Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề thi học kì 1 Toán 10 Cánh Diều Đề 2

Mô tả thêm:

Mời các bạn học cùng thử sức với Đề thi học kì 1 môn Toán lớp 10 theo chương trình sách Cánh Diều nha!

  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Xác định bất phương trình bậc nhất hai ẩn

    Trong các bất phương trình sau, bất phương trình nào là bất phương trình bậc nhất hai ẩn?

    Ta có: 3x - 7y > 19 là bất phương trình bậc nhất hai ẩn.

  • Câu 2: Nhận biết

    Tính độ dài vectơ

    Cho hình vuông ABCDcó cạnh bằng a. Khi đó \left| \overrightarrow{AB} + \overrightarrow{AD}
\right| bằng:

    Ta có: \left| \overrightarrow{AB} +
\overrightarrow{AD} \right| = \left| \overrightarrow{AC} \right| = AC =
a\sqrt{2} 

  • Câu 3: Nhận biết

    Xác định số mệnh đề

    Trong các câu sau, có bao nhiêu câu là mệnh đề?

    (I) Hãy mở cửa ra!                            (II) Số 25 chia hết cho 8.

    (III) Số 17 là số nguyên tố.               (IV) Bạn thích ăn phở không?

    Các câu (III) và (II) là mệnh đề.

  • Câu 4: Vận dụng

    Tìm m thỏa mãn điều kiện

    Tìm tất cả các giá trị thực của tham số m sao cho phương trình (m−2)x2 − 2mx + m + 3 = 0 có hai nghiệm dương phân biệt.

    Yêu cầu bài toán \Leftrightarrow \left\{
\begin{matrix}
a eq 0 \\
\Lambda^{'} > 0 \\
S > 0 \\
P > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m - 2 eq 0 \\
m^{2} - (m - 2)(m + 3) > 0 \\
\frac{2m}{m - 2} > 0 \\
\frac{m + 3}{m - 2} > 0 \\
\end{matrix} \Leftrightarrow \left\lbrack \begin{matrix}
2 < m < 6 \\
m < - 3 \\
\end{matrix} ight.\  ight..

  • Câu 5: Vận dụng

    Tìm vectơ thỏa mãn

    Trong mặt phẳng tọa độ Oxy, cho hai vectơ \overrightarrow{a} = ( - 2;3)\overrightarrow{b} = (4;1). Tìm vectơ \overrightarrow{d} biết \overrightarrow{a}.\overrightarrow{d} = 4\overrightarrow{b}.\overrightarrow{d} = -
2.

    Gọi \overrightarrow{d} = (x;y).

    Ta có: \overrightarrow{d}.\overrightarrow{a}
= 4 \Leftrightarrow - 2x + 3y = 4\overrightarrow{b}.\overrightarrow{d} = - 2
\Leftrightarrow 4x + y = - 2

    Giải hệ phương trình: \left\{
\begin{matrix}
- 2x + 3y = 4 \\
4x + y = - 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - \frac{5}{7} \\
y = \frac{6}{7} \\
\end{matrix} ight. nên \overrightarrow d=\left(\mathbf{-}\frac{5}{7};\frac{6}{7}ight).

  • Câu 6: Thông hiểu

    Tìm mệnh đề sai

    Cho tam giác đều ABC cạnh a = 2. Hỏi mệnh đề nào sau đây sai?

    Ta đi tính tích vô hướng ở các phương án. So sánh vế trái với vế phải.

    Phương án \left(
\overrightarrow{AB}.\overrightarrow{AC} \right)\overrightarrow{BC} =
2\overrightarrow{BC}:

    \overrightarrow{AB}.\overrightarrow{AC} =AB.AC\cos60^{o} = 2\Rightarrow \left(\overrightarrow{AB}.\overrightarrow{AC} \right)\overrightarrow{BC} =2\overrightarrow{BC} nên loại đáp án.

    Phương án \overrightarrow{BC}.\overrightarrow{CA} = -
2 :

    \overrightarrow{BC}.\overrightarrow{CA} =BC.AC\cos120^{o} = - 2 nên loại đáp án.

    Phương án \left( \overrightarrow{AB} +
\overrightarrow{BC} \right).\overrightarrow{AC} = - 4:

    \left( \overrightarrow{AB} +
\overrightarrow{BC} \right).\overrightarrow{AC} =
\overrightarrow{AC}.\overrightarrow{AC} = 4, \overrightarrow{BC}.\overrightarrow{CA} =2.2.\cos120^{0} = - 2 nên chọn đáp án này.

  • Câu 7: Thông hiểu

    Xét tính đúng sai của các khẳng định

    Cho hình bình hành ABCD và các điểm M,N,P thoả mãn \overrightarrow{AM} =
\frac{1}{2}\overrightarrow{AB},\overrightarrow{AN} =
\frac{1}{6}\overrightarrow{AC},\overrightarrow{AP} =
\frac{1}{4}\overrightarrow{AD}. Khi đó:

    a) \overrightarrow{AN} =
\frac{1}{6}(\overrightarrow{AB} + \overrightarrow{AD}). Đúng||Sai

    b) \overrightarrow{MN} =
\frac{1}{3}\overrightarrow{AB} +
\frac{1}{6}\overrightarrow{AD}. Sai||Đúng

    c) \overrightarrow{MP} =
\frac{1}{3}\overrightarrow{AD} -
\frac{1}{2}\overrightarrow{AB}. Sai||Đúng

    d) Ba điểm M,N,P thẳng hàng. Đúng||Sai

    Đáp án là:

    Cho hình bình hành ABCD và các điểm M,N,P thoả mãn \overrightarrow{AM} =
\frac{1}{2}\overrightarrow{AB},\overrightarrow{AN} =
\frac{1}{6}\overrightarrow{AC},\overrightarrow{AP} =
\frac{1}{4}\overrightarrow{AD}. Khi đó:

    a) \overrightarrow{AN} =
\frac{1}{6}(\overrightarrow{AB} + \overrightarrow{AD}). Đúng||Sai

    b) \overrightarrow{MN} =
\frac{1}{3}\overrightarrow{AB} +
\frac{1}{6}\overrightarrow{AD}. Sai||Đúng

    c) \overrightarrow{MP} =
\frac{1}{3}\overrightarrow{AD} -
\frac{1}{2}\overrightarrow{AB}. Sai||Đúng

    d) Ba điểm M,N,P thẳng hàng. Đúng||Sai

    a) Đúng

    b) Sai

    c) Sai

    d) Đúng

    Hình vẽ minh họa

    a) Ta có: \overrightarrow{AN} =
\frac{1}{6}\overrightarrow{AC} = \frac{1}{6}(\overrightarrow{AB} +
\overrightarrow{AD}).

    b) Ta có \overrightarrow{MN} =
\overrightarrow{AN} - \overrightarrow{AM} = \frac{1}{6}(\overrightarrow{AB} +
\overrightarrow{AD}) - \frac{1}{2}\overrightarrow{AB} = \frac{-
1}{3}\overrightarrow{AB} + \frac{1}{6}\overrightarrow{AD}

    c) Ta có \overrightarrow{MP} =
\overrightarrow{AP} - \overrightarrow{AM} =
\frac{1}{4}\overrightarrow{AD} -
\frac{1}{2}\overrightarrow{AB}

    d) Ta có: \overrightarrow{MN} =
\frac{1}{6}(\overrightarrow{AD} - 2\overrightarrow{AB}) = \frac{1}{6} \cdot 4 \cdot
\frac{1}{4}(\overrightarrow{AD} - 2\overrightarrow{AB}) =
\frac{2}{3}\overrightarrow{MP}.

    Suy ra \overrightarrow{MN},\overrightarrow{MP} cùng phương.

    Vậy ba điểm M,N,P thẳng hàng.

  • Câu 8: Thông hiểu

    Tìm tập nghiệm của bất phương trình

    Tập nghiệm của bất phương trình x^{2} + 4x + 4 > 0 là:

    Ta có:

    \begin{matrix}  {x^2} + 4x + 4 > 0 \hfill \\   \Leftrightarrow {\left( {x + 2} ight)^2} > 0,\forall x e  - 2 \hfill \\ \end{matrix}

    Vậy tập nghiệm của bất phương trình là: (–∞; –2) ∪ (–2; +∞)

  • Câu 9: Thông hiểu

    Chọn khẳng định đúng

    Cho hệ bất phương trình\left\{ \begin{matrix}x - y > 3 \\1 - \frac{1}{2}x + y > 0 \\\end{matrix} ight. có tập nghiệm S. Khẳng định nào sau đây là khẳng định đúng?

    Ta có: \left\{ \begin{matrix}x - y > 3 \\1 - \frac{1}{2}x + y > 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x > y + 3 \\x < y + 2 \\\end{matrix} ight.. Do đó không có điểm nào thỏa mãn hệ phương trình.

    Hệ này vô nghiệm.

  • Câu 10: Nhận biết

    Tìm hàm số thỏa mãn điều kiện

    Hàm số nào sau đây nghịch biến trên khoảng (−1;+∞)?

    Xét đáp án y = - \sqrt{2}(x +
1)^{2}, ta có y = - \sqrt{2}(x +
1)^{2} = - \sqrt{2}x^{2} - 2\sqrt{2}x - \sqrt{2} nên - \frac{b}{2a} = - 1 và có a < 0 nên hàm số đồng biến trên khoảng (−∞;−1) và nghịch biến trên khoảng (−1;+∞).

  • Câu 11: Thông hiểu

    Tìm số nghiệm của phương trình

    Số các nghiệm của phương trình \sqrt{x + 1} = 1 - x^{2} là:

    pt \Leftrightarrow \left\{\begin{matrix}1 - x^{2} \geq 0 \\x + 1 = (1 - x^{2})^{2} \\\end{matrix} ight.

    \left\{ \begin{matrix}|x| \leq 1 \\x(x + 1)(\ x^{2} - x - 1) = 0 \\\end{matrix} ight.

    \left\lbrack \begin{matrix}x = 0\  \\x = - 1 \\x = \frac{1 - \sqrt{5}}{2} \\\end{matrix} ight..

    Vậy phương trình có ba nghiệm.

  • Câu 12: Thông hiểu

    Xác định tập hợp rỗng

    Trong các tập hợp sau, tập nào là tập rỗng?

    Ta có: x^{2} + x - 1 = 0 \Leftrightarrow
x = \frac{- 1 \pm \sqrt{5}}{2} nên \left\{ x\mathbb{\in Z}\left| x^{2} + x - 1 = 0
\right.\  \right\} = \varnothing.

  • Câu 13: Nhận biết

    Tính giá trị biểu thức

    Giá trị của \cos30^{0} +\sin60^{0} bằng bao nhiêu?

    Ta có: \cos30^{0} + \sin60^{0} =\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} = \sqrt{3}.

  • Câu 14: Nhận biết

    Tìm tọa độ vectơ

    Cho \overrightarrow{a} = (3; -
4),\overrightarrow{b} = ( - 1;2). Tọa độ của vec tơ \overrightarrow{a} + \overrightarrow{b} là:

    Ta có: \overrightarrow{a} +
\overrightarrow{b} = \left( 3 + ( - 1);( - 4) + 2 \right) = (2; -
2).

  • Câu 15: Thông hiểu

    Chọn phương án thích hợp

    Tam giác ABC\cos B bằng biểu thức nào sau đây?

    Ta có:

    b^{2} = a^{2} + c^{2} - 2ac\cos
B

    \Rightarrow \cos B = \frac{a^{2} + c^{2}
- b^{2}}{2ac}.

  • Câu 16: Thông hiểu

    Chọn khẳng định đúng

    Cho tam giác ABC có trọng tâm G. Gọi các điểm D, E, F lần lượt là trung điểm của các cạnh BC, CA và AB. Trong các khẳng định sau, khẳng định nào đúng?

    Hình vẽ minh họa

    Chọn khẳng định đúng

    Ta có:

    G là trọng tâm tam giác ABC => \overrightarrow {AG}  = \frac{2}{3}\overrightarrow {AD}

    D là trung điểm của BC => 2\overrightarrow {AD}  = \overrightarrow {AB}  + \overrightarrow {AC}

    E là trung điểm của AC => \overrightarrow {AC}  = 2\overrightarrow {AE}

    F là trung điểm của AB => \overrightarrow {AB}  = 2\overrightarrow {AF}

    Khi đó:

    \begin{matrix}  \overrightarrow {AG}  = \dfrac{2}{3}\overrightarrow {AD}  = \dfrac{2}{3}.\dfrac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } ight) \hfill \\   = \dfrac{1}{3}\left( {2\overrightarrow {AF}  + 2\overrightarrow {AE} } ight) \hfill \\   = \dfrac{1}{3}\overrightarrow {AF}  + \dfrac{1}{3}\overrightarrow {AE}  \hfill \\ \end{matrix}

  • Câu 17: Nhận biết

    Tìm điểm thỏa mãn hệ bất phương trình

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
x - 2y < 0 \\
x + 3y > - 2 \\
y - x < 3 \\
\end{matrix} ight. chứa điểm nào sau đây?

    Ta thấy (0;1) là nghiệm của cả ba bất phương trình. Điều đó có nghĩa điểm (0;1) thuộc cả ba miền nghiệm của ba bất phương trình.

  • Câu 18: Thông hiểu

    Tìm m thỏa mãn điều kiện

    Cho f(x)=-2x^{2}+(m+2)x+m-4. Tìm m để f(x) âm với mọi giá trị x.

     Để f(x) <0 \forall x \in \mathbb {R} thì \left\{ {\begin{array}{*{20}{c}}{a < 0}\\{\Delta  < 0}\end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - 2 < 0}\\{{{(m + 2)}^2} + 8(m - 4) < 0}\end{array}} ight. \Leftrightarrow m^2+12m-28<0 \Leftrightarrow -14< m <2.

  • Câu 19: Vận dụng cao

    Điền đáp án đúng vào ô trống

    Gia đình bác Tuân dự định trồng cà phê và sầu riêng trên diện tích 8 ha. Nếu trồng cà phê thì cần 20 công và thu 3 triệu đồng trên diện tích mỗi ha, nếu trồng sầu riêng thì cần 30 công và thu 4 triệu đồng trên diện tích mỗi ha. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất biết rằng tổng số công không quá 180?

    Diện tích trồng cà phê là: 6 (ha)

    Diện tích trồng sầu riêng là: 2 (ha)

    Đáp án là:

    Gia đình bác Tuân dự định trồng cà phê và sầu riêng trên diện tích 8 ha. Nếu trồng cà phê thì cần 20 công và thu 3 triệu đồng trên diện tích mỗi ha, nếu trồng sầu riêng thì cần 30 công và thu 4 triệu đồng trên diện tích mỗi ha. Hỏi cần trồng mỗi loại cây trên với diện tích là bao nhiêu để thu được lợi nhuận cao nhất biết rằng tổng số công không quá 180?

    Diện tích trồng cà phê là: 6 (ha)

    Diện tích trồng sầu riêng là: 2 (ha)

    Gọi diện tích trồng cà phê và sầu riêng mà hộ gia đình này trồng lần lượt là xy (ha)

    Điều kiện: x,y \geq 0

    Lợi nhuận thu được là f(x;y) = 3000000x +
4000000y (đồng).

    Tổng số công dùng để trồng x ha cà phê và y ha sầu riêng là 20x + 30y.

    Ta có hệ bất phương trình sau: \left\{
\begin{matrix}
x + y \leq 8 \\
20x + 30y \leq 180 \\
x,y \geq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x + y \leq 8 \\
2x + 3y \leq 18 \\
x,y \geq 0 \\
\end{matrix} ight.\ (*)

    Bài toán trở thành tìm giá trị lớn nhất của hàm số f(x;y) trên miền nghiệm của hệ bất phương trình (*)

    Miền nghiệm của hệ bất phương trình (*) là tứ giác OABC (kể cả biên)

    Hình vẽ minh họa

    Hàm số f(x;y) sẽ đạt giá trị lớn nhất khi (x;y) là tọa độ của một trong các đỉnh O(0;0),A(8;0),B(6;2),C(0;6).

    Ta có: \left\{ \begin{matrix}
f(0;0) = 0 \\
f(8;0) = 24000000 \\
f(6;2) = 26000000 \\
f(0;6) = 2400000 \\
\end{matrix} ight..

    Suy ra f(x;y) lớn nhất khi (x;y) = (6;2)

    Vậy hộ gia đình này cần phải trồng 6 ha cà phê và 2 ha sầu riêng thì sẽ thu về lợi nhuận lớn nhất.

  • Câu 20: Vận dụng cao

    Tìm m để phương trình có nghiệm

    Tập tất cả các giá trị của tham số m để phương trình \sqrt{x^{2} - 2mx + 1} = m - 2 có nghiệm thực là

    * Với m < 2 ⇒ phương trình vô nghiệm

    * Với m ≥ 2, \sqrt{x^2-2mx+1}=m-2

    \Leftrightarrow x^2-2mx+1=m^2-4m+4

    \Leftrightarrow x^2-2mx-m^2+4m-3=0.

    Phương trình có nghiệm Δ′ = 2(m−1)2 + 1 > 0 đúng mọi m.

    Vậy m ≥ 2 là những giá trị cần tìm hay m thuộc [2;  + ∞).

  • Câu 21: Nhận biết

    Chọn đẳng thức đúng

    Cho hình bình hành ABCD, với giao điểm hai đường chéo I. Khi đó:

     Ta có: \overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{0} (2 vectơ đối nhau).

  • Câu 22: Vận dụng

    Tìm độ dài lớn nhất của AM

    Cho điểm A(3;3) và điểm M thuộc miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
x + y - 2 \leq 0 \\
x + y + 2 \geq 0 \\
- x + y + 2 \geq 0 \\
x - y + 2 \geq 0 \\
\end{matrix} ight.. Độ dài AM lớn nhất là

    Miền nghiệm của hệ bất phương trình là miền không bị gạch trong hình bên.

    Suy ra độ dài AM lớn nhất khi và chỉ khi M trùng với đỉnh nào đó của đa giác nghiệm.

    => AM_{max}=\sqrt{34}

  • Câu 23: Nhận biết

    Chọn kết quả đúng

    Cho \overrightarrow{a}\overrightarrow{b} là hai vectơ cùng hướng và đều khác vectơ \overrightarrow{0}.Trong các kết quả sau đây,hãy chọn kết quả đúng.

    Ta thấy vế trái của 4 phương án giống nhau.

    Bài toán cho \overrightarrow{a}\overrightarrow{b} là hai vectơ cùng hướng và đều khác vectơ \overrightarrow{0} suy ra \left( \overrightarrow{a},\overrightarrow{b}
ight) = 0^{0}

    Do đó \overrightarrow{a}.\overrightarrow{b} = \left|
\overrightarrow{a} ight|.\left| \overrightarrow{b} ight|.cos0^{o} =
\left| \overrightarrow{a} ight|.\left| \overrightarrow{b}
ight| nên

  • Câu 24: Thông hiểu

    Tìm hệ thức sai

    Cho M,\ N,\ P,\ Q là bốn điểm tùy ý. Trong các hệ thức sau, hệ thức nào sai?

    Đáp án \overrightarrow{MN}\left(
\overrightarrow{NP} + \overrightarrow{PQ} \right) =
\overrightarrow{MN}.\overrightarrow{NP} +
\overrightarrow{MN}.\overrightarrow{PQ} đúng theo tính chất phân phối.

    Đáp án \overrightarrow{MP}.\overrightarrow{MN} = -
\overrightarrow{MN}.\overrightarrow{MP} sai. Sửa lại cho đúng \overrightarrow{MP}.\overrightarrow{MN} =
\overrightarrow{MN}.\overrightarrow{MP}.

    Đáp án \overrightarrow{MN}.\overrightarrow{PQ} =
\overrightarrow{PQ}.\overrightarrow{MN} đúng theo tính chất giao hoán.

    Đáp án \left( \overrightarrow{MN} -
\overrightarrow{PQ} \right)\left( \overrightarrow{MN} +
\overrightarrow{PQ} \right) = MN^{2} - PQ^{2}đúng theo tính chất phân phối.

  • Câu 25: Vận dụng cao

    Tìm m thỏa mãn điều kiện

    Cho hàm số f(x) = ax2 + bx + c đồ thị như hình bên dưới. Hỏi với những giá trị nào của tham số m thì phương trình f(|x|) − 1 = m có đúng 3 nghiệm phân biệt.

    Hàm số f(x) = ax2 + bx + c có đồ thị là (C), lấy đối xứng phần đồ thị nằm bên phải Oy của (C) qua Oy ta được đồ thị (C′) của hàm số y = f(|x|).

    Dựa vào đồ thị, phương trình f(|x|) − 1 = m ⇔ (|x|) = m + 1 có đúng 3 nghiệm phân biệt khi m + 1 = 3 ⇔ m = 2.

  • Câu 26: Vận dụng

    Tìm mệnh đề đúng

    Cho hai đa thức f(x)g(x). Xét các tập hợp A = \left\{ x\mathbb{\in R}|f(x) = 0
\right\}, B = \left\{ x\mathbb{\in
R}|g(x) = 0 \right\},C = \left\{
x\mathbb{\in R}|\frac{f(x)}{g(x)} = 0 \right\}. Mệnh đề nào sau đây đúng?

    Ta có:

    \frac{f(x)}{g(x)} = 0 \Leftrightarrow
\left\{ \begin{matrix}
f(x) = 0 \\
g(x) \neq 0 \\
\end{matrix} \right. hay C =
\left\{ x\mathbb{\in R}|f(x) = 0,g(x) \neq 0 \right\} nên C = A\backslash B.

  • Câu 27: Thông hiểu

    Cặp số nào là nghiệm của bất phương trình

    Cặp số nào sau đây là nghiệm của bất phương trình 3x - 5y > 12?

    Xét đáp án (0; 3) ta có: x = 0; y = 3 thay vào bất phương trình ta được:

    3.0 - 5.3 =  - 15 < 12

    Vậy (0;3) không là cặp nghiệm của bất phương trình

    Xét đáp án (6; 1) ta có: x = 6; y = 1 thay vào bất phương trình ta được:

    3.6- 5.1=13> 12

    Vậy (6; 1) là cặp nghiệm của bất phương trình.

    Xét đáp án (2; 4) ta có: x = 2; y = 4 thay vào bất phương trình ta được:

    3.2 - 5.4 =  - 14 < 12

    Vậy (2; 4) không là cặp nghiệm của bất phương trình.

    Xét đáp án (3; 2) ta có: x = 3; y = 2 thay vào bất phương trình ta được:

    3.3 - 5.2 =  - 1 < 12

    Vậy (3; 2) không là cặp nghiệm của bất phương trình.

  • Câu 28: Vận dụng

    Tìm M thỏa mãn điều kiện

    Cho A(1;2),\ B( -
2;6). Điểm M trên trục Oy sao cho ba điểm A,B,M thẳng hàng thì tọa độ điểm M là:

    Ta có: M trên trục Oy \Rightarrow M(0;y).

    Ba điểm A,B,M thẳng hàng khi \overrightarrow{AB} cùng phương với \overrightarrow{AM}.

    Ta có \overrightarrow{AB} = ( - 3;4),\ \
\overrightarrow{AM} = ( - 1;y - 2). Do đó, \overrightarrow{AB} cùng phương với \overrightarrow{AM} \Leftrightarrow \frac{- 1}{-
3} = \frac{y - 2}{4} \Rightarrow y = \frac{10}{3}. Vậy M\left( 0;\frac{10}{3} ight).Đáp án là M\left( 0;\frac{10}{3} ight)

  • Câu 29: Nhận biết

    Xác định đẳng thức đúng

    Cho tam giác ABC, gọi M là trung điểm của BCG là trọng tâm của tam giác ABC. Đẳng thức vectơ nào sau đây đúng?

    Hình vẽ minh họa:

    Ta có: AM = \frac{3}{2}AG

    Mặt khác \overrightarrow{AM}\overrightarrow{AG} cùng hướng \Rightarrow \overrightarrow{AM}=\frac{3}{2}\overrightarrow{AG} hay 2\overrightarrow{AM} =
3\overrightarrow{AG}.

  • Câu 30: Nhận biết

    Tìm tập nghiệm của bất phương trình

    Tập nghiệm của bất phương trình 6x^{2}+x−1≤0

     Ta có: 6x^{2}+x−1≤0  \Leftrightarrowx \in [-\frac{1}{2};\frac{1}{3}].

  • Câu 31: Nhận biết

    Tính độ dài cạnh tam giác

    Cho \Delta ABCb = 6,c = 8,\widehat{A} = 60^{0}. Độ dài cạnh a là:

    Ta có:

    a^{2} = b^{2} + c^{2} - 2bc\cos
A

    = 36 + 64 - 2.6.8.\cos60^{0} =52

    \Rightarrow a = 2\sqrt{13}.

  • Câu 32: Thông hiểu

    Xác định tất cả các giá trị nguyên của tham số m

    Có bao nhiêu giá trị nguyên của tham số m sao cho hàm số x^{2} + (m - 1)x + m - 2 = 0 có hai nghiệm phân biệt thuộc khoảng ( -
5;5)?

    Ta có:

    PT \Leftrightarrow (x + 1)(x + m - 2) =
0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1 \\
x = - m + 2 \\
\end{matrix} ight.

    Từ yêu cầu bài toán \Leftrightarrow
\left\{ \begin{matrix}
- m + 2 eq - 1 \\
- 5 < - m + 2 < 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m eq 3 \\
- 3 < m < 7 \\
\end{matrix} ight.

    Suy ra m \in \left\{ - 2; - 1;0;1;2;4;5;6
ight\}

    Vậy có 8 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 33: Nhận biết

    Chọn đáp án đúng

    Trong các hệ thức sau hệ thức nào đúng?

    Công thức lượng giác cơ bản ta có hệ thức đúng là: sin^{2}\alpha + cos^{2}\alpha = 1.

  • Câu 34: Nhận biết

    Tìm câu là mệnh đề

    Trong các câu sau, có bao nhiêu câu là mệnh đề ?

    a) Mấy giờ rồi?

    b) Buôn Mê Thuột là thành phố của Đắk Lắk.

    c) 2019 là số nguyên tố.

    d) Làm việc đi !

    “Mấy giờ rồi ?” đây là câu hỏi nên không phải câu mệnh đề.

    “Buôn Mê Thuột là thành phố của Đắk Lắk” đây là câu khẳng định đúng nên là một mệnh đề.

    2019 là số nguyên tố ” đây là câu khẳng định sai nên là một mệnh đề.

    “Làm việc đi !” đây là câu cảm thán nên không phải là mệnh đề.

  • Câu 35: Nhận biết

    Tam thức bậc hai âm khi và chỉ khi

    Tam thức bậc hai f(x) = 4x2 − 12x + 9 nhận giá trị âm khi và chỉ khi

    Chọn Ta có: f(x) = 4x^{2} - 12x + 9 = 0
\Leftrightarrow x = \frac{3}{2}

    Dựa vào bảng xét dấu thì ta thấy không có giá trị x nào để f(x) < 0.

  • Câu 36: Nhận biết

    Chọn kết luận đúng

    Tính tổng \overrightarrow{MN} +
\overrightarrow{PQ} + \overrightarrow{RN} + \overrightarrow{NP} +
\overrightarrow{QR}.

    Ta có:

    \overrightarrow{MN} +\overrightarrow{PQ} + \overrightarrow{RN} + \overrightarrow{NP} +\overrightarrow{QR}

    = \overrightarrow{MN} + \overrightarrow{NP} +\overrightarrow{PQ} + \overrightarrow{QR} + \overrightarrow{RN} =\overrightarrow{MN}.

  • Câu 37: Nhận biết

    Tìm phần bù của tập hợp

    Xác định phần bù của tập hợp ( - \infty;
- 10) \cup (10; + \infty) \cup \left\{ 0 \right\} trong \mathbb{R}.

    Ta có:

    \mathbb{R}\backslash( - \infty; - 10)
\cup (10; + \infty) \cup \left\{ 0 \right\} = \lbrack - 10;\
10\rbrack\backslash\left\{ 0 \right\}.

  • Câu 38: Thông hiểu

    Xác định tập hợp X

    Cho C_{R}A = ( -\infty;2) \cup \lbrack 6; + \infty)C_{R}B = \lbrack 5;9). Tập hợp X = A \cap B

    A = \lbrack 2;6),B = ( - \infty;5) \cup\lbrack 9; + \infty).

    Suy ra X = A \cap B = \lbrack2;5).

  • Câu 39: Nhận biết

    Tìm tập xác định

    Tìm tập xác định của hàm số y = \sqrt{4x^{2} - 4x + 1}.

    Điều kiện xác định: 4x2 − 4x + 1 ≥ 0 ⇔ (2x−1)2 ≥ 0 (luôn đúng với mọi x ∈ ℝ).

    Do đó tập xác định D = ℝ.

  • Câu 40: Vận dụng

    Tính số nghiệm của phương trình

    Số nghiệm của phương trình 3\sqrt{x} + 8 = 9x + \frac{1}{x} +\frac{1}{\sqrt{x}} là:

    ĐKXĐ: x > 0.

    Phương trình tương đương với

    3\left( \sqrt{x} - \frac{1}{3\sqrt{x}}ight) + 8 = 9(x + \frac{1}{9x}).

    Đặt t = \sqrt{x} - \frac{1}{3\sqrt{x}}\Rightarrow t^{2} = x + \frac{1}{9x} - \frac{2}{3} \Rightarrow x +\frac{1}{9x} = t^{2} + \frac{2}{3}

    Phương trình trở thành:

    3t + 8 = 9\left( t^{2} + \frac{2}{3}ight) \Leftrightarrow 9t^{2} - 3t - 2 = 0 \Leftrightarrow \left\lbrack\begin{matrix}t = \frac{2}{3} \\t = - \frac{1}{3} \\\end{matrix} ight.

    Với t = \frac{2}{3} ta có \sqrt{x} - \frac{1}{3\sqrt{x}} = \frac{2}{3}\Leftrightarrow 3x - 2\sqrt{x} - 1 = 0 \Leftrightarrow \left\lbrack\begin{matrix}\sqrt{x} = 1 \\\sqrt{x} = - \frac{1}{3} \\\end{matrix} \Leftrightarrow x = 1 ight.

    Với t = - \frac{1}{3} ta có \sqrt{x} - \frac{1}{3\sqrt{x}} = -\frac{1}{3}

    \Leftrightarrow 3x + \sqrt{x} - 1 = 0\Leftrightarrow \left\lbrack \begin{matrix}\sqrt{x} = \frac{- 1 + \sqrt{13}}{6} \\\sqrt{x} = \frac{- 1 - \sqrt{13}}{6} \\\end{matrix} \Leftrightarrow x = \frac{7 - \sqrt{13}}{18} ight.

    Vậy phương trình có nghiệm là x = 1x = \frac{7 - \sqrt{13}}{18}.

  • Câu 41: Thông hiểu

    Tính độ dài đoạn AM

    Tam giác ABCa = 6,b = 4\sqrt{2},c = 2. M là điểm trên cạnh BC sao cho BM
= 3 . Độ dài đoạn AM bằng bao nhiêu?

    Trong tam giác ABC a = 6

    \Rightarrow BC = 6BM = 3

    Suy ra M là trung điểm BC.

    Suy ra: AM^{2} = m_{a}^{2} = \frac{b^{2}
+ c^{2}}{2} - \frac{a^{2}}{4} = 9 \Rightarrow AM = 3.

  • Câu 42: Thông hiểu

    Tìm khẳng định đúng

    Cho hình bình hành ABCD tâm O. Đẳng thức nào sau đây đúng?

    Ta có: \overrightarrow{AO} +
\overrightarrow{BO} + \overrightarrow{CO} +
\overrightarrow{DO}

    = \overrightarrow{AO} +
\overrightarrow{CO} + \overrightarrow{BO} + \overrightarrow{DO} =
\overrightarrow{0}.

    Do \overrightarrow{AO},\
\overrightarrow{CO} đối nhau, \overrightarrow{BO},\ \overrightarrow{DO} đối nhau.

  • Câu 43: Thông hiểu

    Tính độ dài trung tuyến kẻ từ đỉnh A

    Trong mặt phẳng tọa độ Oxy, cho tam giác ABC biết A(2;5),B(0;2),C(2;1). Tính độ dài đường trung tuyến kẻ từ đỉnh A của tam giác ABC?

    Gọi M là trung điểm của BC

    Khi đó tọa độ của M là: \left\{\begin{matrix}x_{M} = \dfrac{2 + 0}{2} = 1 \\y_{M} = \dfrac{1 + 2}{2} = \dfrac{3}{2} \\\end{matrix} ight.\  \Rightarrow M\left( 1;\dfrac{3}{2}ight)

    Suy ra độ dài đường trung tuyến kẻ từ đỉnh A hay độ dài đoạn AM là:

    AM = \sqrt{(1 - 2)^{2} + \left(
\frac{3}{2} - 5 ight)^{2}} = \frac{\sqrt{53}}{2}

    Vậy độ dài đường trung tuyến kẻ từ đỉnh A của tam giác ABC là \frac{\sqrt{53}}{2}.

  • Câu 44: Thông hiểu

    Tìm mối quan hệ giữa hai mệnh đề

    Hai mệnh đề sau là mệnh đề gì: “x chia hết cho 9” và “x chia hết cho 3”.

     Nếu x chia hết cho 9 thì x chia hết cho 3.

    Nếu x chia hết cho 3 thì x có thể không chia hết cho 9.

    => Hai mệnh đề “x chia hết cho 9” và “x chia hết cho 3” là mệnh đề kéo theo.

  • Câu 45: Thông hiểu

    Tìm số nghiệm của phương trình

    Số nghiệm của phương trình:\sqrt{x - 4}\left( x^{2} - 3x + 2 ight) = 0là:

    \sqrt{x - 4}\left( x^{2} - 3x + 2ight) = 0

    \Leftrightarrow \left\lbrack\begin{matrix}x - 4 = 0 \\\left\{ \begin{matrix}x - 4 > 0 \\x^{2} - 3x + 2 = 0 \\\end{matrix} ight.\  \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = 4 \\\left\{ \begin{matrix}x > 4 \\\left\lbrack \begin{matrix}x = 1 \\x = 2 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow x = 4.

    Vậy phương trình có một nghiệm.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Cánh Diều Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo