Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề thi học kì 1 Toán 10 Cánh Diều Đề 1

Mô tả thêm:

Mời các bạn học cùng thử sức với Đề thi học kì 1 môn Toán lớp 10 theo chương trình sách Cánh Diều nha!

  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Xác định đẳng thức đúng

    Chọn đẳng thức đúng:

    Đẳng thức đúng là: \overrightarrow{AB} =\overrightarrow{CB}+ \overrightarrow{AC}.

  • Câu 2: Thông hiểu

    Tính độ lớn góc

    Trong mặt phẳng tọa độ Oxy, cho tam giác ABCA(6;0),B(3;1)C( - 1; - 1). Tính số đo góc B của tam giác đã cho.

    Ta có: \overrightarrow{AB} = ( -
3;1)\overrightarrow{CB} =
(4;2).

    \cos B =
\frac{\overrightarrow{AB}.\overrightarrow{CB}}{AB.CB} = \frac{-
10}{\sqrt{10}.\sqrt{20}} = - \frac{\sqrt{2}}{2} \Rightarrow \left(
\overrightarrow{AB};\overrightarrow{CB} ight) = 135^{o}.

  • Câu 3: Nhận biết

    Chọn khẳng định đúng

    Tìm khẳng định đúng trong các khẳng định sau?

    * Theo định nghĩa tam thức bậc hai thì f(x) = 3x2 + 2x − 5 là tam thức bậc hai.

  • Câu 4: Thông hiểu

    Tính độ dài vectơ

    Gọi G là trọng tâm tam giác vuông ABC với cạnh huyền BC = 12. Tổng hai vectơ \overrightarrow{GB} + \overrightarrow{GC} có độ dài bằng bao nhiêu?

    Dựng hình bình hành GBDC. Gọi M là trung điểm BC.

    Khi đó ta có

    \left| \overrightarrow{GB} +
\overrightarrow{GC} \right| = \left| \overrightarrow{GD} \right| = GD =
2GM

    = \frac{2}{3}AM = \frac{1}{3}BC =
\frac{1}{3}.12 = 4

  • Câu 5: Vận dụng

    Tính diện tích tam giác

    Tam giác ABC có BC = a, CA = b, AB = c và có diện tích S. Nếu tăng cạnh BC lên 2 lần đồng thời tăng cạnh AC lên 3 lần và giữ nguyên độ lớn của góc C thì khi đó diện tích của tam giác mới được tạo nên bằng:

    Ta có:

    Diện tích ban đầu của tam giác là:

    \begin{matrix}  S = \dfrac{1}{2}BC.CA.\sin \widehat C \hfill \\   \Rightarrow S = \dfrac{1}{2}a.b.\sin \widehat C \hfill \\ \end{matrix}

    Nếu tăng cạnh BC lên 2 lần đồng thời tăng cạnh AC lên 3 lần và giữ nguyên độ lớn của góc C thì khi đó diện tích của tam giác là:

    \begin{matrix}  S' = \dfrac{1}{2}\left( {2BC} ight).\left( {3.CA} ight).\sin \widehat C \hfill \\   \Rightarrow S' = 6.\dfrac{1}{2}a.b.\sin \widehat C = 6S \hfill \\   \Rightarrow S' = 6S \hfill \\ \end{matrix}

  • Câu 6: Thông hiểu

    Tìm m để hai vecto vuông góc

    Trong mặt phẳng tọa độ Oxy, cho hai vecto \overrightarrow{a} = (5;m - 7)\overrightarrow{b} = (m + 1;3) với m\mathbb{\in R}. Tìm giá trị của tham số m để \overrightarrow{a}\bot\overrightarrow{b}?

    Ta có:

    \overrightarrow{a}\bot\overrightarrow{b}
\Leftrightarrow \overrightarrow{a}.\overrightarrow{b} =
\overrightarrow{0}

    \Leftrightarrow 5(m - 1) + 3.(m - 7) = 0
\Leftrightarrow m = 2

    Vậy m = 2 thì hai vecto đã cho vuông góc với nhau.

  • Câu 7: Nhận biết

    Tính số đo góc A

    Cho tam giác ABC thỏa mãn: 2cosA = 1. Khi đó:

    Ta có: 2cosA = 1 \Leftrightarrow \cos A = \frac{1}{2} \Rightarrow \widehat{A}
= 60^{0}.

  • Câu 8: Thông hiểu

    Chọn khẳng định đúng

    Cho hệ bất phương trình\left\{ \begin{matrix}x - y > 3 \\1 - \frac{1}{2}x + y > 0 \\\end{matrix} ight. có tập nghiệm S. Khẳng định nào sau đây là khẳng định đúng?

    Ta có: \left\{ \begin{matrix}x - y > 3 \\1 - \frac{1}{2}x + y > 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x > y + 3 \\x < y + 2 \\\end{matrix} ight.. Do đó không có điểm nào thỏa mãn hệ phương trình.

    Hệ này vô nghiệm.

  • Câu 9: Vận dụng

    Khẳng định nào sau đây sai?

    Cho tam giác ABC vuông cân đỉnh A, đường cao AH. Khẳng định nào sau đây sai?

    Do \Delta ABC cân tại A, AH là đường cao nên H là trung điểm BC.

    Xét các đáp án:

    Đáp án \left| \overrightarrow{AH} +
\overrightarrow{HB} ight| = \left| \overrightarrow{AH} +
\overrightarrow{HC} ight|. Ta có \left\{ \begin{matrix}
\left| \overrightarrow{AH} + \overrightarrow{HB} ight| = \left|
\overrightarrow{AB} ight| = a \\
\left| \overrightarrow{AH} + \overrightarrow{HC} ight| = \left|
\overrightarrow{AC} ight| = a \\
\end{matrix} ight.

    \Rightarrow \left| \overrightarrow{AH} +
\overrightarrow{HB} ight| = \left| \overrightarrow{AH} +
\overrightarrow{HC} ight|.

    Đáp án \overrightarrow{AH} -
\overrightarrow{AB} = \overrightarrow{AH} -
\overrightarrow{AC}.. Ta có \left\{
\begin{matrix}
\overrightarrow{AH} - \overrightarrow{AB} = \overrightarrow{BH} \\
\overrightarrow{AH} - \overrightarrow{AC} = \overrightarrow{CH} = -
\overrightarrow{BH} \\
\end{matrix} ight.\ . Do đó đáp án này sai.

    Đáp án \overrightarrow{BC} -
\overrightarrow{BA} = \overrightarrow{HC} -
\overrightarrow{HA}.. Ta có \left\{
\begin{matrix}
\overrightarrow{BC} - \overrightarrow{BA} = \overrightarrow{AC} \\
\overrightarrow{HC} - \overrightarrow{HA} = \overrightarrow{AC} \\
\end{matrix} ight.\ \overset{}{ightarrow}\overrightarrow{BC} -
\overrightarrow{BA} = \overrightarrow{HC} -
\overrightarrow{HA}.

    Đáp án \left| \overrightarrow{AH} ight|
= \left| \overrightarrow{AB} - \overrightarrow{AH} ight|.. Ta có \left| \overrightarrow{AB} -
\overrightarrow{AH} ight| = \left| \overrightarrow{HB} ight| =
\left| \overrightarrow{AH} ight| (do \Delta ABC vuông cân tại A).

  • Câu 10: Nhận biết

    Chọn phương án đúng

    Cho ba điểm A,B,C thỏa AB = 2cm,BC = 3cm,CA = 5cm. Tính \overrightarrow{CA}.\overrightarrow{CB}?

    Ta có: AB + BC = CA \Rightarrow Ba điểm A,\ \ B,\ \ C thẳng hàng và B nằm giữa A,\ \ C.

    Khi đó

    \overrightarrow{CA}.\overrightarrow{CB} =CA.CB.\cos\left( \overrightarrow{CA},\overrightarrow{CB} \right) =3.5.\cos0^{0} = 15

    Cách khác.

    Ta có:

    AB^{2} =
{\overrightarrow{AB}}^{2} = \left( \overrightarrow{CB} -
\overrightarrow{CA} \right)^{2} = CB^{2} -
2\overrightarrow{CB}\overrightarrow{CA} + CA^{2}

    \rightarrow\overrightarrow{CB}.\overrightarrow{CA} = \frac{1}{2}\left( CB^{2} +CA^{2} - AB^{2} \right)= \frac{1}{2}\left( 3^{2} + 5^{2} - 2^{2}\right) = 15.

  • Câu 11: Vận dụng

    Tìm điểm tại đó F đạt giá trị nhỏ nhất

    Biểu thức F(x;y)
= y - x đạt giá trị nhỏ nhất với điều kiện \left\{ \begin{matrix}
2x - y \geq 2 \\
x - 2y \leq 2 \\
x + y \leq 5 \\
x \geq 0 \\
\end{matrix} ight. tại điểm M có toạ độ là:

    Vẽ các đường thẳng :

    \begin{matrix}
\left( d_{1} ight):y = 2x - 2 \\
\left( d_{2} ight):y = \frac{1}{2}x - 1 \\
\left( d_{3} ight):y = 5 - x \\
\end{matrix}

    Khi đó miền nghiệm của hệ là miền trong của tam giác ABC

    Tọa độ các đỉnh: A\left(
\frac{7}{3};\frac{8}{3} ight); B(4;1);C\left( \frac{2}{3}; - \frac{2}{3}
ight)

    Ta có : F(4;1) = - 3; \ \ F\left( \frac{2}{3}; - \frac{2}{3} ight) =
\frac{- 4}{3} \Rightarrow F_{\min}
= - 3

  • Câu 12: Thông hiểu

    Tính giá trị hàm số tại điểm

    Cho hàm số f(x) =
\left\{ \begin{matrix}
\frac{2\sqrt{x - 2} - 3}{x - 1} & khi & x \geq 2 \\
x^{2} + 2 & khi & x < 2 \\
\end{matrix} ight.. Tính P = f(2) + f(−2).

    Ta có: f(2) + f( - 2) = \frac{2\sqrt{2 -
2} - 3}{2 - 1} + ( - 2)^{2} + 2 \Rightarrow P = 3.

  • Câu 13: Thông hiểu

    Chọn mệnh đề đúng

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Mệnh đề “\exists n\mathbb{\in N},n(n +
1)(n + 2) là số lẻ”. sai vì số tự nhiên liên tiếp n,n + 1,n + 2 luôn có ít nhất 1 số chẵn nên tích của chúng là số chẵn.

    Mệnh đề “\forall x\mathbb{\in R},x^{2}
< 4 \Leftrightarrow - 2 < x < 2” đúng vì x^{2} < 4 \Leftrightarrow |x| < 2
\Leftrightarrow - 2 < x < 2.

    Mệnh đề “\exists n\mathbb{\in N},n^{2} +
1 chia hết cho 3” sai vì n^{2} luôn chia hết cho 3 hoặc chia 3 dư 1 nên n^{2} + 1 hoặc chia 3 dư 1 hoặc chia 3 dư 2 hay n^{2} + 1 không chia hết cho 3 với mọi n\mathbb{\in
N}.

    Mệnh đề “\forall x\mathbb{\in R},x^{2}
\geq 9 \Leftrightarrow x \geq \pm 3” sai vì x^{2} \geq 9 \Leftrightarrow |x| \geq 3
\Leftrightarrow \left\lbrack \begin{matrix}
x \geq 3 \\
x \leq - 3 \\
\end{matrix} \right..

  • Câu 14: Nhận biết

    Tam thức bậc hai nhận giá trị không âm khi và chỉ khi

    Tam thức bậc hai f(x) =  − x2 + 3x − 2 nhận giá trị không âm khi và chỉ khi

    f(x) = - x^{2} + 3x - 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 2 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp ánx ∈ [1; 2] .

  • Câu 15: Vận dụng cao

    Xác định đặc điểm tam giác ABC

    Cho tam giác ABC có các góc thỏa mãn biểu thức

    \sin2\widehat{A} + \sin2\widehat{B} =\dfrac{\sin2\widehat{A}.\sin2\widehat{B}}{\cos\widehat{A}.\cos\widehat{B}}

    Khi đó tam giác ABC là tam giác gì?

    Ta có:

    \sin2\widehat{A} + \sin2\widehat{B} =\frac{\sin2\widehat{A}.\sin2\widehat{B}}{\cos\widehat{A}.\cos\widehat{B}}

    \Leftrightarrow2\sin\widehat{A}.\cos\widehat{A} + 2\sin\widehat{B}.\cos\widehat{B} =\frac{2\sin\widehat{A}.\cos\widehat{A}.2\sin\widehat{B}.\cos\widehat{B}}{\cos\widehat{A}.\cos\widehat{B}}

    \Leftrightarrow\sin\widehat{A}.\cos\widehat{A} + \sin\widehat{B}.\cos\widehat{B} =2\sin\widehat{A}.\sin\widehat{B}

    \Leftrightarrow \sin2\widehat{A} +\sin2\widehat{B} = 4\sin\widehat{A}.\sin\widehat{B}

    \Leftrightarrow 2\sin\left( \widehat{A} +\widehat{B} ight).\cos\left( \widehat{A} - \widehat{B} ight) =2\left\lbrack \cos\left( \widehat{A} - \widehat{B} ight) - \cos\left(\widehat{A} + \widehat{B} ight) ightbrack

    \Leftrightarrow\sin\widehat{C}.\cos\left( \widehat{A} - \widehat{B} ight) = \cos\left(\widehat{A} - \widehat{B} ight) + \cos\left( \widehat{C}ight)

    \Leftrightarrow \cos\widehat{C}.\left( 1- \sin\widehat{C} ight).\cos\left( \widehat{A} - \widehat{B} ight) +\cos^{2}\left( \widehat{C} ight) = 0

    \Leftrightarrow \cos\widehat{C}.\left( 1- \sin\widehat{C} ight).\cos\left( \widehat{A} - \widehat{B} ight) +1 - \sin^{2}\left( \widehat{C} ight) = 0

    \Leftrightarrow \left( 1 -
\sin\widehat{C} ight).\left\lbrack \cos\left( \widehat{A} -
\widehat{B} ight)\cos\widehat{C} + 1 + \sin\widehat{C}. ightbrack
= 0

    \Leftrightarrow 1 - \sin\widehat{C} =
0

    \Leftrightarrow \widehat{C} =
\frac{\pi}{2}

    Vậy tam giác ABC là tam giác vuông.

  • Câu 16: Nhận biết

    Tìm bất phương trình thỏa mãn

    Cặp số (2;3) là nghiệm của bất phương trình nào sau đây?

    2 - 3 < 0 là mệnh đề đúng nên cặp số (2;3) là nghiệm của bất phương trình x–y < 0.

  • Câu 17: Thông hiểu

    Chọn đẳng thức đúng

    Cho tam giác ABCI thỏa \overrightarrow{IA} =
3\overrightarrow{IB}. Đẳng thức nào sau đây là đẳng thức đúng?

    Ta có

    \overrightarrow{IA} =
3\overrightarrow{IB} \Leftrightarrow \overrightarrow{CA} -
\overrightarrow{CI} = 3\left( \overrightarrow{CB} - \overrightarrow{CI}
\right)

    \Leftrightarrow 2\overrightarrow{CI} =
3\overrightarrow{CB} - \overrightarrow{CA} \Leftrightarrow
\overrightarrow{CI} = \frac{1}{2}\left( 3\overrightarrow{CB} -
\overrightarrow{CA} \right).

  • Câu 18: Thông hiểu

    Tìm nghiệm của phương trình

    Phương trình: \sqrt{x+2}=4-x có bao nhiêu nghiệm?

     Điều kiện: x + 2 \geqslant 0 \Leftrightarrow x \geqslant  - 2

    \begin{matrix}  \sqrt {x + 2}  = 4 - x \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {4 - x \geqslant 0} \\   {x + 2 = {{\left( {4 - x} ight)}^2}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 4} \\   {x + 2 = 16 - 8x + {x^2}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 4} \\   {{x^2} - 9x + 14 = 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 4} \\   {\left[ {\begin{array}{*{20}{c}}  {x = 2\left( {tm} ight)} \\   {x = 7\left( {ktm} ight)} \end{array}} ight.} \end{array}} ight. \hfill \\ \end{matrix}

    Kết hợp với điều kiện ta được x=2 thỏa mãn

    Vậy nghiệm của phương trình là x=2

  • Câu 19: Thông hiểu

    Tìm m để f(x) < 0 với mọi x

    Cho hàm số f(x) = mx^{2} – 2mx + m – 1. Giá trị của m để f(x) < 0, ∀x ∈ ℝ.

    Để f\left( x ight) < 0 với \forall x \in \mathbb{R}  \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a < 0} \\   {\Delta  < 0} \end{array}} ight.

    \begin{matrix}   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m < 0} \\   {\Delta ' = {m^2} - m\left( {m - 1} ight) < 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m < 0} \\   {m < 0} \end{array}} ight. \Leftrightarrow m < 0 \hfill \\ \end{matrix}

  • Câu 20: Thông hiểu

    Tìm tập hợp rỗng

    Cho ba tập hợp:

    M: tập hợp các tam giác có 2 góc tù.

    N: tập hợp các tam giác có độ dài ba cạnh là ba số nguyên liên tiếp.

    P: tập hợp các số nguyên tố chia hết cho 3.

    Tập hợp nào là tập hợp rỗng?

    M\  = \ \varnothing

    Tổng ba gốc trong tam giác bằng 180{^\circ} nên không thể có hai gốc tù.

    N \neq \varnothing Ba số tự nhiên liên tiếp là a, a + 1, a +
2. Khi a > 1 thì a + a + 1 = 2a + 1 > a + 2

    Lúc đó ba số: a, a + 1, a +
2 thỏa điều kiện ba cạnh trong tam giác.

    số nguyên tố chia hết cho 3 là số 3.

    P = \left\{ 3 \right\}.

  • Câu 21: Vận dụng

    Tính số nghiệm của phương trình

    Phương trình (x -1)(x + 3) + 2(x - 1)\sqrt{\frac{x + 3}{x - 1}} = 8 có mấy nghiệm ?

    Điều kiện: \left\lbrack \begin{matrix}x \leq - 3 \\x > 1 \\\end{matrix} ight.

    Đặt t = (x - 1)\sqrt{\frac{x + 3}{x - 1}}\Rightarrow t^{2} = (x - 1)(x + 3).

    PT đã cho trở thành:

    t^{2} + 2t - 8 = 0 \Leftrightarrow\left\lbrack \begin{matrix}t = 2\ \  \\t = - 4\ \ \  \\\end{matrix} ight.

    Với t = 2 ta được

    \begin{matrix}(x - 1)\sqrt{\frac{x + 3}{x - 1}} = 2 \\\Rightarrow (x - 1)(x + 3) = 4 \Leftrightarrow \left\lbrack\begin{matrix}x = - 1 + 2\sqrt{2}(TM) \\x = - 1 - 2\sqrt{2}(L) \\\end{matrix} ight.\  \\\end{matrix}

    Với t =  − 4 ta được ta được

    \begin{matrix}(x - 1)\sqrt{\frac{x + 3}{x - 1}} = - 4 \\\Rightarrow (x - 1)(x + 3) = 16 \Leftrightarrow \left\lbrack\begin{matrix}x = - 1 + 2\sqrt{5}(L) \\x = - 1 - 2\sqrt{5}(TM) \\\end{matrix} ight.\  \\\end{matrix}

    Vậy phương trình có hai nghiệm là x = - 1+ 2\sqrt{2} ; x = - 1 -2\sqrt{5}.

  • Câu 22: Nhận biết

    Hàm số nghịch biến

    Trong các hàm số sau, hàm số nào là nghịch biến:

    Ta có: 

    Hàm số y = f(x) = -2x + 2 có a = -2 < 0

    => Hàm số nghịch biến.

  • Câu 23: Nhận biết

    Chọn đáp án đúng

    Tập X = \left\{
x\mathbb{\in R}|2x^{2} - 5x + 3 = 0 ight\} bằng tập nào sau đây?

    Ta có: 2x^{2} - 5x + 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = \frac{3}{2} \\
\end{matrix} ight.\  \Rightarrow X = \left\{ 1;\frac{3}{2}
ight\}.

  • Câu 24: Vận dụng cao

    Tìm số nghiệm nguyên dương của phương trình

    Phương trình 2x +
1 + x\sqrt{x^{2} + 2} + (x + 1)\sqrt{x^{2} + 2x + 3} = 0 có mấy nghiệm nguyên dương ?

    Đặt a = \sqrt{x^{2} + 2}\ \ ;\ b =
\sqrt{x^{2} + 2x + 3}\ \ \ \ (a,\ b > 0)\

    \Rightarrow x = \frac{b^{2} - a^{2} -
1}{2}

    Phương trình đã cho trở thành:

    \begin{matrix}
(b - a)\left\lbrack (a + b) + \frac{(a + b)^{2}}{2} + \frac{1}{2}
ightbrack = 0 \\
\Leftrightarrow a = b \Leftrightarrow x = - \frac{1}{2}. \\
\end{matrix}

    Vậy phương trình có 0 nghiệm nguyên dương.

  • Câu 25: Thông hiểu

    Tìm điều kiện để hai vecto bằng nhau

    Trong mặt phẳng tọa độ Oxy cho hai vecto \overrightarrow{u} = ( - 2; -
4),\overrightarrow{v} = (2x - y;y). Khi nào hai vecto \overrightarrow{u}\overrightarrow{v} bằng nhau?

    Ta có:

    \overrightarrow{u} = \overrightarrow{v}
\Leftrightarrow \left\{ \begin{matrix}
2x - y = - 2 \\
y = - 4 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
2x + 4 = - 2 \\
y = - 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 3 \\
y = - 4 \\
\end{matrix} ight.

    Vậy hai vecto \overrightarrow{u}\overrightarrow{v} bằng nhau khi x = - 3;y = - 4.

  • Câu 26: Thông hiểu

    Chọn công thức đúng

    Cho tam giác ABC, chọn công thức đúng trong các đáp án sau:

    Ta có: m_{a}^{2} = \frac{b^{2} +
c^{2}}{2} - \frac{a^{2}}{4} =
\frac{2b^{2} + 2c^{2} - a^{2}}{4}.

  • Câu 27: Thông hiểu

    Chọn kết quả đúng

    Cho A = ( - 1;3)B = \lbrack 0;5\rbrack. Khi đó (A \cap B) \cup (A\backslash B)

    Cách 1: Ta có: A \cap B = \lbrack
0;3)A\backslash B = ( -
1;0).

    Do đó: (A \cap B) \cup (A\backslash B) =
\lbrack 0;3) \cup ( - 1;0) = ( - 1;3).

    Cách 2: Ta có: (A \cap B) \cup
(A\backslash B) = A nên (A \cap B)
\cup (A\backslash B) = ( - 1;3).

  • Câu 28: Nhận biết

    Chọn kết luận đúng

    Vectơ \overrightarrow{a} = ( -
4;0) được phân tích theo hai vectơ đơn vị như thế nào?

    Ta có: \overrightarrow{a} = ( - 4;0)
\Rightarrow \overrightarrow{a} = - 4\overrightarrow{i} +
0\overrightarrow{j} = - 4\overrightarrow{i}.

  • Câu 29: Thông hiểu

    Tính tổng b + c

    Giả sử đồ thị parabol (P):y = 2x^{2} + bx + c đi qua điểm A(0;4) và có trục đối xứng là đường thẳng x - 1 = 0. Tính tổng các giá trị bc?

    Ta có: A \in (P) \Rightarrow c =
4

    Trục đối xứng của (P) là: - \frac{b}{2a} = 1 \Leftrightarrow b = -
4

    \Rightarrow b + c = - 4 + 4 =
0

  • Câu 30: Thông hiểu

    Tìm m thỏa mãn điều kiện

    Với giá trị nào của m thì bất phương trình x2 − x + m ≤ 0 vô nghiệm?

    Bất phương trình x2 − x + m ≤ 0 vô nghiệm khi và chỉ khi bất phương trình x^{2} - x + m > 0,\forall x\mathbb{\in R
\Leftrightarrow}\left\{ \begin{matrix}
\Delta < 0 \\
1 > 0 \\
\end{matrix} ight.\  \Leftrightarrow 1 - 4m < 0 \Leftrightarrow m
> \frac{1}{4}.

  • Câu 31: Vận dụng cao

    Tính độ dài vectơ

    Cho tam giác ABC, kẻ đường cao AHAH =
3,cos\widehat{ACB} = \frac{3}{5};tan\widehat{ABC} = 3. Gọi M là trung điểm của BC, K là điểm thỏa mãn KA = \frac{5}{2}\left| \overrightarrow{KA} - \overrightarrow{KB} +
\overrightarrow{KC} - \overrightarrow{AC} ight| = \left|
\overrightarrow{CK} ight|. Khi đó độ dài vectơ \overrightarrow{MK} bằng bao nhiêu?

    Hình vẽ minh họa

    Tính độ dài vectơ

    Gọi E là điểm đối xứng của B qua A, ta có:

    \left| \overrightarrow{KA} -
\overrightarrow{KB} + \overrightarrow{KC} - \overrightarrow{AC} ight|
= \left| \overrightarrow{CK} ight|

    \Rightarrow KE = CK

    Nên K thuộc đường thẳng a là trung trực của đoạn thẳng CE, mặt khác KA = \frac{5}{2}

    Suy ra K là giao điểm của a và đường tròn tâm A bán kính KA = \frac{5}{2}.

    Điểm K cần tìm là N hoặc P

    Ta có: MK = MP = AB =
\sqrt{10}.

  • Câu 32: Vận dụng

    Xác định mệnh đề đúng

    Cho hai tập hợp E = \left\{ x\mathbb{\in
R}|f(x) = 0 \right\}, F = \left\{
x\mathbb{\in R}|g(x) = 0 \right\}. Tập hợp H = \left\{ \left. \ x\mathbb{\in R}
\right|f(x).g(x) = 0 \right\}. Mệnh đề nào sau đây đúng?

    Ta có f(x)g(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
f(x) = 0 \\
g(x) = 0 \\
\end{matrix} \right.

    nên H = \left\{ x\mathbb{\in R}|f(x) = 0
\vee g(x) = 0 \right\} nên H = E
\cup F.

  • Câu 33: Nhận biết

    Tìm giao của 2 tập hợp

    Cho X = \left\{
7;2;8;4;9;12 ight\};Y = \left\{ 1;3;7;4 ight\}. Tập nào sau đây bằng tập X \cap Y?

    Tập hợp X \cap Y gồm những phần tử vừa thuộc X vừa thuộc Y

    \Rightarrow X \cap Y = \left\{ 4;7
ight\}.

  • Câu 34: Thông hiểu

    Tính số đo góc A

    Cho tam giác A BC, biết a = 24,b = 13,c = 15. Tính góc A?

    Ta có:

    \cos A = \frac{b^{2} + c^{2} -
a^{2}}{2bc} = \frac{13^{2} + 15^{2} - 24^{2}}{2.13.15} = -
\frac{7}{15}

    \Rightarrow A \simeq 117^{0}49'\
.

  • Câu 35: Nhận biết

    Chọn đáp án đúng

    Viết mệnh đề sau bằng cách sử dụng kí hiệu \forall hoặc \exists: “Mọi số nhân với 1 đều bằng chính nó”.

    Viết lại mệnh đề “Mọi số nhân với 1 đều bằng chính nó” bằng cách sử dụng kí hiệu \forall hoặc \exists như sau: \forall x\mathbb{\in R},x.1 = x

  • Câu 36: Nhận biết

    Đẳng thức nào sau đây đúng?

    Cho hình bình hành ABCD. Đẳng thức nào sau đây đúng?

    Ta có:

    \overrightarrow{AC} - \overrightarrow{AD}
= \overrightarrow{CD} sai do \overrightarrow{AC} - \overrightarrow{AD} =
\overrightarrow{DC}.

    \overrightarrow{AC} - \overrightarrow{BD}
= 2\overrightarrow{CD} sai do \overrightarrow{AC} - \overrightarrow{BD} =2\overrightarrow{CD}\Leftrightarrow \left( \overrightarrow{AB} +\overrightarrow{AD} ight) - \left( \overrightarrow{AD} -\overrightarrow{AB} ight)\mathbf{=}2\overrightarrow{CD}\Leftrightarrow 2\overrightarrow{AB} =2\overrightarrow{CD}.

    \overrightarrow{AC} + \overrightarrow{BC}
= \overrightarrow{AB} sai do \overrightarrow{AC} + \overrightarrow{BC} =\overrightarrow{AB} \Leftrightarrow \overrightarrow{AC} -\overrightarrow{AB} = - \overrightarrow{BC}\Leftrightarrow\overrightarrow{BC} = \overrightarrow{CB}.

    \overrightarrow{AC} + \overrightarrow{BD}
= 2\overrightarrow{BC} đúng do \overrightarrow{AC} + \overrightarrow{BD} =\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{BC} +\overrightarrow{CD}\mathbf{=}2\overrightarrow{BC} + \left(\overrightarrow{AB} + \overrightarrow{CD} ight) = 2\overrightarrow{BC}+ \overrightarrow{0} = 2\overrightarrow{BC}.

  • Câu 37: Vận dụng cao

    Tìm tập hợp điểm M thỏa mãn yêu cầu

    Cho hai điểm A,\ \ B phân biệt và cố định, với I là trung điểm của AB. Tìm tập hợp các điểm M thỏa mãn đẳng thức \left| \overrightarrow{MA} + \overrightarrow{MB}
\right| = \left| \overrightarrow{MA} - \overrightarrow{MB}
\right|.

    I là trung điểm của AB suy ra \overrightarrow{MA} + \overrightarrow{MB} = 2\
\overrightarrow{MI}.

    Do đó \left| \overrightarrow{MA} +
\overrightarrow{MB} \right| = \left| \overrightarrow{MA} -
\overrightarrow{MB} \right|

    \Leftrightarrow \left| 2\
\overrightarrow{MI} \right| = \left| \overrightarrow{BA} \right|
\Leftrightarrow MI = \frac{AB}{2}\ \ \ \ \ \ \ \ \ \ \ \
(*).

    Vậy tập hợp các điểm M thỏa mãn đẳng thức (*) là đường tròn tâm I, bán kính

    R = \frac{AB}{2}.

  • Câu 38: Nhận biết

    Tìm khẳng định sai

    Trong các khẳng định sau, khẳng định nào sai?

    Giá trị lượng giác của góc đặc biệt ta có: 

    \left\{ \begin{matrix}cos60^{0} = \frac{1}{2} \\ \sin120^{0} = \dfrac{\sqrt{3}}{2}\end{matrix} \right.\  \Rightarrow \cos60^{0} \neq \sin120^{0}

  • Câu 39: Vận dụng

    Chọn đáp án thích hợp

    Cho tam giác đều ABC cạnh 18cm. Tập hợp các điểm M thỏa mãn đẳng thức \left| 2\overrightarrow{MA} + 3\overrightarrow{MB}
+ 4\overrightarrow{MC} \right| = \left| \overrightarrow{MA} -
\overrightarrow{MB} \right| là:

    Hình vẽ minh họa

    Ta có \left| \overrightarrow{MA} -
\overrightarrow{MB} \right| = \left| \overrightarrow{AB} \right| =
18.

    Dựng điểm I thỏa mãn 2\overrightarrow{IA} + 3\overrightarrow{IB} +
4\overrightarrow{IC} = \overrightarrow{0} \Leftrightarrow \overrightarrow{AI} =
\frac{1}{3}\overrightarrow{AB} +
\frac{4}{9}\overrightarrow{AC}.

    Khi đó:

    \left| 2\overrightarrow{MA} +3\overrightarrow{MB} + 4\overrightarrow{MC} \right| = \left|\overrightarrow{MA} - \overrightarrow{MB} \right|

    \Leftrightarrow9\left| \overrightarrow{MI} \right| = 18 \Leftrightarrow IM =2.

    Do đó tập hợp các điểm M là đường tròn cố định có bán kính R = 2\
cm.

  • Câu 40: Nhận biết

    Tìm điểm thỏa mãn

    Cho hệ bất phương trình \left\{ \begin{matrix}
2x + y - 2 \leq 0 \\
x - 3y + 2 > 0 \\
\end{matrix} ight.. Trong các điểm sau, điểm nào thuộc miền nghiệm của hệ bất phương trình?

    Với O(0;0). Ta có: \left\{ \begin{matrix}
2.0 + 0 - 2 \leq 0 \\
0 - 3.0 + 2 > 0 \\
\end{matrix} ight. . Cả hai bất phương trình đều thỏa mãn. Chọn đáp án này.

  • Câu 41: Nhận biết

    Hoàn thành khẳng định

    Hai vectơ được gọi là bằng nhau khi và chỉ khi

    Hai vectơ được gọi là bằng nhau khi và chỉ khi chúng có cùng hướng và độ dài của chúng bằng nhau.

  • Câu 42: Thông hiểu

    Tìm tọa độ trực tâm H

    Cho tam giác ABCA(5;\ 3), B(2;\  - 1), C( - 1;\ 5). Tìm tọa độ trực tâm H của tam giác ABC.

    Gọi H(x;\ y) là tọa độ cần tìm.

    Ta có:

    \left\{ \begin{matrix}
\overrightarrow{AH} = (x - 5;\ y - 3) \\
\overrightarrow{BC} = ( - 3;\ 6)
\end{matrix} \right.\  \Rightarrow
\overrightarrow{AH}.\overrightarrow{BC} = 0\Leftrightarrow - 3x + 6y - 3 =
0 (1).

    \left\{ \begin{matrix}
\overrightarrow{BH} = (x - 2;\ y + 1) \\
\overrightarrow{AC} = ( - 6;\ 2)
\end{matrix} \right.\  \Rightarrow
\overrightarrow{BH}.\overrightarrow{AC} = 0\Leftrightarrow - 6x + 2y + 14 =
0 (2).

    Từ (1)(2) ta có hệ phương trình

    \left\{ \begin{matrix}
- 3x + 6y = 3 \\
- 6x + 2y = - 14
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x = 3 \\
y = 2
\end{matrix} \right..

    Vậy H(3;\ 2) là tọa độ cần tìm.

  • Câu 43: Thông hiểu

    Tìm điểm thỏa mãn

    Trong các cặp số sau đây, cặp nào không thuộc nghiệm của bất phương trình: x - 4y + 5 >
0

    - 5 - 4.0 + 5 > 0 là mệnh đề sai nên ( - 5;0) không thuộc miền nghiệm của bất phương trình.

  • Câu 44: Thông hiểu

    Chọn đẳng thức đúng

    Cho các điểm phân biệt A,B,C,D. Đẳng thức nào sau đây đúng?

    Ta có: \overrightarrow{AB} +
\overrightarrow{DA} = \overrightarrow{DB} = \overrightarrow{DC} +
\overrightarrow{CB}.

  • Câu 45: Vận dụng

    Tính giá trị T

    Gọi S là tập hợp các giá trị thực của tham số m sao cho parabol (P) : y = x2 − 4x + m cắt Ox tại hai điểm phân biệt A, B thỏa mãn OA = 3OB. Tính tổng T các phần tử của S.

    Phương trình hoành độ giao điểm: x2 − 4x + m = 0. (*)

    Để (P) cắt Ox tại hai điểm phân biệt A, B thì (*) có hai nghiệm phân biệt  ⇔ Δ = 4 − m > 0 ⇔ m < 4.

    Theo giả thiết OA =
3OB\overset{}{ightarrow}\left| x_{A} ight| = 3\left| x_{B} ight|
\Leftrightarrow \left\lbrack \begin{matrix}
x_{A} = 3x_{B} \\
x_{A} = - 3x_{B} \\
\end{matrix} ight.\ .

    TH1: x_{A} =
3x_{B}\overset{Viet}{ightarrow}\left\{ \begin{matrix}
x_{A} = 3x_{B} \\
x_{A} + x_{B} = 4 \\
x_{A}.x_{B} = m \\
\end{matrix} ight.\ \overset{}{ightarrow}m = x_{A}.x_{B} =
3.

    TH2: x_{A} = -
3x_{B}\overset{Viet}{ightarrow}\left\{ \begin{matrix}
x_{A} = - 3x_{B} \\
x_{A} + x_{B} = 4 \\
x_{A}.x_{B} = m \\
\end{matrix} ight.\ \overset{}{ightarrow}m = x_{A}.x_{B} =
12: không thỏa mãn (*).

    Do đó (P) Chọn A.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Cánh Diều Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo