Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề thi học kì 1 Toán 10 Cánh Diều Đề 1

Mô tả thêm:

Mời các bạn học cùng thử sức với Đề thi học kì 1 môn Toán lớp 10 theo chương trình sách Cánh Diều nha!

  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Vận dụng

    Sau hai giờ, hai tàu cách nhau bao nhiêu hải lí

    Hai chiếc tàu thủy cùng xuất phát từ một vị trí A, đi thẳng theo hai hướng tạo với nhau góc 60^{0}. Tàu B chạy với tốc độ 20 hải lí một giờ. Tàu C chạy với tốc độ 15 hải lí một giờ. Sau hai giờ, hai tàu cách nhau bao nhiêu hải lí? Kết quả gần nhất với số nào sau đây?

    Sau 2 giờ tàu B đi được 40 hải lí, tàu C đi được 30 hải lí. Vậy tam giác ABCAB =
40,\ \ \ AC = 30\widehat{A} =
60^{0}.

    Áp dụng định lí côsin vào tam giác ABC, ta có

    a^{2} = b^{2} + c^{2} - 2bc\cos
A = 30^{2} + 40^{2} -
2.30.40.cos60^{0} = 900 + 1600 -
1200 = 1300.

    Vậy BC = \sqrt{1300} \approx 36 (hải lí).

    Sau 2 giờ, hai tàu cách nhau khoảng 36 hải lí.

  • Câu 2: Vận dụng cao

    Tìm số nghiệm nguyên của phương trình

    Phương trình 2\left( x^{2} - 3x + 2 ight) = 3\sqrt{x^{3} +
8} có mấy nghiệm nguyên ?

    Điều kiện: x ≥  − 2

    PT đã cho tương đương với: 2\left( x^{2} -
2x + 4 ight) - 2(x + 2) = 3\sqrt{(x + 2)\left( x^{2} - 2x + 4
ight)}

    Do x =  − 2 không là nghiệm của PT đã cho nên chia hai vế cho x + 2 ta được:

    \frac{2\left( x^{2} - 2x + 4 ight)}{x +
2} - 3\sqrt{\frac{x^{2} - 2x + 4}{x + 2}} - 2 = 0

    Đặt t = \sqrt{\frac{x^{2} - 2x + 4}{x +
2}}\ \ \ \ (t \geq 0) ta có: 2t^{2} -
3t - 2 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
t = 2\ \ \ (t/m) \\
t = - \frac{1}{2}\ \ \ \ (l) \\
\end{matrix} ight.

    Với t = 2 ta được

    \begin{matrix}
\sqrt{\frac{x^{2} - 2x + 4}{x + 2}} = 2 \Leftrightarrow \frac{x^{2} - 2x
+ 4}{x + 2} = 4 \\
\Leftrightarrow x^{2} - 6x - 4 = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 3 + \sqrt{13} \\
x = 3 - \sqrt{13} \\
\end{matrix} ight.\ (TM) \\
\end{matrix}

    Vậy phương trình có 0 nghiệm nguyên.

  • Câu 3: Vận dụng

    Trong các mệnh đề nào sau đây, mệnh đề nào là sai?

    Cho hai tập hợp: X = \left\{ n\mathbb{\in N}| ight.\ n là bội của 46\}và Y= \left\{ n\mathbb{\in N}| ight. n là bội số của 12}

    Trong các mệnh đề nào sau đây, mệnh đề nào là sai?

    n là bội của 46
\Rightarrow n là số tự nhiên chia hết cho 46

    \Rightarrow n chia hết cho 12.

    \Rightarrow X = Tập hợp các số tự nhiên chia hết cho 12.

    n là bội của 12 \Rightarrow n chia hết cho 12.

    \Rightarrow Y = Tập hợp các số tự nhiên chia hết cho 12.

    X = Y \Rightarrow đáp án sai là \exists n:n \in Xn otin Y.

  • Câu 4: Thông hiểu

    Tam thức bậc hai đổi dấu trên R

    Cho các tam thức f(x) = 2x2 − 3x + 4; g(x) =  − x2 + 3x − 4; h(x) = 4 − 3x2. Số tam thức đổi dấu trên là:

    Tam thức đổi dấu khi tam thức có 2 nghiệm phân biệt hay Δ > 0.Vậy chỉ có h(x) = 4 − 3x2 có 2 nghiệm.

  • Câu 5: Thông hiểu

    Chọn kết luận đúng

    Cho tam giác ABCa^{2} + b^{2} - c^{2} > 0. Khi đó:

    Ta có:

    \cos C = \frac{a^{2} + b^{2} -
c^{2}}{2ab}.

    Mà: a^{2} + b^{2} - c^{2} > 0 suy ra: \cos C > 0 \Rightarrow C <
90^{0}.

  • Câu 6: Nhận biết

    Chọn đáp án thích hợp

    Điều kiện nào dưới đây là điều kiện cần và đủ để điểm O là trung điểm của đoạn AB.

    Điều kiện cần và đủ để điểm O là trung điểm của đoạn AB là: \overrightarrow{OA} + \overrightarrow{OB} =
\overrightarrow{0}

  • Câu 7: Nhận biết

    Chọn đáp án đúng

    Trong các hệ thức sau hệ thức nào đúng?

    Công thức lượng giác cơ bản ta có hệ thức đúng là: sin^{2}\alpha + cos^{2}\alpha = 1.

  • Câu 8: Vận dụng cao

    Tam giác ABC là tam giác gì

    Cho tam giác ABC thỏa mãn biểu thức

    \sin\dfrac{\widehat{B}}{2}.\cos^{3}\dfrac{\widehat{C}}{2}= \sin\frac{\widehat{C}}{2}.\cos^{3}\dfrac{\widehat{B}}{2}

    Khi đó tam giác ABC là tam giác gì?

    Ta có:

    \sin\dfrac{\widehat{B}}{2}.\cos^{3}\dfrac{\widehat{C}}{2}= \sin\dfrac{\widehat{C}}{2}.\cos^{3}\dfrac{\widehat{B}}{2}

    \Leftrightarrow\tan\dfrac{\widehat{B}}{2}.\dfrac{1}{\cos^{2}\dfrac{\widehat{B}}{2}} =\tan\dfrac{\widehat{C}}{2}.\dfrac{1}{\cos^{2}\dfrac{\widehat{C}}{2}}

    \Leftrightarrow\tan\dfrac{\widehat{B}}{2}.\left( 1 + \tan^{2}\dfrac{\widehat{B}}{2}ight) = \tan\dfrac{\widehat{C}}{2}.\left( 1 +\tan^{2}\dfrac{\widehat{C}}{2} ight)

    Đặt \tan\dfrac{\widehat{B}}{2} =x;\tan\dfrac{\widehat{C}}{2} = y khi đó ta có:

    x\left( 1 + x^{2} ight) = y\left( 1 +
y^{2} ight)

    \Leftrightarrow x^{3} - y^{3} + x - y =
0

    \Leftrightarrow (x - y)\left( x^{2} + xy
+ y^{2} + 1 ight) = 0

    \Leftrightarrow x - y = 0

    Do đó \tan\frac{\widehat{B}}{2} =
\tan\frac{\widehat{C}}{2} \Leftrightarrow \frac{\widehat{B}}{2} =
\frac{\widehat{C}}{2} \Leftrightarrow \widehat{B} =
\widehat{C}

    Vậy tam giác ABC là tam giác cân tại A.

  • Câu 9: Nhận biết

    Phủ định mệnh đề A

    Cho mệnh đề A: "2 là số nguyên tố". Mệnh đề phủ định của mệnh đề A

    Mệnh đề phủ định của mệnh đề A là: “2 không phải là số nguyên tố”.

  • Câu 10: Nhận biết

    Tìm câu sai

    Cho A = ( - \infty;2\rbrack, B = \lbrack 2; + \infty), C = (0;3). Chọn phát biểu sai.

    Ta có: A \cup B\mathbb{= R}

    Vậy câu sai là: A \cup B\mathbb{=
R}\backslash\left\{ 2 \right\}

  • Câu 11: Nhận biết

    Xác định tọa độ vectơ

    Cho \overrightarrow{a} =
(x;2),\overrightarrow{b} = ( - 5;1),\overrightarrow{c} = (x;7). Vectơ \overrightarrow{c} =
2\overrightarrow{a} + 3\overrightarrow{b} nếu:

    Ta có: \overrightarrow{c} =
2\overrightarrow{a} + 3\overrightarrow{b} \Leftrightarrow \left\{
\begin{matrix}
x = 2x + 3.( - 5) \\
7 = 2.2 + 3.1
\end{matrix} \right.\  \Leftrightarrow x = 15.

  • Câu 12: Vận dụng cao

    Xét tính đúng sai của các khẳng định

    Cho hình thoi ABCD tâm O có AB = 5,\
\widehat{\ ABC} = 60{^\circ}. Các khẳng định sau đúng hay sai?

    a) Điểm M thỏa \overrightarrow{MO} + \overrightarrow{MC} +
\overrightarrow{MD} + \overrightarrow{OA} + \overrightarrow{DB} =
\overrightarrow{0} thì M là trọng tâm \Delta ABC. Đúng||Sai

    b) Tập hợp điểm N thỏa \left| \overrightarrow{AD} - \overrightarrow{AO} +
\overrightarrow{DC} \right| = \left| \overrightarrow{NO} +
\overrightarrow{OB} \right| là đường tròn tâm B, bán kính 7,5. Sai||Đúng

    c) Giá trị k thỏa \left| \overrightarrow{AD} - \overrightarrow{AC} +
\overrightarrow{AO} \right| = k\left| \overrightarrow{AB} +
\overrightarrow{AD} \right| là \sqrt{3}. Sai||Đúng

    d) Biết u = \overrightarrow{AD} -
\overrightarrow{AC} - \overrightarrow{OB} và \overrightarrow{v} = \overrightarrow{DB} +
\overrightarrow{DC}. Khi đó \overrightarrow{u} cùng phương với \overrightarrow{v}. Sai||Đúng

    Đáp án là:

    Cho hình thoi ABCD tâm O có AB = 5,\
\widehat{\ ABC} = 60{^\circ}. Các khẳng định sau đúng hay sai?

    a) Điểm M thỏa \overrightarrow{MO} + \overrightarrow{MC} +
\overrightarrow{MD} + \overrightarrow{OA} + \overrightarrow{DB} =
\overrightarrow{0} thì M là trọng tâm \Delta ABC. Đúng||Sai

    b) Tập hợp điểm N thỏa \left| \overrightarrow{AD} - \overrightarrow{AO} +
\overrightarrow{DC} \right| = \left| \overrightarrow{NO} +
\overrightarrow{OB} \right| là đường tròn tâm B, bán kính 7,5. Sai||Đúng

    c) Giá trị k thỏa \left| \overrightarrow{AD} - \overrightarrow{AC} +
\overrightarrow{AO} \right| = k\left| \overrightarrow{AB} +
\overrightarrow{AD} \right| là \sqrt{3}. Sai||Đúng

    d) Biết u = \overrightarrow{AD} -
\overrightarrow{AC} - \overrightarrow{OB} và \overrightarrow{v} = \overrightarrow{DB} +
\overrightarrow{DC}. Khi đó \overrightarrow{u} cùng phương với \overrightarrow{v}. Sai||Đúng

    Hình vẽ minh họa

    a) Đúng

    \overrightarrow{MO} +
\overrightarrow{MC} + \overrightarrow{MD} + \overrightarrow{OA} +
\overrightarrow{DB} = \overrightarrow{0}

    \Leftrightarrow \left(
\overrightarrow{MO} + \overrightarrow{OA} \right) + \left(
\overrightarrow{MD} + \overrightarrow{DB} \right) + \overrightarrow{MC}
= \overrightarrow{0}

    \Leftrightarrow \overrightarrow{MA} +
\overrightarrow{MB} + \overrightarrow{MC} =
\overrightarrow{0}.

    Suy raMlà trọng tâm \Delta ABC.

    b) Sai

    \left| \overrightarrow{AD} -
\overrightarrow{AO} + \overrightarrow{DC} \right| = \left|
\overrightarrow{NO} + \overrightarrow{OB} \right|

    \Leftrightarrow \left|
\overrightarrow{OD} + \overrightarrow{DC} \right| = \left|
\overrightarrow{NB} \right|

    \Leftrightarrow OC = NB \Leftrightarrow
NB = 2,5

    Vậy tập hợp điểm N là đường tròn tâm B bán kính 2,5.

    Nhận xét: \Delta ABC và \Delta ADC đều

    \left| \overrightarrow{AD} -
\overrightarrow{AC} + \overrightarrow{AO} \right| = k\left|
\overrightarrow{AB} + \overrightarrow{AD} \right|

    \Leftrightarrow \left|
\overrightarrow{CD} + \overrightarrow{OC} \right| = k\left|
\overrightarrow{AC} \right|

    \Leftrightarrow \left|
\overrightarrow{OD} \right| = k\left| \overrightarrow{AC} \right|
\Leftrightarrow \frac{5\sqrt{3}}{2} = k.5 \Leftrightarrow k =
\frac{\sqrt{3}}{2}.

    c) Sai

    d) Sai

    \overrightarrow{u} = \overrightarrow{AD}
- \overrightarrow{AC} - \overrightarrow{OB} = \overrightarrow{CD} +
\overrightarrow{BO} = \overrightarrow{BA} + \overrightarrow{BO} =
\overrightarrow{BH} .

    \overrightarrow{v} = \overrightarrow{DB}
+ \overrightarrow{DC} = \overrightarrow{DQ} .

    Chứng minh:BH và DQ không song song

    Ta có AH = OB = DO và AH//DO nên AHDO là hình bình hành.

    Gọi I = HO \cap AD và AHDO là hình bình hành nên I là trung điểm AD.

    Gọi J = DQ \cap CB và DBQC là hình bình hành nên J là trung điểm CB

    Suy ra tứ giác DIBJ là hình bình hành\Rightarrow BI//DJ.

    Do đó BH không song song với DJhay BH không song song với DQ

    Vậy \overrightarrow{u} không cùng phương với \overrightarrow{v}.

  • Câu 13: Nhận biết

    Tìm tập xác định

    Tập xác định của hàm số y = \frac{2 - x}{x^{2} - 4x} là:

    Hàm số xác định \Leftrightarrow x^{2} - 4x
eq 0 \Leftrightarrow \left\{ \begin{matrix}
x eq 0 \\
x eq 4 \\
\end{matrix} ight.. Vậy D = ℝ ∖ {0;4}.

  • Câu 14: Thông hiểu

    Chọn đáp án đúng

    Cho 2 vectơ \overrightarrow{a}\overrightarrow{b}\left| \overrightarrow{a} \right| = 4, \left| \overrightarrow{b} \right| =
5\left(
\overrightarrow{a},\overrightarrow{b} \right) = 120^{o}. Tính \left| \overrightarrow{a} +
\overrightarrow{b} \right|?

    Ta có:

    \left| \overrightarrow{a} +
\overrightarrow{b} \right| = \sqrt{\left( \overrightarrow{a} +
\overrightarrow{b} \right)^{2}} = \sqrt{{\overrightarrow{a}}^{2} +
{\overrightarrow{b}}^{2} +
2\overrightarrow{a}.\overrightarrow{b}}

    = \sqrt{\left| \overrightarrow{a}
\right|^{2} + \left| \overrightarrow{b} \right|^{2} + 2\left|
\overrightarrow{a} \right|\left| \overrightarrow{b} \right|.cos\left(
\overrightarrow{a},\overrightarrow{b} \right)} = \sqrt{21}

  • Câu 15: Thông hiểu

    Tìm nghiệm của hệ bất phương trình

    Cặp số nào sau đây là nghiệm của hệ bất phương trình \left\{\begin{matrix}x+y>4\\ x-y<10\end{matrix}ight.?

    Xét đáp án (2; 1) ta có: \left\{ {\begin{array}{*{20}{c}}  {x = 2} \\   {y = 1} \end{array}} ight. thay vào hệ bất phương trình ta được:

    \left\{ {\begin{array}{*{20}{c}}  {2 + 1 > 4} \\   {2 - 1 < 10} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {3 > 4} \\   {1 < 10} \end{array}} ight.\left( L ight)

    Vậy (2; 1) không là nghiệm của hệ bất phương trình.

    Xét đáp án (10; 2) ta có: \left\{ {\begin{array}{*{20}{c}}  {x = 10} \\   {y = 2} \end{array}} ight. thay vào hệ bất phương trình ta được:

    \left\{ {\begin{array}{*{20}{c}}  {10 + 2 > 4} \\   {10 - 2 < 10} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {12 > 4} \\   {8 < 10} \end{array}} ight.\left( {TM} ight)

    Vậy (10; 2) là nghiệm của hệ bất phương trình.

    Xét đáp án (‒3; 4) ta có: \left\{ {\begin{array}{*{20}{c}}  {x =  - 3} \\   {y = 4} \end{array}} ight. thay vào hệ bất phương trình ta được:

    \left\{ {\begin{array}{*{20}{c}}  {\left( { - 3} ight) + 4 > 4} \\   {\left( { - 3} ight) - 4 < 10} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {1 > 4} \\   { - 7 < 10} \end{array}} ight.\left( L ight)

    Vậy (‒3; 4) không là nghiệm của hệ bất phương trình.

    Xét đáp án (0; ‒10) ta có: \left\{ {\begin{array}{*{20}{c}}  {x = 0} \\   {y =  - 10} \end{array}} ight. thay vào hệ bất phương trình ta được:

    \left\{ {\begin{array}{*{20}{c}}  {0 + \left( { - 10} ight) > 4} \\   {0 - \left( { - 10} ight) < 10} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  { - 10 > 4} \\   {10 < 10} \end{array}} ight.\left( L ight)

    Vậy (0; ‒10) không là nghiệm của hệ bất phương trình.

  • Câu 16: Vận dụng

    Tìm điểm tại đó F đạt giá trị nhỏ nhất

    Biểu thức F(x;y)
= y - x đạt giá trị nhỏ nhất với điều kiện \left\{ \begin{matrix}
2x - y \geq 2 \\
x - 2y \leq 2 \\
x + y \leq 5 \\
x \geq 0 \\
\end{matrix} ight. tại điểm M có toạ độ là:

    Vẽ các đường thẳng :

    \begin{matrix}
\left( d_{1} ight):y = 2x - 2 \\
\left( d_{2} ight):y = \frac{1}{2}x - 1 \\
\left( d_{3} ight):y = 5 - x \\
\end{matrix}

    Khi đó miền nghiệm của hệ là miền trong của tam giác ABC

    Tọa độ các đỉnh: A\left(
\frac{7}{3};\frac{8}{3} ight); B(4;1);C\left( \frac{2}{3}; - \frac{2}{3}
ight)

    Ta có : F(4;1) = - 3; \ \ F\left( \frac{2}{3}; - \frac{2}{3} ight) =
\frac{- 4}{3} \Rightarrow F_{\min}
= - 3

  • Câu 17: Nhận biết

    Chọn đáp án đúng

    Cho tập hợp A = \left\lbrack - \sqrt{3};\
\sqrt{5} \right). Tập hợp C_{\mathbb{R}}A bằng

    Ta có C_{\mathbb{R}}A\mathbb{=
R}\backslash A = \left( - \infty;\  - \sqrt{3} \right) \cup \left\lbrack
\sqrt{5};\  + \infty \right).

  • Câu 18: Vận dụng cao

    Tính độ dài vectơ

    Cho hình thang vuông ABCD\widehat{A} = \widehat{D} = 90^{0}. Tính độ dài vectơ \overrightarrow{\alpha} =
\overrightarrow{DA} + \overrightarrow{DB} +
\overrightarrow{DC}, biết AB = AD =
2,CD = 4.

    Hình vẽ minh họa

    Dựng hình bình hành ADBM ta có: \overrightarrow{DA} + \overrightarrow{DB} =
\overrightarrow{DM}

    Do BM//DA nên BM\bot DC tại H,

    Tứ giác ADBH là hình vuông nên BH =
2, ta cũng tính được MH =
4.

    Dựng hình bình hành DMNC ta có: \overrightarrow{DA} + \overrightarrow{DB} +
\overrightarrow{DC} = \overrightarrow{DN}.

    Gọi K là hình chiếu vuông góc của N lên DC. Ta chứng minh được HMNK là hình vuông.

    \Rightarrow HK = NK = 4,DK =
6

    Ta có: DN = \sqrt{DK^{2} + KN^{2}} =
2\sqrt{13}

  • Câu 19: Vận dụng

    Tính tổng các nghiệm của phương trình

    Tổng các nghiệm của phương trình \sqrt{x^{4} - 2x^{2} + 1} + x = 1 là:

    \sqrt{x^{4} - 2x^{2} + 1} + x =1

    \Leftrightarrow \sqrt{x^{4} - 2x^{2} +1} = 1 - x

    \Leftrightarrow \left\{ \begin{matrix}1 - x \geq 0 \\\left( x^{2} - 1 ight)^{2} = (1 - x)^{2} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \leq 1 \\(x - 1)^{2}x(x - 2) = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \leq 1 \\\left\lbrack \begin{matrix}x = 1 \\x = 0 \\x = - 2 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = 1 \\x = 0 \\x = - 2 \\\end{matrix} ight..

    Vậy tổng các nghiệm của phương trình là  − 1.

  • Câu 20: Thông hiểu

    Phân tích 1 vectơ thành hai vectơ

    Cho các vectơ \overrightarrow{a} = (4; -
2),\overrightarrow{b} = ( - 1; - 1),\overrightarrow{c} = (2;5). Phân tích vectơ \overrightarrow{b} theo hai vectơ \overrightarrow{a}\ và\
\overrightarrow{c}, ta được:

    Giả sử \overrightarrow{b} =
m\overrightarrow{a} + n\overrightarrow{c}

    \Leftrightarrow \left\{ \begin{matrix}
- 1 = 4m + 2n \\
- 1 = - 2m + 5n
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
m = - \frac{1}{8} \\
n = - \frac{1}{4}
\end{matrix} \right..

    Vậy \overrightarrow{b} = -
\frac{1}{8}\overrightarrow{a} -
\frac{1}{4}\overrightarrow{c}.

  • Câu 21: Vận dụng

    Tìm tập hợp vị trí điểm M

    Cho tam giác ABC và điểm M thỏa mãn điều kiện \overrightarrow{MA} - \overrightarrow{MB} +
\overrightarrow{MC} = \overrightarrow{0}. Mệnh đề nào sau đây sai?

    Ta có \overrightarrow{MA} -
\overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{0}
\Leftrightarrow \overrightarrow{BA} + \overrightarrow{MC} =
\overrightarrow{0} \Leftrightarrow \overrightarrow{MC} =
\overrightarrow{AB}

    \Rightarrow MABC là hình bình hành \Rightarrow \overrightarrow{MA} =
\overrightarrow{CB}.

    Do đó \overrightarrow{MA} =
\overrightarrow{BC} sai.

  • Câu 22: Nhận biết

    Tính tích vô hướng của hai vce y

    Cho tam giác ABC cân tại A, \widehat{A} = 120^{o}AB = a. Tính \overrightarrow{BA}.\overrightarrow{CA}.

    Ta có:

    \overrightarrow{BA}.\overrightarrow{CA} =
BA.CA.cos120^{0} = - \frac{1}{2}a^{2}.

  • Câu 23: Thông hiểu

    Tìm m để bất phương trình nghiệm đúng với mọi x

    Tìm m để {x^2} - 2(2m - 3)x + 4m - 3 > 0 với mọi x ∈ ℝ?

     Để bất phương trình {x^2} - 2(2m - 3)x + 4m - 3 > 0 với mọi x ∈ ℝ thì:

    \begin{matrix}   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a > 0} \\   {\Delta ' < 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {1 > 0} \\   {{{\left( {2m - 3} ight)}^2} - \left( {4m - 3} ight) < 0} \end{array}} ight. \hfill \\   \Leftrightarrow 4{m^2} - 12m + 9 - 4m + 3 < 0 \hfill \\   \Leftrightarrow 4{m^2} - 16m + 12 < 0 \hfill \\   \Leftrightarrow m \in \left( {1,3} ight) \hfill \\ \end{matrix}

  • Câu 24: Thông hiểu

    Xác định hàm số bậc hai

    Hàm số nào sau đây có đỉnh S(1; 0)?

    Hàm số y = x^2 – 2x + 1 có các hệ số a = 1, b = ‒2, c = 1 nên có tọa độ đỉnh S(1; 0)

  • Câu 25: Nhận biết

    Tam thức bậc hai nhận giá trị âm khi và chỉ khi

    Tam thức bậc hai f(x) =  − x2 − 1 nhận giá trị âm khi và chỉ khi

    f(x) =  − x2 − 1 = 0  vô nghiệm

    Dựa vào bảng xét dấu, ta chọn đáp án x ∈ ℝ.

  • Câu 26: Thông hiểu

    Tính độ dài cạnh AC

    Tam giác ABC\widehat{A}=68°12',\widehat{B}=34°44' , AB = 117. Độ dài cạnh AC là khoảng:

    Ta có:

    \begin{matrix}  \widehat A + \widehat B + \widehat C = {180^0} \hfill \\   \Rightarrow \widehat C = {180^0} - \left( {\widehat A + \widehat B} ight) \hfill \\   \Rightarrow \widehat C = {180^0} - \left( {{{68}^0}12\prime  - {{34}^0}44\prime } ight) \hfill \\   \Rightarrow \widehat C = {77^0}4\prime \hfill \\ \end{matrix}

    Áp dụng định lí sin cho tam giác ABC ta có:

    \begin{matrix}  \dfrac{{AC}}{{\sin \widehat B}} = \dfrac{{AB}}{{\sin \widehat C}} \Rightarrow AC = \dfrac{{AB.\sin \widehat B}}{{\sin \widehat C}} \hfill \\   \Rightarrow AC = \dfrac{{AB.\sin {{34}^0}44'}}{{\sin {{77}^0}4'}} \approx 68 \hfill \\ \end{matrix}

  • Câu 27: Nhận biết

    Chọn mệnh đề đúng

    Cho tam giác ABC đều cạnh a. Mệnh đề nào sau đây đúng?

    Độ dài các cạnh của tam giác là a thì độ dài các vectơ \left| \overrightarrow{AB} \right| = \left|
\overrightarrow{BC} \right| = \left| \overrightarrow{CA} \right| =
a.

  • Câu 28: Thông hiểu

    Chọn câu đúng nhất

    Cho ba tập hợp: X = ( - 4;\ 3), Y = \left\{ x\mathbb{\in R}:2x + 4 > 0,\
x < 5\  \right\}, Z = \left\{
x\mathbb{\in R}:(x + 3)(x - 4) = 0\  \right\}. Chọn câu đúng nhất:

    Ta có:

    Y = \left\{ x\mathbb{\in R}:2x + 4 >
0,\ x < 5\  \right\} = ( - 2;\ 5); Z = \left\{ - 3;\ 4\  \right\}.

    \left\{ \begin{matrix}
- 3 \in X \\
- 3 \notin Y \\
\end{matrix} \right.\  \Rightarrow X ⊄ Y \Rightarrow X \subset
Y sai.

    \left\{ \begin{matrix}4 \in Z \\4 \notin X \\\end{matrix} \right.\  \Rightarrow Z ⊄ X \Rightarrow Z \subset X sai.

    \left\{ \begin{matrix}
- 3 \in Z \\
- 3 \notin Y \\
\end{matrix} \right.\  \Rightarrow Z ⊄ Y \Rightarrow Z \subset
Y sai.

    X \cup Y = ( - 4;5) \Rightarrow \left\{ -
3;4 \right\} \subset ( - 4;5).

    Vậy Z \subset X \cup Y là đáp án đúng nhất.

  • Câu 29: Thông hiểu

    Tìm tọa độ điểm không thuộc miền nghiệm của bất phương trình

    Miền nghiệm của bất phương trình x+2(y+1)-4y\leq 2(x+1)-5y không chứa điểm có tọa độ:

    Ta có: 

    x+2(y+1)-4y\leq 2(x+1)-5y

    \begin{matrix}   \Rightarrow x + 2y + 2 - 4y \leqslant 2x + 2 - 5y \hfill \\   \Rightarrow  - x + 3y \leqslant 0 \hfill \\ \end{matrix}

    Thay x=3;y=2 vào bất phương trình ta được: - 3 + 3.2=  5 > 0

    Vậy (3;2) không thuộc miền nghiệm của bất phương trình.

  • Câu 30: Vận dụng

    Tìm m thỏa mãn điều kiện

    Tìm m để hàm số y = x2 − 2x + 2m + 3 có giá trị nhỏ nhất trên đoạn [2 ; 5] bằng  − 3.

    Ta có bảng biến thiên của hàm số y = x2 − 2x + 2m + 3 trên đoạn [2 ; 5]:

    Do đó giá trị nhỏ nhất trên đoạn [2 ; 5] của hàm số y = x2 − 2x + 2m + 3 bằng 2m + 3.

    Theo giả thiết 2m + 3 =  − 3 ⇔ m =  − 3.

  • Câu 31: Nhận biết

    Tìm điểm thỏa mãn

    Cho hệ bất phương trình \left\{ \begin{matrix}
3x + y - 2 \geq 0 \\
x + 3y + 1 \leq 0 \\
\end{matrix} ight.. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?

    Ta thay lần lượt tọa độ các điểm vào hệ bất phương trình.

    Với M(0;1) \Rightarrow \left\{ \begin{matrix}
3.0 + 1 - 2 \geq 0 \\
0 + 3.1 + 1 \leq 0 \\
\end{matrix} ight.. Bất phương trình thứ hai sai nên không thỏa mãn.

    Với N(–1;1) \Rightarrow \left\{ \begin{matrix}
3.1 - 1 - 2 \geq 0 \\
1 + 3. - 1 + 1 \leq 0 \\
\end{matrix} ight.. Đúng. Chọn đáp án này.

  • Câu 32: Thông hiểu

    Xác định khẳng định đúng

    Cho hình bình hành ABCD. Với mọi điểm M, ta có khẳng định nào sau đây:

    Gọi O là giao điểm của AC và BD

    => OA  OC, OB = OD

    Ta có:

    \begin{matrix}   \Rightarrow \overrightarrow {OA}  earrow  \swarrow \overrightarrow {OC} ;\overrightarrow {OB}  earrow  \swarrow \overrightarrow {OD}  \hfill \\   \Rightarrow \overrightarrow {OA}  + \overrightarrow {OC}  = \overrightarrow 0 ;\overrightarrow {OB}  + \overrightarrow {OD}  = \overrightarrow 0  \hfill \\  \overrightarrow {MA}  + \overrightarrow {MC}  = \overrightarrow {MO}  + \overrightarrow {OA}  + \overrightarrow {MO}  + \overrightarrow {OC}  = 2\overrightarrow {MO}  \hfill \\  \overrightarrow {MB}  + \overrightarrow {MD}  = \overrightarrow {MO}  + \overrightarrow {OB}  + \overrightarrow {MO}  + \overrightarrow {OD}  = 2\overrightarrow {MO}  \hfill \\ \end{matrix}

  • Câu 33: Thông hiểu

    Giải phương trình chứa căn

    Giải phương trình: \sqrt{2x^{2}-6x+4}=x-2

     Điều kiện: 2{x^2} - 6x + 4 \geqslant 0

    \Leftrightarrow x \in \left( { - \infty ;1} ight] \cup \left[ {2; + \infty } ight)

    Phương trình tương đương:

    \begin{matrix}  \sqrt {2{x^2} - 6x + 4}  = x - 2 \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x - 2 \geqslant 0} \\   {2{x^2} - 6x + 4 = {{\left( {x - 2} ight)}^2}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 2} \\   {{x^2} - 2x = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 2} \\   {\left[ {\begin{array}{*{20}{c}}  {x = 0\left( {ktm} ight)} \\   {x = 2\left( {tm} ight)} \end{array}} ight.} \end{array}} ight. \hfill \\ \end{matrix}

    Kết hợp với điều kiện ta được x=2 thỏa mãn

    Vậy phương trình có nghiệm x=2.

  • Câu 34: Thông hiểu

    Xác định tập hợp điểm M thỏa mãn yêu cầu bài toán

    Cho tam giác ABC. Tập hợp những điểm M sao cho: \left| \overrightarrow{MA} + \overrightarrow{MB}
\right| = \left| \overrightarrow{MC} + \overrightarrow{MB}
\right| là:

    GọiI,J lần lượt là trung điểm của ABBC.

    Khi đó:

    \left| \overrightarrow{MA} +
\overrightarrow{MB} \right| = \left| \overrightarrow{MC} +
\overrightarrow{MB} \right|

    \Leftrightarrow 2\left|
\overrightarrow{MI} \right| = 2\left| \overrightarrow{MJ} \right|
\Leftrightarrow MI = MJ

    Vậy M nằm trên đường trung trực của IJ.

  • Câu 35: Nhận biết

    Tìm số đo góc A

    Cho \Delta ABC vuông tại B và có \widehat{C} = 25^{0}. Số đo của góc A là:

    Trong \Delta ABC có:

     \widehat{A} + \widehat{B} + \widehat{C} =
180^{0}

    \Rightarrow \widehat{A} = 180^{0} -
\widehat{B} - \widehat{C} = 180^{0} - 90^{0} - 25^{0} =
65^{0}.

  • Câu 36: Nhận biết

    Tìm điều kiện để ba điểm thẳng hàng

    Cho ba điểm A,\ B,\ C phân biệt. Điều kiện cần và đủ để ba điểm đó thẳng hàng là

    Ta có tính chất: Điều kiện cần và đủ để ba điểm A,\ B,\ C phân biệt thẳng hàng là \exists k \in R:\overrightarrow{AB} =
k\overrightarrow{AC}.

  • Câu 37: Thông hiểu

    Chọn đáp án đúng

    Tập A = \left\{ 1;2;3;4;5;6
\right\} có bao nhiêu tập hợp con có đúng hai phần tử?

    Các tập con có hai phần tử của tập A là:

    \mathbf{A}_{\mathbf{1}}\mathbf{=}\left\{
\mathbf{1;2} \right\}\mathbf{;}\mathbf{A}_{\mathbf{2}}\mathbf{=}\left\{
\mathbf{1;3} \right\}\mathbf{;}\mathbf{A}_{\mathbf{3}}\mathbf{=}\left\{
\mathbf{1;4} \right\}\mathbf{;}

    A_{4} = \left\{ 1;5 \right\};A_{5} =
\left\{ 1;6 \right\};A_{6} = \left\{ 2;3 \right\};

    A_{7} = \left\{ 2;4 \right\};A_{8} =
\left\{ 2;5 \right\};A_{9} = \left\{ 2;6 \right\};

    A_{10} = \left\{ 3;4 \right\};A_{11} =
\left\{ 3;5 \right\};A_{12} = \left\{ 3;6 \right\};

    A_{13} = \left\{ 4,5 \right\};A_{14} =
\left\{ 4;6 \right\};A_{15} = \left\{ 5;6 \right\}.

  • Câu 38: Thông hiểu

    Tìm điểm M thuộc tia Ox thỏa mãn điều kiện

    Trong mặt phẳng toạ độ Oxy, cho hai điểm A(2; - 1)B( - 2;1). Tìm điểm M thuộc tia Ox sao cho tam giác ABM vuông tại M.

    Gọi M(m;0) \in Ox, (m > 0).

    \overrightarrow{AM} = (m - 2;1), \overrightarrow{BM} = (m + 2; -
1).

    Tam giác ABM vuông tại M

    \Rightarrow
\overrightarrow{AM}.\overrightarrow{BM} = 0 \Leftrightarrow m^{2} - 4 -
1 = 0 \Leftrightarrow m = \sqrt{5}.

    Vậy M\left( \sqrt{5};0
\right).

  • Câu 39: Nhận biết

    Chọn khẳng định sia

    Cho hàm số y =  − x2 + 4x + 1. Khẳng định nào sau đây sai?

    Hàm số y = ax2 + bx + c với a < 0 nghịch biến trên khoảng \left( - \frac{b}{2a}; + \infty
ight), đồng biến trên khoảng \left(
- \infty; - \frac{b}{2a} ight).

    Áp dụng: Ta có - \frac{b}{2a} = 2. Do đó hàm số nghịch biến trên khoảng (2;+∞) và đồng biến trên khoảng (−∞;2). Do đó Hàm số nghịch biến trên khoảng (4;+∞) và đồng biến trên khoảng (−∞;4) sai. Chọn đáp án này.

    Đáp án Trên khoảng (−∞;−1) hàm số đồng biến đúng vì hàm số đồng biến trên khoảng (−∞;2) thì đồng biến trên khoảng con (−∞;−1).

    Đáp án Trên khoảng (3;+∞) hàm số nghịch biến đúng vì hàm số nghịch biến trên khoảng (2;+∞) thì nghịch biến trên khoảng con (3;+∞).

  • Câu 40: Vận dụng

    Tìm tập hợp điểm M

    Cho ba điểm A,B,C phân biệt. Tập hợp những điểm M\overrightarrow{CM}.\overrightarrow{CB} =
\overrightarrow{CA}.\overrightarrow{CB} là :

    Ta có: \overrightarrow{CM}.\overrightarrow{CB} =
\overrightarrow{CA}.\overrightarrow{CB} \Leftrightarrow \overrightarrow{CM}.\overrightarrow{CB} -
\overrightarrow{CA}.\overrightarrow{CB} = 0 \Leftrightarrow \left( \overrightarrow{CM} -
\overrightarrow{CA} ight).\overrightarrow{CB} = 0 \Leftrightarrow
\overrightarrow{AM}.\overrightarrow{CB} = 0.

    Tập hợp điểm M là đường thẳng đi qua A và vuông góc với BC.

  • Câu 41: Thông hiểu

    Tìm tập xác định

    Tìm tập xác định của hàm số y = f(x) = \left\{\begin{matrix}\frac{1}{x}\text{  khi  } x\geq 1\\ \sqrt{x+1} \text{  khi  } x <1\end{matrix}ight.

    Xét  f(x)=\frac1x, ta có: D_1=[1;+\infty).

    Điều kiện xác định của \sqrt{x+1}x\ge-1. Kết hợp với x<1 ta được D_2=[-1;1).

    Vậy D=D_1\cup D_2=[-1;+\infty).

  • Câu 42: Thông hiểu

    Tính độ lớn tổng hai vecto

    Cho hai vecto \overrightarrow{a}\overrightarrow{b} biết |\overrightarrow{a}| = 4,|\overrightarrow{b}| =
5(\overrightarrow{a},\overrightarrow{b}) =
120^{\circ}. Tính |\overrightarrow{a} +
\overrightarrow{b}|.

    Ta có:

    \left|\overrightarrow{a} + \overrightarrow{b} ight| =\sqrt{(\overrightarrow{a} + \overrightarrow{b})^{2}} =\sqrt{{\overrightarrow{a}}^{2} + {\overrightarrow{b}}^{2} +2\overrightarrow{a}.\overrightarrow{b}}

    = \sqrt{|\overrightarrow{a}|^{2} +
|\overrightarrow{b}|^{2} +
2|\overrightarrow{a}||\overrightarrow{b}|cos(\overrightarrow{a},\overrightarrow{b})}
= \sqrt{21}.

  • Câu 43: Thông hiểu

    Chọn mệnh đề đúng

    Cho n là số tự nhiên, mệnh đề nào sau đây đúng?

    Đáp án “\forall n,n(n + 1) là số lẻ” sai vì hai số tự nhiên liên tiếp luôn có một số chẵn,tích của chúng là số chẵn.

    Đáp án “\forall n,n(n + 1) là số chính phương” sai vì n(n + 1) không thể là số chính phương.

    Đáp án “\forall n,n(n + 1)(n +
2) là số chia hết cho 24” sai xét trường hợp n = 1 thì 1.(1 + 1)(1 + 2) = 6 không chia hết cho 24.

    Đáp án “\exists n,n(n + 1)(n +
2) chia hết cho 8” đúng vì tồn tại n = 2 thì n(n
+ 1)(n + 2) = 2.3.4 = 24 chia hết cho 8.

  • Câu 44: Nhận biết

    Tìm điểm không thuộc miền nghiệm

    Miền nghiệm của bất phương trình - 2x + 4y \geq 1 chứa điểm nào dưới đây?

    Xét điểm (0;1). Ta có: - 2.0 + 4.1 = 4 \geq 1 thỏa mãn. Do đó miền nghiệm của bất phương trình - 2x + 4y
\geq 1 chứa điểm (0;1).

  • Câu 45: Thông hiểu

    Xác định câu đúng

    Gọi AN,\ CM là các trung tuyến của tam giác ABC. Đẳng thức nào sau đây đúng?

    Hình vẽ minh họa:

    Ta có \overrightarrow{AN} =
\frac{1}{2}\left( \overrightarrow{AB} + \overrightarrow{AC} \right) =
\frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AC}

    \overrightarrow{CM} =
\overrightarrow{CA} + \overrightarrow{AM} \Rightarrow
\frac{1}{2}\overrightarrow{CM} = \frac{1}{2}\overrightarrow{CA} +
\frac{1}{2}\overrightarrow{AM}

    Suy ra \overrightarrow{AN} +
\frac{1}{2}\overrightarrow{CM} = \frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{CA} +
\frac{1}{2}\overrightarrow{AM}

    = \frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AC} - \frac{1}{2}\overrightarrow{AC} +
\frac{1}{2} \cdot \frac{1}{2}\overrightarrow{AB} =
\frac{3}{4}\overrightarrow{AB}

    Do đó \overrightarrow{AB} =
\frac{4}{3}\overrightarrow{AN} +
\frac{2}{3}\overrightarrow{CM}.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Cánh Diều Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo