Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề thi học kì 1 Toán 10 Cánh Diều Đề 1

Mô tả thêm:

Mời các bạn học cùng thử sức với Đề thi học kì 1 môn Toán lớp 10 theo chương trình sách Cánh Diều nha!

  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Chọn đáp án đúng

    Trong tam giác ABC ta có:

    Áp dụng định lí sin trong tam giác ABC ta có:

    \begin{matrix}  \dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} \hfill \\   \Leftrightarrow a\sin B = b\sin A \hfill \\ \end{matrix}

  • Câu 2: Thông hiểu

    Tìm nghiệm của hệ bất phương trình

    Cặp số nào sau đây là nghiệm của hệ bất phương trình \left\{\begin{matrix}x+y>4\\ x-y<10\end{matrix}ight.?

    Xét đáp án (2; 1) ta có: \left\{ {\begin{array}{*{20}{c}}  {x = 2} \\   {y = 1} \end{array}} ight. thay vào hệ bất phương trình ta được:

    \left\{ {\begin{array}{*{20}{c}}  {2 + 1 > 4} \\   {2 - 1 < 10} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {3 > 4} \\   {1 < 10} \end{array}} ight.\left( L ight)

    Vậy (2; 1) không là nghiệm của hệ bất phương trình.

    Xét đáp án (10; 2) ta có: \left\{ {\begin{array}{*{20}{c}}  {x = 10} \\   {y = 2} \end{array}} ight. thay vào hệ bất phương trình ta được:

    \left\{ {\begin{array}{*{20}{c}}  {10 + 2 > 4} \\   {10 - 2 < 10} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {12 > 4} \\   {8 < 10} \end{array}} ight.\left( {TM} ight)

    Vậy (10; 2) là nghiệm của hệ bất phương trình.

    Xét đáp án (‒3; 4) ta có: \left\{ {\begin{array}{*{20}{c}}  {x =  - 3} \\   {y = 4} \end{array}} ight. thay vào hệ bất phương trình ta được:

    \left\{ {\begin{array}{*{20}{c}}  {\left( { - 3} ight) + 4 > 4} \\   {\left( { - 3} ight) - 4 < 10} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {1 > 4} \\   { - 7 < 10} \end{array}} ight.\left( L ight)

    Vậy (‒3; 4) không là nghiệm của hệ bất phương trình.

    Xét đáp án (0; ‒10) ta có: \left\{ {\begin{array}{*{20}{c}}  {x = 0} \\   {y =  - 10} \end{array}} ight. thay vào hệ bất phương trình ta được:

    \left\{ {\begin{array}{*{20}{c}}  {0 + \left( { - 10} ight) > 4} \\   {0 - \left( { - 10} ight) < 10} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  { - 10 > 4} \\   {10 < 10} \end{array}} ight.\left( L ight)

    Vậy (0; ‒10) không là nghiệm của hệ bất phương trình.

  • Câu 3: Vận dụng cao

    Tính góc giữa hai đường trung tuyến

    Tam giác ABCAB = c, BC = a, CA = b. Các cạnh a,\ b,\ c liên hệ với nhau bởi đẳng thức a^{2} + b^{2} = 5c^{2}. Góc giữa hai trung tuyến AMBN là góc nào?

    Gọi G là trọng tâm tam giác \Delta ABC.

    Ta có: AM^{2} = \frac{AC^{2} + AB^{2}}{2}
- \frac{BC^{2}}{4} = \frac{b^{2} + c^{2}}{2} -
\frac{a^{2}}{4}

    \Rightarrow AG^{2} = \frac{4}{9}AM^{2} =
\frac{2\left( b^{2} + c^{2} \right)}{9} - \frac{a^{2}}{9}

    BN^{2} = \frac{BA^{2} + BC^{2}}{2} -
\frac{AC^{2}}{4} = \frac{c^{2} + a^{2}}{2} -
\frac{b^{2}}{4}

    \Rightarrow GN^{2} = \frac{1}{9}BN^{2} =
\frac{c^{2} + a^{2}}{18} - \frac{b^{2}}{36}

    Trong tam giác \Delta AGN ta có:

    \cos\widehat{AGN} = \frac{AG^{2} +
GN^{2} - AN^{2}}{2.AG.GN}

    = \dfrac{\dfrac{2\left( b^{2} + c^{2}\right)}{9} - \dfrac{a^{2}}{9} + \dfrac{c^{2} + a^{2}}{18} -\dfrac{b^{2}}{36} - \dfrac{b^{2}}{4}}{2.\sqrt{\dfrac{2\left( b^{2} + c^{2}\right)}{9} - \dfrac{a^{2}}{9}}.\sqrt{\dfrac{c^{2} + a^{2}}{18} -\dfrac{b^{2}}{36}}}

    = \dfrac{\dfrac{2\left( b^{2} + c^{2}\right)}{9} - \dfrac{a^{2}}{9} + \dfrac{c^{2} + a^{2}}{18} -\dfrac{b^{2}}{36} - \dfrac{b^{2}}{4}}{2.\sqrt{\dfrac{2\left( b^{2} + c^{2}\right)}{9} - \dfrac{a^{2}}{9}}.\sqrt{\dfrac{c^{2} + a^{2}}{18} -\dfrac{b^{2}}{36}}}

    = \dfrac{10c^{2} - 2\left( a^{2} + b^{2}\right)}{36.2.\sqrt{\dfrac{2\left( b^{2} + c^{2} \right)}{9} -\dfrac{a^{2}}{9}}.\sqrt{\dfrac{c^{2} + a^{2}}{18} - \dfrac{b^{2}}{36}}} =0

    \Rightarrow \widehat{AGN} =
90^{0}.

  • Câu 4: Thông hiểu

    Xác định tập hợp rỗng

    Trong các tập hợp sau, tập nào là tập rỗng?

    Ta có: x^{2} + x - 1 = 0 \Leftrightarrow
x = \frac{- 1 \pm \sqrt{5}}{2} nên \left\{ x\mathbb{\in Z}\left| x^{2} + x - 1 = 0
\right.\  \right\} = \varnothing.

  • Câu 5: Thông hiểu

    Giải phương trình

    Tập nghiệm của phương trình \sqrt{2x - 3} = x - 3?

    Ta có:

    \sqrt{2x - 3} = x - 3

    \Leftrightarrow \left\{ \begin{matrix}
x - 3 \geq 0 \\
2x - 3 = (x - 3)^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 3 \\
\left\lbrack \begin{matrix}
x = 2 \\
x = 6 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow x = 6

    Vậy tập nghiệm phương trình là: S =
\left\{ 6 ight\}

  • Câu 6: Thông hiểu

    Chọn kết luận đúng

    Cho hình thoi ABCD tâm O, cạnh bằng  avà góc A bằng 60^{0}. Kết luận nào sau đây đúng?

    Hình vẽ minh họa:

    Do tam giác ABC đều nên\ \left| \overrightarrow{OA} \right| =
\frac{AB\sqrt{3}}{2} = \frac{a\sqrt{3}}{2}

  • Câu 7: Nhận biết

    Tìm bất phương trình thỏa mãn

    Cặp số (2;3) là nghiệm của bất phương trình nào sau đây?

    2 - 3 < 0 là mệnh đề đúng nên cặp số (2;3) là nghiệm của bất phương trình x–y < 0.

  • Câu 8: Vận dụng cao

    Tính giá trị tham số

    Cho tam giác ABCM là trung điểm của BC. Điểm E xác định 2\overrightarrow{EA} + \overrightarrow{EC} =
\overrightarrow{0}. Đường thẳng d đi qua E song song với AB cắt AM,BC lần lượt tại D;F. Điểm G nằm trên cạnh AB sao cho diện tích các tam giác BFGADE bằng nhau. Biết \overrightarrow{AG} =
\alpha\overrightarrow{AB}. Tính giá trị của \alpha?

    Hình vẽ minh họa:

    Theo định lí Ta – lét ta có:

    \frac{FB}{FC} = \frac{EA}{EC} =
\frac{1}{2} \Rightarrow FC = \frac{2}{3}BC

    \Rightarrow FM = \frac{2}{3}BC - MC =
\frac{2}{3}BC - \frac{1}{2}BC = \frac{1}{6}BC

    \Rightarrow \overrightarrow{FM} =
\frac{1}{4}\overrightarrow{FC}

    Mặt khác \overrightarrow{EC} = -
2\overrightarrow{EA};\overrightarrow{DA} = -
\frac{DA}{DM}.\overrightarrow{DM} mà ba điểm D;E;F thẳng hàng nên theo định lí Menelaus ta được:

    \left( - \frac{DA}{DM}
ight).\frac{1}{4}.( - 2) = 1

    \Rightarrow \frac{DA}{DM} =
2

    Ta có:

    \overrightarrow{AD} =
\frac{2}{3}\overrightarrow{AM} = \frac{2}{3}.\frac{1}{2}\left(
\overrightarrow{AB} + \overrightarrow{AC} ight) =
\frac{1}{3}\overrightarrow{AB} +
\frac{1}{3}\overrightarrow{AC}

    Chú ý rằng khoảng cách từ F đến AB bằng khoảng cách từ A đến DE nên hai tam giác ADE và BGF có cùng diện tích suy ra BG = DE do đó \overrightarrow{BG} =
\overrightarrow{DE}

    Ta có:

    \overrightarrow{AE} =
\overrightarrow{AD} + \overrightarrow{DE} =
\frac{1}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC} +
\overrightarrow{BG}

    \overrightarrow{AE} =
\frac{1}{3}\overrightarrow{AC} \Rightarrow \overrightarrow{BG} =
\frac{1}{3}\overrightarrow{BA}

    Hay \overrightarrow{AG} =
\frac{2}{3}\overrightarrow{AB}

    Vậy \alpha = \frac{2}{3}

  • Câu 9: Vận dụng

    Xét tính đúng sai của các khẳng định

    Cho hình chữ nhật ABCDAB = a;AD =2a. Gọi MN lần lượt là trung điểm của BCAD.

    a) \overrightarrow{AM} +
\overrightarrow{CD} = \overrightarrow{BM}. Đúng||Sai

    b) \overrightarrow{AM} +
\overrightarrow{AN} = \overrightarrow{AB} +
\overrightarrow{AD}. Đúng||Sai

    c) \left| \overrightarrow{NC} +
\overrightarrow{MC} \right| = 2a. Sai||Đúng

    d) Tìm tập hợp các điểm E trong mặt phẳng thỏa mãn \left|
\overrightarrow{AE} - \overrightarrow{AN} \right| = \left|
\overrightarrow{AB} + \overrightarrow{AD} \right| là một đường thẳng. Sai||Đúng

    Đáp án là:

    Cho hình chữ nhật ABCDAB = a;AD =2a. Gọi MN lần lượt là trung điểm của BCAD.

    a) \overrightarrow{AM} +
\overrightarrow{CD} = \overrightarrow{BM}. Đúng||Sai

    b) \overrightarrow{AM} +
\overrightarrow{AN} = \overrightarrow{AB} +
\overrightarrow{AD}. Đúng||Sai

    c) \left| \overrightarrow{NC} +
\overrightarrow{MC} \right| = 2a. Sai||Đúng

    d) Tìm tập hợp các điểm E trong mặt phẳng thỏa mãn \left|
\overrightarrow{AE} - \overrightarrow{AN} \right| = \left|
\overrightarrow{AB} + \overrightarrow{AD} \right| là một đường thẳng. Sai||Đúng

    a) Đúng

    Hình vẽ minh họa

    \overrightarrow{AM} +
\overrightarrow{CD} = \overrightarrow{AM} + \overrightarrow{BA} =
\overrightarrow{BA} + \overrightarrow{AM} =
\overrightarrow{BM}

    b) Đúng

    Dễ thấy AMC N là hình bình hành nên \overrightarrow{AM} +
\overrightarrow{AN} = \overrightarrow{AC}

    ABCD là hình chữ nhật nên \overrightarrow{AB} + \overrightarrow{AD} =
\overrightarrow{AC}.

    Do đó:

    \overrightarrow{AM} +
\overrightarrow{AN} = \overrightarrow{AB} +
\overrightarrow{AD}

    c) Sai

    Ta có:

    \left| \overrightarrow{NC} +
\overrightarrow{MC} \right| = \left| \overrightarrow{AM} +
\overrightarrow{MC} \right| = \left| \overrightarrow{AC}
\right|

    = \sqrt{AB^{2} + AD^{2}} = \sqrt{a^{2} +
(2a)^{2}} = a\sqrt{5}

    d) Sai

    Ta có: \left| \overrightarrow{AE} -
\overrightarrow{AN} \right| = \left| \overrightarrow{AB} +
\overrightarrow{AD} \right|

    \Leftrightarrow \left|
\overrightarrow{NE} \right| = \left| \overrightarrow{AC} \right|
\Leftrightarrow NE = AC = a\sqrt{5}.

    Tập hợp điểm E là đường tròn tâm N bán kính bằng a\sqrt{5}

  • Câu 10: Thông hiểu

    Tìm điểm thỏa mãn

    Trong các cặp số sau đây, cặp nào không thuộc nghiệm của bất phương trình: x - 4y + 5 >
0

    - 5 - 4.0 + 5 > 0 là mệnh đề sai nên ( - 5;0) không thuộc miền nghiệm của bất phương trình.

  • Câu 11: Nhận biết

    Xác định câu sai

    Cho A = ( - \infty;1\rbrack; B = \lbrack 1; + \infty); C = (0;1\rbrack. Câu nào sau đây sai?

    Ta có A \cap B = \left\{ 1 \right\}
\Rightarrow A \cap B \cap C = \left\{ 1 \right\}.

  • Câu 12: Nhận biết

    Chọn hệ bất phương trình thỏa mãn

    Điểm O(0; 0) thuộc miền nghiệm của hệ bất phương trình nào sau đây?

     Thay tọa độ O(0;0) vào hệ \left\{\begin{matrix}x+3y-6< 0\\ 2x+y+4 >0\end{matrix}ight. ta được \left\{\begin{matrix}-6< 0\\ 4 >0\end{matrix}ight. thỏa mãn.

  • Câu 13: Thông hiểu

    Tìm tọa độ điểm C

    Trong hệ tọa độ Oxy, cho tam giác ABCA(6;1),\ B( - 3;5) và trọng tâm G( - 1;1). Tìm tọa độ đỉnh C?

    Gọi C(x;y).

    G là trọng tâm tam giác ABC nên \left\{ \begin{matrix}
\frac{6 + ( - 3) + x}{3} = - 1 \\
\frac{1 + 5 + y}{3} = 1 \\
\end{matrix} ight.\ \overset{}{\leftrightarrow}\left\{ \begin{matrix}
x = - 6 \\
y = - 3 \\
\end{matrix} ight.\ .

  • Câu 14: Nhận biết

    Tìm số tập con theo yêu cầu

    Cho tập hợp A\left\{ 1;2;3;4
\right\}.Tập hợp A có tất cả bao nhiêu tập con có đúng 3 phần tử.

    Cách 1: Liệt kê các tập con của tập A có 3 phần tử là

    \left\{ 1;2;3 \right\},\left\{ 1;2;4
\right\},\left\{ 1;3;4 \right\},\left\{ 2;3;4 \right\} do đó chọn đáp án 4.

    Cách 2: Cho tập A có n phần tử, số tập con của tậpAk phần tử có công thức C_{n}^{k}. Do đó dùng máy tính ấn C_{4}^{3} = 4

  • Câu 15: Nhận biết

    Chọn mệnh đề đúng

    Cho A,\ B,\ C phân biệt, mệnh đề dưới đây đúng là:

    Ta có: \overrightarrow{AB} +
\overrightarrow{CA} = \overrightarrow{CA} + \overrightarrow{AB} =
\overrightarrow{CB}.

  • Câu 16: Nhận biết

    Chọn khẳng định sai

    Cho hàm số y = f(x) = |-5x|. Khẳng định nào sau đây là sai?

    Ta có: f(\frac{1}{5})=|-5.\frac{1}{5}|=1 e-1

    Khẳng định sai là: f(\frac{1}{5})=-1

  • Câu 17: Thông hiểu

    Tìm câu sai

    Trong các mệnh đề sau, mệnh đề nào có mệnh đề đảosai?

    Đáp án sai là: “ABCD là hình bình hành thì AB song song với CD”.

  • Câu 18: Thông hiểu

    Xác định cặp số (m, n)

    Cho tam giác ABC, điểm I thoả mãn: 5\overrightarrow{MA} =
2\overrightarrow{MB}. Nếu \overrightarrow{IA} = m\overrightarrow{IM} +
n\overrightarrow{IB} thì cặp số (m;n) bằng:

    Ta có

    5\overrightarrow{MA} =
2\overrightarrow{MB} \Leftrightarrow 5\left( \overrightarrow{MI} +
\overrightarrow{IA} \right) = 2\left( \overrightarrow{MI} +
\overrightarrow{IB} \right)

    \Leftrightarrow 5\overrightarrow{IA} =
3\overrightarrow{IM} + 2\overrightarrow{IB} \Leftrightarrow
\overrightarrow{IA} = \frac{3}{5}\overrightarrow{IM} +
\frac{2}{5}\overrightarrow{IB}.

  • Câu 19: Nhận biết

    Tính tích vô hướng

    Cho tam giác đều ABC có cạnh a. Tính tích vô hướng \overrightarrow{AB}\times \overrightarrow{AC}.

     Ta có: \overrightarrow {AB} .\overrightarrow {AC}  = AB.AC.\cos A = a.a.\cos 60^\circ  = \frac{{{a^2}}}{2}.

  • Câu 20: Thông hiểu

    Tính diện tích mảnh đất

    Bà Sáu sở hữu một mảnh đất hình tam giác. Chiều dài của hàng rào MN150m, chiều dài của hàng rào MP230m. Góc giữa hai hàng rào MNMP110^{\circ} (như hình vẽ)

    Diện tích mảnh đất mà gia đình bà Sáu sở hữu là bao nhiêu mét vuông (làm tròn kết quả đến hàng phần mười)?

    Diện tích mảnh đất của gia đình bà Sáu (tam giác MNP) là:

    S = \frac{1}{2}MN \cdot MP \cdot \sin
M

    = \frac{1}{2} \cdot 150 \cdot 230 \cdot \sin110^{\circ} \approx 16209,7\left( {m}^{2}ight).

  • Câu 21: Vận dụng

    Chọn đáp án đúng

    Cho parabol (P):y=ax^{2}+bx+c (aeq0). Xét dấu hệ số a và biệt thức \Delta khi (P) cắt trục hoành tại hai điểm phân biệt và có đỉnh nằm phía trên trục hoành.

     Nhận xét: Đồ thị hàm số bậc hai cắt trục hoành tại 2 điểm phân biệt nên suy ra phương trình y=0 có 2 nghiệm phân biệt. Suy ra \Delta >0.

    Đỉnh nằm phía trên trục hoành nên suy ra a<0 (bề lõm hướng xuống). 

  • Câu 22: Thông hiểu

    Tìm công thức hàm số bậc hai

    Bảng biến thiên ở dưới là bảng biến thiên của hàm số nào trong các hàm số được cho ở bốn phương án A, B, C, D sau đây?

    Nhận xét:

    Bảng biến thiên có bề lõm hướng xuống. Loại đáp án y = 2x2 + 2x − 1y = 2x2 + 2x + 2.

    Đỉnh của parabol có tọa độ là \left( -
\frac{1}{2};\frac{3}{2} ight). Xét các đáp án, y =  − 2x2 − 2x + 1 thỏa mãn.

  • Câu 23: Vận dụng

    Tính độ cao của ngọn núi so với mặt đất

    Từ hai vị trí AB của một tòa nhà, người ta quan sát đỉnh C của ngọn núi. Biết rằng độ cao AB = 70m, phương nhìn AC tạo với phương nằm ngang góc 30^{0}, phương nhìn BC tạo với phương nằm ngang góc 15^{0}30'. Ngọn núi đó có độ cao so với mặt đất gần nhất với giá trị nào sau đây?

    Từ giả thiết, ta suy ra tam giác ABC\widehat{CAB} = 60^{0},\ \ \widehat{ABC} =
105^{0}30'c = 70. Khi đó \widehat{A} + \widehat{B} +
\widehat{C} = 180^{0} \Leftrightarrow \widehat{C} = 180^{0} - \left(
\widehat{A} + \widehat{B} ight) =
180^{0} - 165^{0}30' = 14^{0}30'.

    Theo định lí sin, ta có \frac{b}{\sin B}
= \frac{c}{\sin C} hay \frac{b}{sin105^{0}30'} =
\frac{70}{sin14^{0}30'}

    Do đó AC = b =
\frac{70.sin105^{0}30'}{sin14^{0}30'} \approx 269,4m.

    Gọi CH là khoảng cách từ C đến mặt đất. Tam giác vuông ACH có cạnh CH đối diện với góc 30^{0} nên

    CH = \frac{AC}{2} = \frac{269,4}{2} =
134,7\ m. Vậy ngọn núi cao khoảng 135m.

  • Câu 24: Thông hiểu

    Tìm m để ba điểm thẳng hàng

    Trong mặt phẳng Oxy, cho A(m - 1; - 1),\ B(2;2 - 2m),\ C(m + 3;3). Tìm giá trị m để A,B,C là ba điểm thẳng hàng?

    Ta có: \overrightarrow{AB} = (3 - m;3 -
2m), \overrightarrow{AC} =
(4;4)

    Ba điểm A,B,C thẳng hàng khi và chỉ khi \overrightarrow{AB} cùng phương với \overrightarrow{AC}

    \Leftrightarrow \frac{3 - m}{4} = \frac{3
- 2m}{4} \Leftrightarrow m = 0.

  • Câu 25: Thông hiểu

    Tìm mệnh đề sai

    Cho tam giác đều ABC cạnh a = 2. Hỏi mệnh đề nào sau đây sai?

    Ta đi tính tích vô hướng ở các phương án. So sánh vế trái với vế phải.

    Phương án \left(
\overrightarrow{AB}.\overrightarrow{AC} \right)\overrightarrow{BC} =
2\overrightarrow{BC}:

    \overrightarrow{AB}.\overrightarrow{AC} =AB.AC\cos60^{o} = 2\Rightarrow \left(\overrightarrow{AB}.\overrightarrow{AC} \right)\overrightarrow{BC} =2\overrightarrow{BC} nên loại đáp án.

    Phương án \overrightarrow{BC}.\overrightarrow{CA} = -
2 :

    \overrightarrow{BC}.\overrightarrow{CA} =BC.AC\cos120^{o} = - 2 nên loại đáp án.

    Phương án \left( \overrightarrow{AB} +
\overrightarrow{BC} \right).\overrightarrow{AC} = - 4:

    \left( \overrightarrow{AB} +
\overrightarrow{BC} \right).\overrightarrow{AC} =
\overrightarrow{AC}.\overrightarrow{AC} = 4, \overrightarrow{BC}.\overrightarrow{CA} =2.2.\cos120^{0} = - 2 nên chọn đáp án này.

  • Câu 26: Thông hiểu

    Chọn kết quả đúng

    Cho tam giác ABC. Tính tổng \left(
\overrightarrow{AB},\overrightarrow{BC} \right) + \left(
\overrightarrow{BC},\overrightarrow{CA} \right) + \left(
\overrightarrow{CA},\overrightarrow{AB} \right).

    Ta có \left\{ \begin{matrix}
\left( \overrightarrow{AB},\overrightarrow{BC} \right) = 180^{0} -
\widehat{ABC} \\
\left( \overrightarrow{BC},\overrightarrow{CA} \right) = 180^{0} -
\widehat{BCA} \\
\left( \overrightarrow{CA},\overrightarrow{AB} \right) = 180^{0} -
\widehat{CAB}
\end{matrix} \right.

    \rightarrow \left(
\overrightarrow{AB},\overrightarrow{BC} \right) + \left(
\overrightarrow{BC},\overrightarrow{CA} \right) + \left(
\overrightarrow{CA},\overrightarrow{AB} \right) = 540^{o} - \left( \widehat{ABC} + \widehat{BCA} +
\widehat{CAB} \right) = 540^{o} - 180^{o} = 360^{o}

  • Câu 27: Vận dụng cao

    Tìm khẳng định đúng

    Biết phương trình \sqrt{x^{2} - 3x + 3} + \sqrt{x^{2} - 3x + 6} =
3 có hai nghiệm x1, x2(x1<x2) . Khẳng định nào sau đây là đúng?

    Đặt t = x2 − 3x + 3, ta có: t = \left( x - \frac{3}{2} ight)^{2}
+ \frac{3}{4} \geq \frac{3}{4}.

    Do đó điều kiện cho ẩn phụ t là t \geq
\frac{3}{4}.

    Khi đó phương trình trở thành:

    \sqrt{t} + \sqrt{t + 3} = 3
\Leftrightarrow t + t + 3 +
2\sqrt{t(t + 3)} = 9 \sqrt{t(t + 3)} = 3 - t

    \Leftrightarrow \left\{ \begin{matrix}
3 - t \geq 0 \\
t(t + 3) = (3 - t)^{2} \\
\end{matrix} ight. \left\{ \begin{matrix}
t \leq 3 \\
t = 1 \\
\end{matrix} ight.  ⇔ t = 1(thỏa mãn) ⇒ x2 − 3x + 3 = 1⇔ \left\lbrack \begin{matrix}
x = 1 = x_{1} \\
x = 2 = x_{2} \\
\end{matrix} ight.\  \Rightarrow 2x_{1} = x_{2}.

  • Câu 28: Thông hiểu

    Chọn đáp án đúng

    Xác định chiều cao của một tháp mà không cần lên đỉnh của tháp. Đặt kế giác thẳng đứng cách chân tháp một khoảng CD = 60m, giả sử chiều cao của giác kế là OC = 1m.

    Quay thanh giác kế sao cho khi ngắm theo thanh ta nhìn thấy đỉnh A của tháp. Đọc trên giác kế số đo của góc \widehat{AOB} = 60^{0}. Chiều cao của ngọn tháp gần với giá trị nào sau đây:

    Tam giác OAB vuông tại B, có:

    \tan\widehat{AOB} =
\frac{AB}{OB}\Rightarrow AB = \tan60^{0}.OB =60\sqrt{3}m.

    Vậy chiếu cao của ngọn tháp là: h = AB + OC = \left( 60\sqrt{3} + 1
\right)\ m.

  • Câu 29: Vận dụng

    Tìm điểm tại đó F đạt giá trị nhỏ nhất

    Biểu thức F(x;y)
= y - x đạt giá trị nhỏ nhất với điều kiện \left\{ \begin{matrix}
2x - y \geq 2 \\
x - 2y \leq 2 \\
x + y \leq 5 \\
x \geq 0 \\
\end{matrix} ight. tại điểm M có toạ độ là:

    Vẽ các đường thẳng :

    \begin{matrix}
\left( d_{1} ight):y = 2x - 2 \\
\left( d_{2} ight):y = \frac{1}{2}x - 1 \\
\left( d_{3} ight):y = 5 - x \\
\end{matrix}

    Khi đó miền nghiệm của hệ là miền trong của tam giác ABC

    Tọa độ các đỉnh: A\left(
\frac{7}{3};\frac{8}{3} ight); B(4;1);C\left( \frac{2}{3}; - \frac{2}{3}
ight)

    Ta có : F(4;1) = - 3; \ \ F\left( \frac{2}{3}; - \frac{2}{3} ight) =
\frac{- 4}{3} \Rightarrow F_{\min}
= - 3

  • Câu 30: Nhận biết

    Xác định hai vectơ cùng phương

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} không cùng phương. Hai vectơ nào sau đây cùng phương?

    Ta có:

    \frac{1}{2}\overrightarrow{a} -
\overrightarrow{b} = - \left( - \frac{1}{2}\overrightarrow{a} +
\overrightarrow{b} \right)

    => Đáp án cần tìm là: \frac{1}{2}\overrightarrow{a} -
\overrightarrow{b}-
\frac{1}{2}\overrightarrow{a} + \overrightarrow{b}..

  • Câu 31: Vận dụng

    Tính số nghiệm của phương trình

    Số nghiệm của phương trình \sqrt{4x - 1} + 4x^{2} - 6x + 1 = 0 là:

    ĐKXĐ: x \geq \frac{1}{4}

    Đặt t = \sqrt{4x - 1},\ \ t \geq 0\Rightarrow x = \frac{t^{2} + 1}{4}

    Phương trình trở thành t + 4\left(\frac{t^{2} + 1}{4} ight)^{2} - 6\frac{t^{2} + 1}{4} + 1 =0

    \begin{matrix}\Leftrightarrow 4t + t^{4} + 2t^{2} + 1 - 6\left( t^{2} + 1 ight) + 4= 0 \\\Leftrightarrow t^{4} - 4t^{2} + 4t - 1 = 0 \Leftrightarrow (t -1)\left( t^{3} + t^{2} - 3t + 1 ight) = 0 \\\end{matrix}

    \Leftrightarrow (t - 1)^{2}\left( t^{2} +2t - 1 ight) = 0 \Leftrightarrow \left\lbrack \begin{matrix}t = 1 \\\begin{matrix}t = - 1 - \sqrt{2} \\t = - 1 + \sqrt{2} \\\end{matrix} \\\end{matrix} ight. (đối chiếu ĐKXĐ loại t = - 1 - \sqrt{2} )

    Với t = 1 ta có 1 = \sqrt{4x - 1} \Leftrightarrow x =\frac{1}{2}

    Với t = - 1 + \sqrt{2} ta có - 1 + \sqrt{2} = \sqrt{4x - 1} \Leftrightarrow 4x -1 = 3 - 2\sqrt{2} \Leftrightarrow x = \frac{2 - \sqrt{2}}{2}

    Vậy phương trình có hai nghiệm x =\frac{1}{2}x = \frac{2 -\sqrt{2}}{2}.

  • Câu 32: Vận dụng cao

    Tính độ dài vectơ

    Cho hình thang vuông ABCD\widehat{A} = \widehat{D} = 90^{0}. Tính độ dài vectơ \overrightarrow{\alpha} =
\overrightarrow{DA} + \overrightarrow{DB} +
\overrightarrow{DC}, biết AB = AD =
2,CD = 4.

    Hình vẽ minh họa

    Dựng hình bình hành ADBM ta có: \overrightarrow{DA} + \overrightarrow{DB} =
\overrightarrow{DM}

    Do BM//DA nên BM\bot DC tại H,

    Tứ giác ADBH là hình vuông nên BH =
2, ta cũng tính được MH =
4.

    Dựng hình bình hành DMNC ta có: \overrightarrow{DA} + \overrightarrow{DB} +
\overrightarrow{DC} = \overrightarrow{DN}.

    Gọi K là hình chiếu vuông góc của N lên DC. Ta chứng minh được HMNK là hình vuông.

    \Rightarrow HK = NK = 4,DK =
6

    Ta có: DN = \sqrt{DK^{2} + KN^{2}} =
2\sqrt{13}

  • Câu 33: Thông hiểu

    Tìm m thỏa mãn điều kiện

    Các giá trị m để tam thức f(x) = x2– (m + 2)x + 8m + 1 đổi dấu 2 lần là

    Tam thức đổi dấu 2 lần khi tam thức có 2 nghiệm pb

    Δ > 0 ⇔ m2 − 28m > 0 ⇔ m < 0 ∨ m > 28.

  • Câu 34: Nhận biết

    Xác định đẳng thức đúng

    Cho ba điểm phân biệt A,\ \ B,\ \
C. Đẳng thức nào sau đây đúng?

    Xét các đáp án:

    Đáp án \overrightarrow{CA} -
\overrightarrow{BA} = \overrightarrow{BC}.. Ta có \overrightarrow{CA} - \overrightarrow{BA} =
\overrightarrow{CA} + \overrightarrow{AB} = \overrightarrow{CB} = -
\overrightarrow{BC}. Vậy \overrightarrow{CA} - \overrightarrow{BA} =
\overrightarrow{BC}. sai.

    Đáp án \overrightarrow{AB} +
\overrightarrow{AC} = \overrightarrow{BC}.. Ta có \overrightarrow{AB} + \overrightarrow{AC} =
\overrightarrow{AD} \neq \overrightarrow{BC} (với D là điểm thỏa mãn ABDC là hình bình hành). Vậy \overrightarrow{AB} + \overrightarrow{AC} =
\overrightarrow{BC}. sai.

    Đáp án \overrightarrow{AB} +
\overrightarrow{CA} = \overrightarrow{CB}.. Ta có \overrightarrow{AB} + \overrightarrow{CA} =
\overrightarrow{CA} + \overrightarrow{AB} =
\overrightarrow{CB}. Vậy \overrightarrow{AB} + \overrightarrow{CA} =
\overrightarrow{CB}. đúng.

  • Câu 35: Nhận biết

    Xác định tọa độ vecto

    Tìm tọa độ vecto \overrightarrow{AB} biết A(5;3),B(7;8)?

    Ta có:

    \overrightarrow{AB} = (7 - 5,8 - 3) =
(2;5)

  • Câu 36: Vận dụng

    Tìm tham số m thỏa mãn điều kiện

    Cho hai tập khác rỗng A = (m - 1;4] và B = (-2;2m + 2] với m thuộc R. Xác định m để A \cap B \neq
\varnothing

    ĐK: \Leftrightarrow
\left\{ \begin{matrix}
m - 1 < 4 \\
2m + 2 > 2\  \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
m < 5 \\
m > - 2\  \\
\end{matrix} \right.

    Ta có\left\lbrack \begin{matrix}
2m + 2 > m - 1 \\
2m + 2 \geq 4 \\
m - 1 < - 2 \\
\end{matrix} \right.\  \Leftrightarrow \left\lbrack \begin{matrix}
m > 3 \\
m \geq 1 \\
m < - 1 \\
\end{matrix} \right.\  \Leftrightarrow m \in R

    Kết hợp với điều kiện ta được m \in ( -
2;5)

  • Câu 37: Thông hiểu

    Tính độ dài vectơ

    Cho hình vuông ABCD cạnh a. Tính |\overrightarrow{AB}-\overrightarrow{DA}|.

     

    Ta có: \left| {\overrightarrow {AB}  - \overrightarrow {DA} } ight| = \left| {\overrightarrow {AB}  + \overrightarrow {AD} } ight| = \left| \overrightarrow {AC} ight|  = AC = a\sqrt 2. (hình vuông cạnh a thì đường chéo bằng a\sqrt2).

     

  • Câu 38: Nhận biết

    Phủ định mệnh đề A

    Cho mệnh đề A: "2 là số nguyên tố". Mệnh đề phủ định của mệnh đề A

    Mệnh đề phủ định của mệnh đề A là: “2 không phải là số nguyên tố”.

  • Câu 39: Thông hiểu

    Tìm m để bất phương trình nghiệm đúng với mọi x

    Tìm m để {x^2} - 2(2m - 3)x + 4m - 3 > 0 với mọi x ∈ ℝ?

     Để bất phương trình {x^2} - 2(2m - 3)x + 4m - 3 > 0 với mọi x ∈ ℝ thì:

    \begin{matrix}   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a > 0} \\   {\Delta ' < 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {1 > 0} \\   {{{\left( {2m - 3} ight)}^2} - \left( {4m - 3} ight) < 0} \end{array}} ight. \hfill \\   \Leftrightarrow 4{m^2} - 12m + 9 - 4m + 3 < 0 \hfill \\   \Leftrightarrow 4{m^2} - 16m + 12 < 0 \hfill \\   \Leftrightarrow m \in \left( {1,3} ight) \hfill \\ \end{matrix}

  • Câu 40: Nhận biết

    Tìm số giá trị nguyên của x

    Số giá trị nguyên của x để tam thức f(x) = 2x2 − 7x − 9 nhận giá trị âm là

    f(x) = 2x^{2} - 7x - 9 \Leftrightarrow\left\lbrack \begin{matrix}x = - 1 \\x = \dfrac{9}{2} \\\end{matrix} ight.

    Dựa vào bảng xét dấu, f(x) < 0\Leftrightarrow - 1 < x < \frac{9}{2}.

    x ∈ ℤ⇒ x ∈ {0;1;2;3;4} (5 giá trị).

  • Câu 41: Thông hiểu

    Tìm tập xác định

    Tập xác định của hàm số f(x) = \sqrt{3 - x} + \frac{1}{\sqrt{x -
1}}

    Hàm số xác định khi \left\{ \begin{matrix}
3 - x \geq 0 \\
x - 1 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \leq 3 \\
x > 1 \\
\end{matrix} ight.\  \Leftrightarrow 1 < x \leq 3.

    Vậy tập xác định của hàm số là D = (1; 3].

  • Câu 42: Vận dụng

    Chọn phương án thích hợp

    Cho hình chữ nhật ABCDAB = aAD
= a\sqrt{2}. Gọi K là trung điểm của cạnh AD. Đẳng thức nào sau đây đúng?

    Hình vẽ minh họa :

    Ta có:

    AC = BD = \sqrt{AB^{2} + AD^{2}} =
\sqrt{2a^{2} + a^{2}} = a\sqrt{3}.

    Ta có: \left\{ \begin{matrix}
\overrightarrow{BK} = \overrightarrow{BA} + \overrightarrow{AK} =
\overrightarrow{BA} + \frac{1}{2}\overrightarrow{AD} \\
\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{AD}
\end{matrix} \right.

    \overset{}{\rightarrow}\overrightarrow{BK}.\overrightarrow{AC}
= \left( \overrightarrow{BA} + \frac{1}{2}\overrightarrow{AD}
\right)\left( \overrightarrow{AB} + \overrightarrow{AD}
\right)

    =
\overrightarrow{BA}.\overrightarrow{AB} +
\overrightarrow{BA}.\overrightarrow{AD} +
\frac{1}{2}\overrightarrow{AD}.\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AD}.\overrightarrow{AD}

    = - a^{2} + 0 + 0 + \frac{1}{2}\left(
a\sqrt{2} \right)^{2} = 0.

    \overset{}{\rightarrow}\
\cos\widehat{ABC} = \sqrt{1 - sin^{2}\widehat{ABC}} =
\frac{5\sqrt{7}}{16}(vì \widehat{ABC} nhọn).

    Mặt khác góc giữa hai vectơ \overrightarrow{AB},\ \
\overrightarrow{BC} là góc ngoài của góc \widehat{ABC}

    Suy ra \cos\left(\overrightarrow{AB},\overrightarrow{BC} \right) = \cos\left( 180^{0} -\widehat{ABC} \right)= -  \cos\widehat{ABC} = - \frac{5\sqrt{7}}{16}.

  • Câu 43: Thông hiểu

    Tìm khẳng định sai

    Khẳng định nào sau đây sai? Các tập A = B với A,B là các tập hợp sau?

    Ta có:

    A = \{ 1;3\}, B = \left\{ x\mathbb{\in R}\left| (x–1)(x - 3) = 0\right.\  \right\}

    \Rightarrow B = \left\{ 1;3 \right\} \Rightarrow A= B.

    A = \{ 1;3;5;7;9\}, \ B = \left\{ n\mathbb{\in N}\left| n = 2k + 1,k \mathbb{\in Z},0 \leq k \leq 4 \right.\  \right\}

    \Rightarrow B =\left\{ 1; 3; 5;7; 9 \right\} \Rightarrow A = B.

    A = \{ - 1;2\}, B = \left\{ x\mathbb{\in R}\left| x^{2} - 2x - 3 =0 \right.\  \right\}

    \Rightarrow B = \left\{ - 1; 3 \right\}\Rightarrow A \neq B.

    A = \varnothing, B = \left\{ x\mathbb{\in R}\left| x^{2} + x + 1 =0 \right.\  \right\}

    \Rightarrow B = \varnothing \Rightarrow A =B.

  • Câu 44: Nhận biết

    Tìm công thức của Parabol

    Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol cắt trục Ox tại điểm có hoành độ bằng 2.

    (P) cắt trục Ox tại điểm có hoành độ bằng 2 nên điểm A(2;0) thuộc (P). Thay \left\{ \begin{matrix}
x = 2 \\
y = 0 \\
\end{matrix} ight. vào (P), ta được 0 = 4a + 6 − 2 ⇔ a =  − 1.

    Vậy (P) : y =  − x2 + 3x − 2.

  • Câu 45: Nhận biết

    Tính số đo góc A

    Tam giác ABCAB=5,BC=7,CA=8. Số đo góc \hat A bằng:

     Áp dụng định lí côsin:

    \cos A = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2AB.AC}}= \frac{{{5^2} + {8^2} - {7^2}}}{{2.5.8}} = \frac{1}{2}.

    Suy ra \hat A = 60^{\circ}.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Cánh Diều Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo