Tìm tập nghiệm của bất phương trình
Tập nghiệm của bất
là:
Ta có: .
Vậy
Mời các bạn học cùng thử sức với Đề thi học kì 1 môn Toán lớp 10 theo chương trình sách Cánh Diều nha!
Tìm tập nghiệm của bất phương trình
Tập nghiệm của bất
là:
Ta có: .
Vậy
Tìm điểm thỏa mãn hệ bất phương trình
Miền nghiệm của hệ bất phương trình
chứa điểm nào sau đây?
Ta thấy là nghiệm của cả ba bất phương trình. Điều đó có nghĩa điểm
thuộc cả ba miền nghiệm của ba bất phương trình.
Tìm tọa độ trung điểm BC
Trong mặt phẳng Oxy, cho hình chữ nhật ABCD có A(0; 3), D(2; 1) và I(–1; 0) là tâm của hình chữ nhật. Tọa độ trung điểm của đoạn thẳng BC là:
Ta có: I là tâm hình chữ nhật ABCD
=> I là trung điểm của AC và I là trung điểm của BD
Khi đó ta tìm tọa độ điểm B và điểm C
=> Gọi M là trung điểm của BC có tọa độ là:
Tìm đẳng thức đúng
Nếu
là trọng tam giác
thì đẳng thức nào sau đây đúng.
Hình vẽ minh họa

Gọi là trung điểm của
nên ta có
Mà
.
Tính tổng bình phương các nghiệm của phương trình
Tính tổng bình phương các nghiệm của phương trính
bằng:
ĐK:
.
Đặt , (t≥0)Phương trình thành
.
t = 1 ⇒ x2 − 2x − 1 = 0
.
Vậy phương trình đã cho có hai nghiệm là .
Giải hệ bất phương trình
Cho hệ bất phương trình
. Hỏi khi cho
,
có thể nhận mấy giá trị nguyên nào?
Khi hệ bất phương trình trở thành:
Vậy không có giá trị nguyên nào của x thỏa mãn hệ bất phương trình đã cho.
Tìm số nghiệm của phương trình
Số nghiệm của phương trình
là
ĐK x ≥ 3.
.
Vậy phương trình có một nghiệm.
Tìm biểu thức sai
Cho
là trung điểm
, tìm biểu thức sai?
Phương án :
ngược hướng suy ra
nên loại
.
Phương án :
ngược hướng suy ra
nên loại
.
Phương án :
cùng hướng suy ra
nên loại
.
Phương án :
ngược hướng suy ra
nên chọn
.
Chọn khẳng định đúng
Cho hàm số
. Khẳng định nào sau đây đúng?
Hàm số bậc hai y = x2 – 3x + 2 có tập xác định là ℝ. Khẳng định "Tập xác định của hàm số là D = (0; +∞)." sai.
Xét điểm M(1; 0): thay x = 1; y = 0 vào hàm số ta có: 0 = 12 – 3. 1 + 2 = 0 là mệnh đề đúng. Vậy M(1; 0) thuộc đồ thị hàm số. Khẳng định "Điểm M(1; 0) thuộc đồ thị hàm số." đúng.
Hàm số y = x2 – 3x + 2 có a = 1 > 0, b = ‒3 nên hàm số nghịch biến trên khoảng và đồng biến trên khoảng
. Khẳng định "Hàm số đồng biến trên ℝ." sai.
Hàm số y = x2 – 3x + 2 có a = 1 > 0 nên đồ thị hàm số có bề lõm quay lên trên. Khẳng định "Đồ thị hàm số có bề lõm quay xuống dưới." sai.
Chọn đáp án đúng
Cho các tập hợp
và
. Khi đó
là
Biểu diễn trục số: 
và
.
Khi đó: .
Mệnh đề nào sau đây đúng?
Gọi
lần lượt là trung điểm của các cạnh
và
của tứ giác
. Mệnh đề nào sau đây đúng?
Do M là trung điểm các cạnh AB nên .
Do N lần lượt là trung điểm các cạnh DC nên .
Ta có
Mặt khác
Do đó .
Chọn đáp án đúng
Mệnh đề: "
" khẳng định là
Mệnh đề: " " khẳng định là có ít nhất một số thực mà bình phương của nó lớn hơn 33.
Tìm câu sai
Cho tam giác ABC. Đẳng thức nào sai ?
Ta có:
.
Tính chiều cao của parabol
Cổng Arch tại thành phố St Louis của Mỹ có hình dạng là một parabol . Biết khoảng cách giữa hai chân cổng bằng 162 m. Trên thành cổng, tại vị trí có độ cao 43 m so với mặt đất , người ta thả một sợi dây chạm đất . Vị trí chạm đất của đầu sợi dây này cách chân cổng A một đoạn 10 m. Giả sử các số liệu trên là chính xáHãy tính độ cao của cổng Arch. (làm tròn kết quả đến hàng phần mười)

hệ trục tọa độ Oxy như hình vẽ. Phương trình Parabol (P) có dạng y = ax2 + bx + c.
Parabol (P)đi qua điểm A(0;0), B(162;0), M(10;43) nên ta có
.
Do đó chiều cao của cổng là m.
Chọn khẳng định đúng
Cho bất phương trình
(1). Chọn khẳng định đúng trong các khẳng định sau:
Bất phương trình bậc nhất hai ẩn luôn có vô số nghiệm.
Tìm m thỏa mãn điều kiện
Giá trị thực của tham số m để phương trình x2 − 2(m−1)x + m2 − 2m = 0 có hai nghiệm trái dấu trong đó nghiệm âm có trị tuyệt đối lớn hơn là:
Ta có:x2 − 2(m−1)x + m2 − 2m = 0
⇔ x2 − 2mx + m2 + 2x − 2m = 0
Để phương trình đã cho có hai nghiệm trái dấu (1)
Với m ∈ (0 ; 2) suy ra .
Theo bài ra, ta có |x2| > |x1| ⇔ |x2|2 > |x1|2 ⇔ x22 − x12 > 0
⇔ (x2−x1)(x2+x1) > 0
⇔ (m−2−m)(m−2+m) > 0 ⇔ m < 1
Kết hợp điều kiện (1), ta được 0 < m < 1.
Tính giá trị biểu thức A
Cho các véc tơ
và
thỏa mãn các điều kiện
và
và
. Tính
.
Ta có:
.
.
.
Sử dụng tính chất bình phương vô hướng bằng bình phương độ dài ta có:
.
Tìm x thỏa mãn điều kiện
Giá trị nguyên dương lớn nhất của x để hàm số
xác định là
Hàm số đã cho xác định khi và chỉ khi 5 − 4x − x2 ≥ 0 ⇔ x ∈ [− 5; 1].
Vậy giá trị nguyên dương lớn nhất của xđể hàm số xác định là x = 1.
Tìm tập nghiệm S
Tập nghiệm
của phương trình
là:
Ta có: .
Vậy .
Chọn đáp án đúng
Một cửa hàng bán hai loại mặt hàng
và
. Biết rằng cứ bán một mặt hàng loại
cửa hàng lãi 5 nghìn đồng, bán một mặt hàng loại
cửa hàng lãi 7 nghìn đồng. Gọi
lần lượt là số mặt hàng loại
và mặt hàng loại
mà cửa hàng đó bán ra trong một tháng. Cặp số
nào sau đây biểu thị số mặt hàng bán ra mỗi loại của cửa hàng trong một tháng mà tổng số tiền lãi không ít hơn 30 triệu đồng?
Đặt x là số tiền lãi của mặt hàng A
y là số tiền lãi của mặt hàng B
Đổi 30 triệu = 30 000 nghìn đồng
Theo đề bài ta có:
TH1: Thay A (1000; 2000) vào phương trình
. Thay B(3000; 1000
vào phương trình
: Thay C
vào phương trình
TH4: Thay vào phương trình
Vậy đáp án là: C
Xác định góc giữa hai vectơ
Cho tam giác đều
có đường cao
. Tính ![]()
Hình vẽ minh họa

Vẽ .
Khi đó (hình vẽ)
.
Định giao của ba tập hợp
Cho ba tập hợp
khi đó tập
là:
Giải phương trình mà
nên
Giải bất phương trình . mà
nên chọn
Giải phương trình mà
nên
Giải bất phương trình
Chọn đẳng thức đúng
Cho hình bình hành ABCD, với giao điểm hai đường chéo I. Khi đó:
Ta có: (2 vectơ đối nhau).
Tìm công thức của Parabol
Xác định parabol (P) : y = ax2 + bx + 2, biết rằng (P) đi qua hai điểm M(1;5) và N(−2;8).
Vì (P) đi qua hai điểm M(1;5) và N(−2;8) nên ta có hệ
. Vậy (P) : y = 2x2 + x + 2.
Chọn mệnh đề đúng.
Cho tam giác ABC có I là trung điểm của AB. Điểm M thỏa mãn
. Chọn mệnh đề đúng.
.
Chọn mệnh đề đúng
Trong các câu sau, câu nào là mệnh đề đúng?
Mệnh đề đúng là: “ là số lẻ”.
Xét tính đúng sai của các khẳng định
Cho các véc-tơ
,
và ![]()
a)
Sai||Đúng
b)
Đúng||Sai
c) Với
thì
. Đúng||Sai
d) Có 2 giá trị nguyên n để
với
Sai||Đúng
Cho các véc-tơ
,
và ![]()
a)
Sai||Đúng
b)
Đúng||Sai
c) Với
thì
. Đúng||Sai
d) Có 2 giá trị nguyên n để
với
Sai||Đúng
a)Saib)Đúngc)Đúngd)Sai
a)
b) Ta có:
c) Ta có
Để
Vậy với thì
.
d) Ta có:
.
Tìm điểm không thuộc miền nghiệm
Miền nghiệm của bất phương trình
chứa điểm nào dưới đây?
Xét điểm . Ta có:
thỏa mãn. Do đó miền nghiệm của bất phương trình
chứa điểm
.
Tìm một mệnh đề
Phát biểu nào sau đây là một mệnh đề?
Phát biểu ở “Mùa thu Hà Nội đẹp quá!”; “Bạn có đi học không?”; “Đề thi môn Toán khó quá1” là câu cảm và câu hỏi nên không là mệnh đề.
Vậy mệnh đề cần tìm là: “Hà Nội là thủ đô của Việt Nam”.
Xác định tọa độ vectơ
Trong mặt phẳng
, cho
. Tọa độ của vectơ
là
Theo công thức tọa độ vectơ .
Tính tổng các vectơ
Cho hình bình hành ABCD tâm O. Khi đó
bằng:

Ta có:
Chọn kết luận đúng
Cho tam giác
có
. Khi đó:
Ta có:
.
Mà: suy ra:
.
Tính số đo góc A
Tam giác
có
. Số đo góc
bằng:
Theo định lí hàm cosin, ta có
.
Do đó, .
Tìm giá trị lớn nhất
Một xưởng cơ khí có hai công nhân là Chiến và Bình. Xưởng sản xuất loại sản phẩm
và
. Mỗi sản phẩm
bán lãi
nghìn đồng, mỗi sản phẩm
bán lãi
nghìn đồng. Để sản xuất được một sản phẩm
thì Chiến phải làm việc trong
giờ, Bình phải làm việc trong
giờ. Để sản xuất được một sản phẩm
thì Chiến phải làm việc trong
giờ, Bình phải làm việc trong
giờ. Một người không thể làm được đồng thời hai sản phẩm. Biết rằng trong một tháng Chiến không thể làm việc quá
giờ và Bình không thể làm việc quá
giờ. Số tiền lãi lớn nhất trong một tháng của xưởng là.
Gọi ,
lần lượt là số sản phẩm loại
và loại
được sản xuất ra. Điều kiện
,
nguyên dương.
Ta có hệ bất phương trình sau:
Miền nghiệm của hệ trên là
Tiền lãi trong một tháng của xưởng là .
Ta thấy đạt giá trị lớn nhất chỉ có thể tại các điểm
,
,
. Vì
có tọa độ không nguyên nên loại.
Tại thì
triệu đồng.
Tại thì
triệu đồng.
Vậy tiền lãi lớn nhất trong một tháng của xưởng là triệu đồng.
Tìm số nghiệm nguyên của phương trình
Phương trình
có mấy nghiệm nguyên ?
Đặt . Ta có hệ phương trình:
Với t = − x ta được
Với t = x − 1 ta được
Vậy phương trình có 2 nghiệm x = − 2 và .
Tìm đẳng thức sai
Gọi
là giao điểm của hai đường chéo của hình bình hành
. Đẳng thức nào sau đây sai?
Đẳng thức sai là
Tìm số tập X thỏa mãn yêu cầu bài toán
Cho tập hợp
. Tìm số tập hợp X sao cho
và
.
Vì nên X phải chứa hai phần tử 2; 4 và X không chứa các phần tử 1; 3; 5.
Mặt khác vậy X phải chứa 6; 7 và các phần tử khác nếu có phải thuộc
.
Vậy .
Tính độ dài BC
Cho tam giác
có
. Tính độ dài cạnh
.
Áp dụng định lí côsin:
.
Suy ra .
Tìm tập xác định
Tìm tập xác định D của hàm số ![]()
Hàm số xác định khi và chỉ khi 4 − 3x − x2 > 0.
Phương trình
Bảng xét dấu:

Dựa vào bảng xét dấu, ta thấy 4 − 3x − x2 > 0 ⇔ x ∈ (− 4; 1).
Vậy tập xác định của hàm số là D = (− 4;1).
Tam thức bậc hai nhận giá trị không âm khi và chỉ khi
Tam thức bậc hai f(x) = − x2 + 3x − 2 nhận giá trị không âm khi và chỉ khi

Dựa vào bảng xét dấu, ta chọn đáp ánx ∈ [1; 2] .
Phân tích một vectơ theo hai vectơ khác
Trong mặt phẳng tọa độ
cho
. Cho biết
. Khi đó
Ta có: .
Chọn phương án đúng
Cho
. Lựa chọn phương án đúng.
Ta có .
Chọn đáp án sai
Cho hàm số có đồ thị như hình vẽ.
Chọn đáp án sai.
Từ đồ thị hàm số ta thấy:
Hàm số nghịch biến trong các khoảng: (−∞;−1) và (0;1).
Hàm số đồng biến trong các khoảng: (−1;0) và (1;+∞).
Đáp án sai là Hàm số nghịch biến trên khoảng (−1;1).
Xét tính đúng sai của các khẳng định
Cho tứ giác
. Gọi
theo thứ tự là trung điểm của
,
. Khi đó:
a)
cùng hướng
. Sai||Đúng
b)
là đường trung bình của các tam giác
. Đúng||Sai
c)
.Đúng||Sai
d)
là hình bình hành. Đúng||Sai
Cho tứ giác
. Gọi
theo thứ tự là trung điểm của
,
. Khi đó:
a)
cùng hướng
. Sai||Đúng
b)
là đường trung bình của các tam giác
. Đúng||Sai
c)
.Đúng||Sai
d)
là hình bình hành. Đúng||Sai
a) Sai
Hình vẽ minh họa

Ta có: ngược hướng
.
b) Đúng
là trung điểm
là trung điểm
Suy ra là đường trung bình tam giác
c) Đúng
Ta có lần lượt là đường trung bình của các tam giác
nên
và
.
Do đó .
d) Đúng
Ta có lần lượt là đường trung bình của các tam giác
nên
và
.
Do đó là hình bình hành.
Tìm câu sai
Cho
và
là hai góc khác nhau và bù nhau, trong các đẳng thức sau đây đẳng thức nào sai?
Mối liên hệ hai cung bù nhau.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: