} \end{array}} ight.\left( {VN} ight) \Rightarrow x \in \left\{ \emptyset  ight\} \hfill \\ \end{matrix}

    Vậy y=0 không có giá trị nguyên nào của x thỏa mãn hệ bất phương trình đã cho.

  • Câu 21: Nhận biết

    Tính số đo góc A

    Tam giác ABCAB =
5,\ \ BC = 7,\ \ CA = 8. Số đo góc \widehat{A} bằng:

    Theo định lí hàm cosin, ta có \cos\widehat{A} = \frac{AB^{2} + AC^{2} -
BC^{2}}{2AB.AC} = \frac{5^{2} +
8^{2} - 7^{2}}{2.5.8} = \frac{1}{2}.

    Do đó, \widehat{A} =
60{^\circ}.

  • Câu 22: Thông hiểu

    Tìm D để ABDC là hình bình hành

    Cho tam giác ABC với A(3; - 1),\ B( - 4;2),\ C(4;3). Tìm Dđể ABDClà hình bình hành?

    Ta có: ABDC là hình bình hành

    \Leftrightarrow \overrightarrow{AB} =
\overrightarrow{CD} \Leftrightarrow \left\{ \begin{matrix}
- 4 - 3 = x_{D} - 4 \\
2 + 1 = y_{D} - 3
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
x_{D} = - 3 \\
y_{D} = 6
\end{matrix} \right.\  \Rightarrow D( - 3;6).

  • Câu 23: Nhận biết

    Tìm đẳng thức đúng

    Nếu G là trọng tam giác ABC thì đẳng thức nào sau đây đúng.

    Hình vẽ minh họa

    Gọi M là trung điểm của BC nên ta có

    \overrightarrow{AB}+\overrightarrow{AC} = 2\overrightarrow{AM}

    \overrightarrow{AM} =
\frac{3}{2}\overrightarrow{AG} \Rightarrow \overrightarrow{AB} +
\overrightarrow{AC} = 2.\frac{3}{2}\overrightarrow{AG} =
3\overrightarrow{AG}

    \Rightarrow \overrightarrow{AG} =
\frac{\overrightarrow{AB} + \overrightarrow{AC}}{3}.

  • Câu 24: Thông hiểu

    Khẳng định nào sau đây sai?

    Cho tam giác ABC cân ở A, đường cao AH. Khẳng định nào sau đây sai?

    Tam giác ABC cân ở A, đường cao AH. Do đó, H là trung điểm BC.

    Ta có:

    AB = AC \Rightarrow \left|
\overrightarrow{AB} ight| = \left| \overrightarrow{AC}
ight|

    H là trung điểm BC \Rightarrow \left\{ \begin{matrix}
\overrightarrow{HC} = - \overrightarrow{HB} \\
\overrightarrow{BC} = 2\overrightarrow{HC} \\
\end{matrix} ight..

    Chọn đáp án sai là \overrightarrow{AB} =
\overrightarrow{AC}.

  • Câu 25: Nhận biết

    Tìm công thức của Parabol

    Xác định parabol (P) : y = ax2 + bx + 2, biết rằng (P) đi qua hai điểm M(1;5)N(−2;8).

    (P) đi qua hai điểm M(1;5)N(−2;8) nên ta có hệ

    \left\{ \begin{matrix}
a + b + 2 = 5 \\
4a - 2b + 2 = 8 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 2 \\
b = 1 \\
\end{matrix} ight.. Vậy (P) : y = 2x2 + x + 2.

  • Câu 26: Thông hiểu

    Chọn phát biểu đúng

    Cho tam giác đều ABC cạnh a, trọng tâm là G. Phát biểu nào là đúng?

    Hình vẽ minh họa:

    \left| \overrightarrow{AB} +
\overrightarrow{AC} \right| = \left| 2\overrightarrow{AH} \right| =
2\frac{a\sqrt{3}}{2} = a\sqrt{3}.

    \sqrt{3}\left| \overrightarrow{AB} -
\overrightarrow{AC} \right| = \sqrt{3}\left| \overrightarrow{CB} \right|
= a\sqrt{3}.

    Vậy:\left| \overrightarrow{AB} +
\overrightarrow{AC} \right| = \sqrt{3}\left| \overrightarrow{AB} -
\overrightarrow{AC} \right|

  • Câu 27: Nhận biết

    Tìm điểm không thuộc miền nghiệm

    Miền nghiệm của bất phương trình - 2x + 4y \geq 1 chứa điểm nào dưới đây?

    Xét điểm (0;1). Ta có: - 2.0 + 4.1 = 4 \geq 1 thỏa mãn. Do đó miền nghiệm của bất phương trình - 2x + 4y
\geq 1 chứa điểm (0;1).

  • Câu 28: Thông hiểu

    Tìm tập xác định

    Tìm tập xác định D của hàm số y = \frac{3 - x}{\sqrt{4 - 3x -
x^{2}}}.

    Hàm số xác định khi và chỉ khi 4 − 3x − x2 > 0.

    Phương trình 4 - 3x - x^{2} = 0
\Leftrightarrow (x - 1)(x + 4) = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = - \ 4 \\
\end{matrix} ight.\ .

    Bảng xét dấu:

    Dựa vào bảng xét dấu, ta thấy 4 − 3x − x2 > 0 ⇔ x ∈ (− 4; 1).

    Vậy tập xác định của hàm số là D = (− 4;1).

  • Câu 29: Thông hiểu

    Chọn khẳng định đúng

    Cho hàm số y = x^{2} – 3x + 2. Khẳng định nào sau đây đúng?

    Hàm số bậc hai y = x2 – 3x + 2 có tập xác định là ℝ. Khẳng định "Tập xác định của hàm số là D = (0; +∞)." sai.

    Xét điểm M(1; 0): thay x = 1; y = 0 vào hàm số ta có: 0 = 12 – 3. 1 + 2 = 0 là mệnh đề đúng. Vậy M(1; 0) thuộc đồ thị hàm số. Khẳng định "Điểm M(1; 0) thuộc đồ thị hàm số." đúng.

    Hàm số y = x2 – 3x + 2 có a = 1 > 0, b = ‒3 nên hàm số nghịch biến trên khoảng \left( { - \infty ;\frac{3}{2}} ight) và đồng biến trên khoảng \left( {\frac{3}{2}; + \infty } ight). Khẳng định "Hàm số đồng biến trên ℝ." sai.

    Hàm số y = x2 – 3x + 2 có a = 1 > 0 nên đồ thị hàm số có bề lõm quay lên trên. Khẳng định "Đồ thị hàm số có bề lõm quay xuống dưới." sai.

  • Câu 30: Nhận biết

    Chọn khẳng định đúng

    Cho hình bình hành ABCD. Với mọi điểm M, ta có khẳng định nào sau đây:

     Ta có: \overrightarrow{MB}-\overrightarrow{MA}=\overrightarrow{MC}-\overrightarrow{MD}  \Leftrightarrow \overrightarrow {AB}= \overrightarrow {DC} (Đúng).

  • Câu 31: Thông hiểu

    Chọn đáp án đúng

    Một cửa hàng bán hai loại mặt hàng AB. Biết rằng cứ bán một mặt hàng loại A cửa hàng lãi 5 nghìn đồng, bán một mặt hàng loại B cửa hàng lãi 7 nghìn đồng. Gọi x,y lần lượt là số mặt hàng loại A và mặt hàng loại B mà cửa hàng đó bán ra trong một tháng. Cặp số (x;y) nào sau đây biểu thị số mặt hàng bán ra mỗi loại của cửa hàng trong một tháng mà tổng số tiền lãi không ít hơn 30 triệu đồng?

    Đặt x là số tiền lãi của mặt hàng A

    y là số tiền lãi của mặt hàng B

    Đổi 30 triệu = 30 000 nghìn đồng

    Theo đề bài ta có: 5x + 7y \geqslant
30000

    TH1: Thay A (1000; 2000) vào phương trình

    \Rightarrow 5.1000 + 7.2000 = 19000 <
30000(P)

    {TH}_{2}. Thay B(3000; 1000) vào phương trình

    \Rightarrow 5.3000 + 7 \cdot 1000 =
22000 < 3000(l)

    {TH}_{3} : Thay C(2000;3000) vào phương trình

    \Rightarrow 5.2000 + 7.3000 = 31000 \geq
3000(tm)

    TH4: Thay D(3000;2000) vào phương trình

    \Rightarrow 5.3000 + 7.2000 = 29000 <
3000(l)

    Vậy đáp án là: C(2000;3000)

  • Câu 32: Thông hiểu

    Chọn kết luận đúng

    Cho tam giác ABCa^{2} + b^{2} - c^{2} > 0. Khi đó:

    Ta có:

    \cos C = \frac{a^{2} + b^{2} -
c^{2}}{2ab}.

    Mà: a^{2} + b^{2} - c^{2} > 0 suy ra: \cos C > 0 \Rightarrow C <
90^{0}.

  • Câu 33: Thông hiểu

    Biểu diễn một vectơ theo hai vectơ khác

    Cho hình bình hành ABCD. Tính \overrightarrow{AB} theo \overrightarrow{AC}\overrightarrow{BD}.

    ABCD là hình bình hành nên \overrightarrow{CB} + \overrightarrow{AD} =
\overrightarrow{0}.Ta có \left\{
\begin{matrix}
\overrightarrow{AB} = \overrightarrow{AC} + \overrightarrow{CB} \\
\overrightarrow{AB} = \overrightarrow{AD} + \overrightarrow{DB} \\
\end{matrix} ight.

    = > 2\overrightarrow{AB} =
\overrightarrow{AC} + \overrightarrow{DB} + \left( \overrightarrow{CB} +
\overrightarrow{AD} ight) = \overrightarrow{AC} +
\overrightarrow{DB}\overset{}{ightarrow}\overrightarrow{AB} =
\frac{1}{2}\overrightarrow{AC} +
\frac{1}{2}\overrightarrow{BD}.

  • Câu 34: Vận dụng

    Định giao của ba tập hợp

    Cho ba tập hợp A = \left\{ x\mathbb{\in
R}\left| x^{2} - 4x + 3 = 0 \right.\  \right\}, B = \left\{ x\mathbb{\in Z}\left| - 3 < 2x <
4 \right.\  \right\},C = \left\{ x\mathbb{\in N}\left| x^{5} - x^{4} = 0
\right.\  \right\} khi đó tập A
\cap B \cap C là:

    Giải phương trình x^{2} - 4x + 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 3 \\
\end{matrix} \right.x\mathbb{\in R} nên A = \left\{ 1;3 \right\}

    Giải bất phương trình - 3 < 2x < 4
\Leftrightarrow - \frac{3}{2} < x < 2. mà x\mathbb{\in Z} nên chọn B = \left\{ - 1;0;1 \right\}

    Giải phương trình x^{5} - x^{4} = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
\end{matrix} \right.x\mathbb{\in N} nên C = \left\{ 0;1 \right\}

    Giải bất phương trình A \cap B \cap C =
\left\{ 1 \right\}.

  • Câu 35: Nhận biết

    Tìm điểm thỏa mãn hệ bất phương trình

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
x - 2y < 0 \\
x + 3y > - 2 \\
y - x < 3 \\
\end{matrix} ight. chứa điểm nào sau đây?

    Ta thấy (0;1) là nghiệm của cả ba bất phương trình. Điều đó có nghĩa điểm (0;1) thuộc cả ba miền nghiệm của ba bất phương trình.

  • Câu 36: Vận dụng

    Sau 2 giờ, hai tàu cách nhau bao nhiêu km

    Hai chiếc tàu thuỷ cùng xuất phát từ vị trí A, đi thẳng theo hai hướng tạo với nhau một góc 60^{0}. Tàu thứ nhất chạy với tốc độ 30\ km/h, tàu thứ hai chạy với tốc độ 40\ km/h. Hỏi sau 2 giờ hai tàu cách nhau bao nhiêu km?

    Ta có: Sau 2h quãng đường tàu thứ nhất chạy được là: S_{1} = 30.2 = 60\
km.

    Sau 2h quãng đường tàu thứ hai chạy được là: S_{2} = 40.2 = 80\
km.

    Vậy: sau 2h hai tàu cách nhau là: S = \sqrt{{S_{1}}^{2} + {S_{2}}^{2} -
2S_{1}.S_{2}.cos60^{0}} =
20\sqrt{13}.

  • Câu 37: Vận dụng cao

    Chọn khẳng định đúng

    Cho tam giác ABCAB =
c;BC = a;AC = b\widehat{C} <
\widehat{B}. Biết rằng:

    \dfrac{\sin\left( \widehat{B} -\widehat{C} ight)}{\sin\left( \widehat{B} + \widehat{C} ight)} =\dfrac{b^{2} - c^{2}}{b^{2} + c^{2}}

    Chọn khẳng định đúng?

    Ta có:

    \frac{\sin\left( \widehat{B} -\widehat{C} ight)}{\sin\left( \widehat{B} + \widehat{C} ight)} =\frac{\sin\widehat{B}.\cos\widehat{C} -\sin\widehat{C}.\cos\widehat{B}}{\sin\widehat{B}.\cos\widehat{C} +\sin\widehat{C}.\cos\widehat{B}}

    = \dfrac{\dfrac{b}{2R}.\cos\widehat{C} -\dfrac{c}{2R}.\cos\widehat{B}}{\dfrac{b}{2R}.\cos\widehat{C} +\dfrac{c}{2R}.\cos\widehat{B}}

    = \dfrac{2ab\cos\widehat{C} -2ac.\cos\widehat{B}}{2ab\cos\widehat{C} +2ac.\cos\widehat{B}}

    = \frac{\left( a^{2} + b^{2} - c^{2}
ight) - \left( a^{2} + c^{2} - b^{2} ight)}{\left( a^{2} + b^{2} -
c^{2} ight) + \left( a^{2} + c^{2} - b^{2} ight)}

    = \frac{b^{2} -
c^{2}}{a^{2}}

    \frac{\sin\left( \widehat{B} -
\widehat{C} ight)}{\sin\left( \widehat{B} + \widehat{C} ight)} =
\frac{b^{2} - c^{2}}{b^{2} + c^{2}}

    \Rightarrow \frac{b^{2} - c^{2}}{a^{2}}
= \frac{b^{2} - c^{2}}{b^{2} + c^{2}}

    \Rightarrow a^{2} = b^{2} +
c^{2}

    Vậy tam giác ABC là tam giác vuông tại A.

  • Câu 38: Nhận biết

    Tam thức bậc hai nhận giá trị không âm khi và chỉ khi

    Tam thức bậc hai f(x) =  − x2 + 3x − 2 nhận giá trị không âm khi và chỉ khi

    f(x) = - x^{2} + 3x - 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 2 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp ánx ∈ [1; 2] .

  • Câu 39: Thông hiểu

    Tìm câu sai

    Cho tam giác ABC. Đẳng thức nào sai ?

    Ta có:

    A + B + C = 180^{0}

    \Rightarrow \frac{A + B + 2C}{2} =
90^{0} + \frac{C}{2}

    \Rightarrow \cos\left( \frac{B + C}{2}
\right) = \cos\left( 90^{0} + \frac{C}{2} \right)

    \Leftrightarrow \cos\left( \frac{B +
C}{2} \right) = - \sin\frac{C}{2}.

  • Câu 40: Nhận biết

    Tìm đẳng thức sai

    Gọi O là giao điểm của hai đường chéo của hình bình hành ABCD. Đẳng thức nào sau đây sai?

    Đẳng thức sai là \overrightarrow{OA} =
\overrightarrow{OC}.

  • Câu 41: Nhận biết

    Xác định tọa độ vectơ

    Trong mặt phẳng Oxy, cho A\left( x_{A};y_{A} \right)\ và\ \
B\left( x_{B};y_{B} \right). Tọa độ của vectơ \overrightarrow{AB}

    Theo công thức tọa độ vectơ \overrightarrow{AB} = \left( x_{B} - x_{A};y_{B} -
y_{A} \right).

  • Câu 42: Thông hiểu

    Chọn đáp án đúng

    Mệnh đề: " \exists x \in \mathbb{R},x^{2} > 33 " khẳng định là

    Mệnh đề: " \exists x \in \mathbb{R},x^{2}
> 33 " khẳng định là có ít nhất một số thực mà bình phương của nó lớn hơn 33.

  • Câu 43: Thông hiểu

    Tìm tập xác định

    Tập xác định của hàm số y = \frac{\sqrt{3 - x} + \sqrt{x + 1}}{x^{2} - 5x +
6}

    Hàm số y = \frac{\sqrt{3 - x} + \sqrt{x +
1}}{x^{2} - 5x + 6} có nghĩa khi \left\{ \begin{matrix}
3 - x \geq 0 \\
x + 1 \geq 0 \\
x^{2} - 5x + 6 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 1 \leq x \leq 3 \\
x eq 2;x eq 3 \\
\end{matrix} ight.

     ⇔ x ∈ [ − 1; 3) ∖ {2}.

  • Câu 44: Thông hiểu

    Chọn khẳng định đúng

    Cho bất phương trình 2x+3y-6\leq 0 (1). Chọn khẳng định đúng trong các khẳng định sau:

     Bất phương trình bậc nhất hai ẩn luôn có vô số nghiệm.

  • Câu 45: Nhận biết

    Chọn câu đúng

    Cho tập X = \left\{ 1;2;3;4
\right\}. Câu nào sau đây đúng?

    Số tập con của X2^{4} = 16.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Cánh Diều Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo