Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề thi học kì 1 Toán 10 Cánh Diều Đề 2

Mô tả thêm:

Mời các bạn học cùng thử sức với Đề thi học kì 1 môn Toán lớp 10 theo chương trình sách Cánh Diều nha!

  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Nhận biết

    Tìm tập nghiệm của bất phương trình

    Tập nghiệm của bất \sqrt{2}x^{2}-(\sqrt{2}+1)x+1<0 là:

     Ta có: \sqrt{2}x^{2}-(\sqrt{2}+1)x+1<0 \Leftrightarrow \frac{\sqrt2}2 < x <1.

    Vậy D=(\frac{\sqrt{2}}{2};1)

  • Câu 2: Nhận biết

    Tìm điểm thỏa mãn hệ bất phương trình

    Miền nghiệm của hệ bất phương trình \left\{ \begin{matrix}
x - 2y < 0 \\
x + 3y > - 2 \\
y - x < 3 \\
\end{matrix} ight. chứa điểm nào sau đây?

    Ta thấy (0;1) là nghiệm của cả ba bất phương trình. Điều đó có nghĩa điểm (0;1) thuộc cả ba miền nghiệm của ba bất phương trình.

  • Câu 3: Thông hiểu

    Tìm tọa độ trung điểm BC

    Trong mặt phẳng Oxy, cho hình chữ nhật ABCD có A(0; 3), D(2; 1) và I(–1; 0) là tâm của hình chữ nhật. Tọa độ trung điểm của đoạn thẳng BC là:

    Ta có: I là tâm hình chữ nhật ABCD

    => I là trung điểm của AC và I là trung điểm của BD

    Khi đó ta tìm tọa độ điểm B và điểm C

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{x_B} + {x_D} = 2{x_I}} \\   {{y_B} + {y_D} = 2{y_I}} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_B} = 2{x_I} - {x_D}} \\   {{y_B} = 2{y_I} - {y_D}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_B} = -4} \\   {{y_B} =  - 1} \end{array}} ight. \Rightarrow B\left( {-4; - 1} ight) \hfill \\ \end{matrix}

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{x_A} + {x_C} = 2{x_I}} \\   {{y_A} + {y_C} = 2{y_I}} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_C} = 2{x_I} - {x_A}} \\   {{y_C} = 2{y_I} - {y_A}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_C} =  - 2} \\   {{y_C} =  - 3} \end{array}} ight. \Rightarrow C\left( { - 2; - 3} ight) \hfill \\ \end{matrix}

    => Gọi M là trung điểm của BC có tọa độ là:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{x_B} + {x_C} = 2{x_M}} \\   {{y_B} + {y_C} = 2{y_M}} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{{x_B} + {x_C}}}{2} = {x_M}} \\   {\dfrac{{{y_B} + {y_C}}}{2} = {y_M}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{x_M} =  - 3} \\   {{y_M} =  - 2} \end{array}} ight. \Rightarrow M\left( { - 3; - 2} ight) \hfill \\ \end{matrix}

  • Câu 4: Nhận biết

    Tìm đẳng thức đúng

    Nếu G là trọng tam giác ABC thì đẳng thức nào sau đây đúng.

    Hình vẽ minh họa

    Gọi M là trung điểm của BC nên ta có

    \overrightarrow{AB}+\overrightarrow{AC} = 2\overrightarrow{AM}

    \overrightarrow{AM} =
\frac{3}{2}\overrightarrow{AG} \Rightarrow \overrightarrow{AB} +
\overrightarrow{AC} = 2.\frac{3}{2}\overrightarrow{AG} =
3\overrightarrow{AG}

    \Rightarrow \overrightarrow{AG} =
\frac{\overrightarrow{AB} + \overrightarrow{AC}}{3}.

  • Câu 5: Vận dụng

    Tính tổng bình phương các nghiệm của phương trình

    Tính tổng bình phương các nghiệm của phương trính x^{2} - 1 = 2x\sqrt{x^{2} - 2x} bằng:

    ĐK: \left\lbrack \begin{matrix}x \geq 2 \\x \leq 0 \\\end{matrix} ight.

    x^{2} - 1 = 2x\sqrt{x^{2} - 2x}\Leftrightarrow x^{2} - 2x - 2x\sqrt{x^{2} - 2x} + 2x - 1 =0.

    Đặt t = \sqrt{x^{2} - 2x} , (t≥0)Phương trình thành t^{2} - 2xt + 2x - 1 = 0 \Leftrightarrow\left\lbrack \begin{matrix}t = 1 \\t = 2x - 1 \\\end{matrix} ight. .

    t = 1 ⇒ x2 − 2x − 1 = 0 \Leftrightarrow x = 1 \pm\sqrt{2}(TM)

    t = 2x - 1 \Rightarrow \left\{\begin{matrix}2x - 1 \geq 0 \\x^{2} - 2x = (2x - 1)^{2} \\\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}2x - 1 \geq 0 \\3x^{2} - 2x + 1 = 0\left( VN_{0} ight) \\\end{matrix} ight..

    Vậy phương trình đã cho có hai nghiệm là x_{1,2} = 1 \pm \sqrt{2} \Rightarrow {x_{1}}^{2} +{x_{2}}^{2} = 6 .

  • Câu 6: Vận dụng

    Giải hệ bất phương trình

    Cho hệ bất phương trình \left\{\begin{matrix}x+5y<1\\ 5x-4y>6\end{matrix}ight.. Hỏi khi cho y = 0, x có thể nhận mấy giá trị nguyên nào?

    Khi y=0 hệ bất phương trình trở thành:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {x + 5.0 < 1} \\   {5x - 4.0 > 6} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x < 1} \\   {5x > 6} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x < 1} \\   {x > \dfrac{6}{5}} \end{array}} ight.\left( {VN} ight) \Rightarrow x \in \left\{ \emptyset  ight\} \hfill \\ \end{matrix}

    Vậy y=0 không có giá trị nguyên nào của x thỏa mãn hệ bất phương trình đã cho.

  • Câu 7: Thông hiểu

    Tìm số nghiệm của phương trình

    Số nghiệm của phương trình \sqrt{x + 12} - \sqrt{x - 3} = \sqrt{2x +1}

    ĐK x ≥ 3.

    \sqrt{x + 12} - \sqrt{x - 3} = \sqrt{2x+ 1}

    \Leftrightarrow \sqrt{x + 12} = \sqrt{x- 3} + \sqrt{2x + 1}

    \Leftrightarrow \sqrt{(x - 3)(2x + 1)} =- x + 7

    \Leftrightarrow \left\{ \begin{matrix}x \leq 7 \\2x^{2} - 5x - 3 = x^{2} - 14x + 49 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x \leq 7 \\x^{2} + 9x - 52 = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = 4(TM) \\x = - 13(KTM) \\\end{matrix} ight..

    Vậy phương trình có một nghiệm.

  • Câu 8: Nhận biết

    Tìm biểu thức sai

    Cho M là trung điểm AB, tìm biểu thức sai?

    Phương án \overrightarrow{MA}.\overrightarrow{AB} = -
MA.AB: \overrightarrow{MA},\overrightarrow{AB} ngược hướng suy ra

    \overrightarrow{MA}.\overrightarrow{AB} =MA.AB.\cos180^{o} = - MA.AB nên loại \overrightarrow{MA}.\overrightarrow{AB} = -
MA.AB.

    Phương án \overrightarrow{MA}.\overrightarrow{MB} = -
MA.MB :\overrightarrow{MA},\overrightarrow{MB} ngược hướng suy ra

    \overrightarrow{MA}.\overrightarrow{MB} =MA.MB.\cos180^{o} = - MA.MB nên loại \overrightarrow{MA}.\overrightarrow{MB} = -
MA.MB.

    Phương án \overrightarrow{AM}.\overrightarrow{AB} =
AM.AB: \overrightarrow{AM},\overrightarrow{AB} cùng hướng suy ra

    \overrightarrow{AM}.\overrightarrow{AB} =AM.AB.\cos0^{o} = AM.AB nên loại \overrightarrow{AM}.\overrightarrow{AB} =
AM.AB.

    Phương án \overrightarrow{MA}.\overrightarrow{MB} =
MA.MB: \overrightarrow{MA},\overrightarrow{MB} ngược hướng suy ra

    \overrightarrow{MA}.\overrightarrow{MB} = MA.MB.\cos180^{o} = - MA.MB nên chọn \overrightarrow{MA}.\overrightarrow{MB} =
MA.MB.

  • Câu 9: Thông hiểu

    Chọn khẳng định đúng

    Cho hàm số y = x^{2} – 3x + 2. Khẳng định nào sau đây đúng?

    Hàm số bậc hai y = x2 – 3x + 2 có tập xác định là ℝ. Khẳng định "Tập xác định của hàm số là D = (0; +∞)." sai.

    Xét điểm M(1; 0): thay x = 1; y = 0 vào hàm số ta có: 0 = 12 – 3. 1 + 2 = 0 là mệnh đề đúng. Vậy M(1; 0) thuộc đồ thị hàm số. Khẳng định "Điểm M(1; 0) thuộc đồ thị hàm số." đúng.

    Hàm số y = x2 – 3x + 2 có a = 1 > 0, b = ‒3 nên hàm số nghịch biến trên khoảng \left( { - \infty ;\frac{3}{2}} ight) và đồng biến trên khoảng \left( {\frac{3}{2}; + \infty } ight). Khẳng định "Hàm số đồng biến trên ℝ." sai.

    Hàm số y = x2 – 3x + 2 có a = 1 > 0 nên đồ thị hàm số có bề lõm quay lên trên. Khẳng định "Đồ thị hàm số có bề lõm quay xuống dưới." sai.

  • Câu 10: Thông hiểu

    Chọn đáp án đúng

    Cho các tập hợp M = \lbrack - 3;\ \
6\rbrackN = ( - \infty;\ \  -
2) \cup (3;\ \  + \infty). Khi đó M
\cap N

    Biểu diễn trục số:

    M = \lbrack - 3;\ \ 6\rbrackN = ( - \infty;\ \  - 2) \cup (3;\ \  +
\infty).

    Khi đó: M \cap N = \lbrack - 3;\ \  - 2)
\cup (3;\ \ 6\rbrack.

  • Câu 11: Thông hiểu

    Mệnh đề nào sau đây đúng?

    Gọi M,N lần lượt là trung điểm của các cạnh ABCD của tứ giác ABCD. Mệnh đề nào sau đây đúng?

    Do M là trung điểm các cạnh AB nên \overrightarrow{MB} + \overrightarrow{MA} =
\overrightarrow{0}.

    Do N lần lượt là trung điểm các cạnh DC nên 2\overrightarrow{MN} = \overrightarrow{MC} +
\overrightarrow{MD}.

    Ta có

    2\overrightarrow{MN} =\overrightarrow{MC} + \overrightarrow{MD}= \overrightarrow{MB} +\overrightarrow{BC} + \overrightarrow{MA} + \overrightarrow{AD}=\overrightarrow{AD} + \overrightarrow{BC} + \left( \overrightarrow{MA} +\overrightarrow{MB} ight) = \overrightarrow{AD} +\overrightarrow{BC}

    Mặt khác \overrightarrow{AC} +
\overrightarrow{BD} = \overrightarrow{AC} + \overrightarrow{BC} +
\overrightarrow{CD} = \overrightarrow{BC} + \left( \overrightarrow{AC} +
\overrightarrow{CD} ight) = \overrightarrow{BC} +
\overrightarrow{AD}

    Do đó \overrightarrow{AC} +
\overrightarrow{BD} + \overrightarrow{BC} + \overrightarrow{AD} =
4\overrightarrow{MN}.

  • Câu 12: Thông hiểu

    Chọn đáp án đúng

    Mệnh đề: " \exists x \in \mathbb{R},x^{2} > 33 " khẳng định là

    Mệnh đề: " \exists x \in \mathbb{R},x^{2}
> 33 " khẳng định là có ít nhất một số thực mà bình phương của nó lớn hơn 33.

  • Câu 13: Thông hiểu

    Tìm câu sai

    Cho tam giác ABC. Đẳng thức nào sai ?

    Ta có:

    A + B + C = 180^{0}

    \Rightarrow \frac{A + B + 2C}{2} =
90^{0} + \frac{C}{2}

    \Rightarrow \cos\left( \frac{B + C}{2}
\right) = \cos\left( 90^{0} + \frac{C}{2} \right)

    \Leftrightarrow \cos\left( \frac{B +
C}{2} \right) = - \sin\frac{C}{2}.

  • Câu 14: Vận dụng cao

    Tính chiều cao của parabol

    Cổng Arch tại thành phố St Louis của Mỹ có hình dạng là một parabol . Biết khoảng cách giữa hai chân cổng bằng 162 m. Trên thành cổng, tại vị trí có độ cao 43 m so với mặt đất , người ta thả một sợi dây chạm đất . Vị trí chạm đất của đầu sợi dây này cách chân cổng A một đoạn 10 m. Giả sử các số liệu trên là chính xáHãy tính độ cao của cổng Arch. (làm tròn kết quả đến hàng phần mười)

    hệ trục tọa độ Oxy như hình vẽ. Phương trình Parabol (P) có dạng y = ax2 + bx + c.

    Parabol (P)đi qua điểm A(0;0), B(162;0), M(10;43) nên ta có

    \left\{ \begin{matrix}
c = 0 \\
162^{2}a + 162b + c = 0 \\
10^{2}a + 10b + c = 43 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
c = 0 \\
a = - \frac{43}{1520} \\
b = \frac{3483}{760} \\
\end{matrix} ight.\  \Rightarrow (P):y = - \frac{43}{1520}x^{2} +
\frac{3483}{760}x.

    Do đó chiều cao của cổng là h = -
\frac{\Delta}{4a} = - \frac{b^{2} - 4ac}{4a} \approx 185,6m.

  • Câu 15: Thông hiểu

    Chọn khẳng định đúng

    Cho bất phương trình 2x+3y-6\leq 0 (1). Chọn khẳng định đúng trong các khẳng định sau:

     Bất phương trình bậc nhất hai ẩn luôn có vô số nghiệm.

  • Câu 16: Vận dụng

    Tìm m thỏa mãn điều kiện

    Giá trị thực của tham số m để phương trình x2 − 2(m−1)x + m2 − 2m = 0 có hai nghiệm trái dấu trong đó nghiệm âm có trị tuyệt đối lớn hơn là:

    Ta có:x2 − 2(m−1)x + m2 − 2m = 0

     ⇔ x2 − 2mx + m2 + 2x − 2m = 0

    \Leftrightarrow (x - m)(x - m + 2) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x_{1} = m \\
x_{2} = m - 2 \\
\end{matrix} ight.

    Để phương trình đã cho có hai nghiệm trái dấu \Leftrightarrow \left\{ \begin{matrix}
x_{1} eq x_{2} \\
x_{1}x_{2} < 0 \\
\end{matrix} \Leftrightarrow 0 < m < 2 ight. (1)

    Với m ∈ (0 ; 2) suy ra \left\{ \begin{matrix}
x_{1} > 0 \\
x_{2} < 0 \\
\end{matrix} ight. .

    Theo bài ra, ta có |x2| > |x1| ⇔ |x2|2 > |x1|2 ⇔ x22 − x12 > 0

     ⇔ (x2x1)(x2+x1) > 0

     ⇔ (m−2−m)(m−2+m) > 0 ⇔ m < 1

    Kết hợp điều kiện (1), ta được 0 < m < 1.

  • Câu 17: Vận dụng

    Tính giá trị biểu thức A

    Cho các véc tơ \overrightarrow{a},\ \
\overrightarrow{b}\overrightarrow{c} thỏa mãn các điều kiện \left| \overrightarrow{a} \right| = x,\ \
\left| \overrightarrow{b} \right| = y\left| \overrightarrow{z} \right| = c\overrightarrow{a} + \overrightarrow{b} +
3\overrightarrow{c} = \overrightarrow{0}. Tính A = \overrightarrow{a}.\overrightarrow{b} +
\overrightarrow{b}.\overrightarrow{c} +
\overrightarrow{c}.\overrightarrow{a}.

    Ta có:

    \overrightarrow{a} + \overrightarrow{b} +
3\overrightarrow{c} = \overrightarrow{0} \Rightarrow \overrightarrow{a}
+ \overrightarrow{b} + \overrightarrow{c} = -
2\overrightarrow{c}.

    \Rightarrow {\overrightarrow{a}}^{2} +
{\overrightarrow{b}}^{2} + {\overrightarrow{c}}^{2} + 2A =
4{\overrightarrow{c}}^{2}.

    \Rightarrow \left( \overrightarrow{a} +
\overrightarrow{b} + \overrightarrow{c} \right)^{2} = \left( -
2\overrightarrow{c} \right)^{2}.

    Sử dụng tính chất bình phương vô hướng bằng bình phương độ dài ta có:

    x^{2} + y^{2} + z^{2} + 2A =
4z^{2}

    \Rightarrow A = \frac{3z^{2} - x^{2} -
y^{2}}{2}.

  • Câu 18: Thông hiểu

    Tìm x thỏa mãn điều kiện

    Giá trị nguyên dương lớn nhất của x để hàm số y = \sqrt{5 - 4x - x^{2}} xác định là

    Hàm số đã cho xác định khi và chỉ khi 5 − 4x − x2 ≥ 0 ⇔ x ∈ [− 5; 1].

    Vậy giá trị nguyên dương lớn nhất của xđể hàm số xác định là x = 1.

  • Câu 19: Thông hiểu

    Tìm tập nghiệm S

    Tập nghiệm S của phương trình \sqrt{2x}+x-1=0 là:

     Ta có: \sqrt{2x}+x-1=0  \Rightarrow 2x=(1-x)^2\Leftrightarrow 2x=1-2x+x^2 \Leftrightarrow x^2-4x+1=0\Leftrightarrow x=2-\sqrt3.

    Vậy S =\{2-\sqrt{3}\}.

  • Câu 20: Thông hiểu

    Chọn đáp án đúng

    Một cửa hàng bán hai loại mặt hàng AB. Biết rằng cứ bán một mặt hàng loại A cửa hàng lãi 5 nghìn đồng, bán một mặt hàng loại B cửa hàng lãi 7 nghìn đồng. Gọi x,y lần lượt là số mặt hàng loại A và mặt hàng loại B mà cửa hàng đó bán ra trong một tháng. Cặp số (x;y) nào sau đây biểu thị số mặt hàng bán ra mỗi loại của cửa hàng trong một tháng mà tổng số tiền lãi không ít hơn 30 triệu đồng?

    Đặt x là số tiền lãi của mặt hàng A

    y là số tiền lãi của mặt hàng B

    Đổi 30 triệu = 30 000 nghìn đồng

    Theo đề bài ta có: 5x + 7y \geqslant
30000

    TH1: Thay A (1000; 2000) vào phương trình

    \Rightarrow 5.1000 + 7.2000 = 19000 <
30000(P)

    {TH}_{2}. Thay B(3000; 1000) vào phương trình

    \Rightarrow 5.3000 + 7 \cdot 1000 =
22000 < 3000(l)

    {TH}_{3} : Thay C(2000;3000) vào phương trình

    \Rightarrow 5.2000 + 7.3000 = 31000 \geq
3000(tm)

    TH4: Thay D(3000;2000) vào phương trình

    \Rightarrow 5.3000 + 7.2000 = 29000 <
3000(l)

    Vậy đáp án là: C(2000;3000)

  • Câu 21: Thông hiểu

    Xác định góc giữa hai vectơ

    Cho tam giác đều ABC có đường cao AH. Tính \left( \overrightarrow{AH},\overrightarrow{BA}
\right).

    Hình vẽ minh họa

    Vẽ \overrightarrow{AE} =
\overrightarrow{BA}.

    Khi đó \left(
\overrightarrow{AH},\overrightarrow{AE} \right) = \widehat{HAE} =
\alpha (hình vẽ)

    \left(\overrightarrow{AH},\overrightarrow{BA} \right) = \left(\overrightarrow{AH},\overrightarrow{AE} \right)= 180^{o} -\widehat{BAH} = 180^{o} - 30^{o} = 150^{o}.

  • Câu 22: Vận dụng

    Định giao của ba tập hợp

    Cho ba tập hợp A = \left\{ x\mathbb{\in
R}\left| x^{2} - 4x + 3 = 0 \right.\  \right\}, B = \left\{ x\mathbb{\in Z}\left| - 3 < 2x <
4 \right.\  \right\},C = \left\{ x\mathbb{\in N}\left| x^{5} - x^{4} = 0
\right.\  \right\} khi đó tập A
\cap B \cap C là:

    Giải phương trình x^{2} - 4x + 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 3 \\
\end{matrix} \right.x\mathbb{\in R} nên A = \left\{ 1;3 \right\}

    Giải bất phương trình - 3 < 2x < 4
\Leftrightarrow - \frac{3}{2} < x < 2. mà x\mathbb{\in Z} nên chọn B = \left\{ - 1;0;1 \right\}

    Giải phương trình x^{5} - x^{4} = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
\end{matrix} \right.x\mathbb{\in N} nên C = \left\{ 0;1 \right\}

    Giải bất phương trình A \cap B \cap C =
\left\{ 1 \right\}.

  • Câu 23: Nhận biết

    Chọn đẳng thức đúng

    Cho hình bình hành ABCD, với giao điểm hai đường chéo I. Khi đó:

     Ta có: \overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{0} (2 vectơ đối nhau).

  • Câu 24: Nhận biết

    Tìm công thức của Parabol

    Xác định parabol (P) : y = ax2 + bx + 2, biết rằng (P) đi qua hai điểm M(1;5)N(−2;8).

    (P) đi qua hai điểm M(1;5)N(−2;8) nên ta có hệ

    \left\{ \begin{matrix}
a + b + 2 = 5 \\
4a - 2b + 2 = 8 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 2 \\
b = 1 \\
\end{matrix} ight.. Vậy (P) : y = 2x2 + x + 2.

  • Câu 25: Thông hiểu

    Chọn mệnh đề đúng.

    Cho tam giác ABC có I là trung điểm của AB. Điểm M thỏa mãn \overrightarrow{MA} +
\overrightarrow{MB} + 3\overrightarrow{MC} =
\overrightarrow{0}. Chọn mệnh đề đúng.

    \overrightarrow{MA} + \overrightarrow{MB}+ 3\overrightarrow{MC} = \overrightarrow{0}\Leftrightarrow2\overrightarrow{MI} = - 3\overrightarrow{MC}\Leftrightarrow2\overrightarrow{MI} = 3\overrightarrow{IM} - 3\overrightarrow{IC}\Leftrightarrow 5\overrightarrow{MI} =3\overrightarrow{CI}.

  • Câu 26: Nhận biết

    Chọn mệnh đề đúng

    Trong các câu sau, câu nào là mệnh đề đúng?

    Mệnh đề đúng là: “5 là số lẻ”.

  • Câu 27: Thông hiểu

    Xét tính đúng sai của các khẳng định

    Cho các véc-tơ \overrightarrow{a} = ( -
2;3), \overrightarrow{b} =
(4;1), \overrightarrow{c} =
k\overrightarrow{a} + m\overrightarrow{b}\overrightarrow{d} = n\overrightarrow{a} +
\overrightarrow{b}.

    a) \overrightarrow{a}.\overrightarrow{b}
= 5. Sai||Đúng

    b) \cos\left(
\overrightarrow{a},\overrightarrow{b} \right) = \frac{-
5\sqrt{221}}{221}. Đúng||Sai

    c) Với 2k + 3m = 0 thì \overrightarrow{c}\bot\left( \overrightarrow{a} +\overrightarrow{b} \right). Đúng||Sai

    d) Có 2 giá trị nguyên n để \cos\left(
\overrightarrow{d},\overrightarrow{e} \right) = 45^{0}với \overrightarrow{e} = \overrightarrow{i} +
\overrightarrow{j}. Sai||Đúng

    Đáp án là:

    Cho các véc-tơ \overrightarrow{a} = ( -
2;3), \overrightarrow{b} =
(4;1), \overrightarrow{c} =
k\overrightarrow{a} + m\overrightarrow{b}\overrightarrow{d} = n\overrightarrow{a} +
\overrightarrow{b}.

    a) \overrightarrow{a}.\overrightarrow{b}
= 5. Sai||Đúng

    b) \cos\left(
\overrightarrow{a},\overrightarrow{b} \right) = \frac{-
5\sqrt{221}}{221}. Đúng||Sai

    c) Với 2k + 3m = 0 thì \overrightarrow{c}\bot\left( \overrightarrow{a} +\overrightarrow{b} \right). Đúng||Sai

    d) Có 2 giá trị nguyên n để \cos\left(
\overrightarrow{d},\overrightarrow{e} \right) = 45^{0}với \overrightarrow{e} = \overrightarrow{i} +
\overrightarrow{j}. Sai||Đúng

    a)Saib)Đúngc)Đúngd)Sai

    a) \overrightarrow{a}.\overrightarrow{b}
= ( - 2).4 + 3.1 = - 5.

    b) Ta có:

    \cos\left(\overrightarrow{a},\overrightarrow{b} \right) =\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}\right|.\left| \overrightarrow{b} \right|}= \frac{( - 2).4 +3.1}{\sqrt{( - 2)^{2} + 3^{2}}.\sqrt{4^{2} + 1}} = \frac{-5\sqrt{221}}{221}.

    c) Ta có \overrightarrow{c} =
k.\overrightarrow{a} + m.\overrightarrow{b} = ( - 2k + 4m;3k + m),\ \
\overrightarrow{a} + \overrightarrow{b} = (2;4).

    Để \overrightarrow{c}\bot\left(\overrightarrow{a} + \overrightarrow{b} \right)\Leftrightarrow\overrightarrow{c}.\left( \overrightarrow{a} + \overrightarrow{b}\right) = 0

    \Leftrightarrow 2( - 2k + 4m) + 4(3k + m) = 0\Leftrightarrow 2k + 3m = 0

    Vậy với 2k + 3m = 0 thì \overrightarrow{c}\bot\left( \overrightarrow{a} +\overrightarrow{b} \right).

    d) Ta có: \overrightarrow{d} =
n\overrightarrow{a} + \overrightarrow{b} = ( - 2n + 4;3n + 1),\ \
\overrightarrow{e} = \overrightarrow{i} + \overrightarrow{j} =
(1;1).

    \mathbf{\cos}\left(
\overrightarrow{\mathbf{d}}\mathbf{,}\overrightarrow{\mathbf{e}}
\right)\mathbf{=}\mathbf{4}\mathbf{5}^{\mathbf{0}}

    \Leftrightarrow \frac{- 2n + 4 + 3n +
1}{\sqrt{( - 2n + 4)^{2} + (3n + 1)^{2}}.\sqrt{2}} =
\frac{\sqrt{2}}{2}

    \Leftrightarrow n + 5 = \sqrt{13n^{2} -
10n + 17}

    \Leftrightarrow \left\{ \begin{matrix}
n \geq - 5 \\
12n^{2} - 20n - 8 = 0
\end{matrix} \right. \Leftrightarrow \left\{ \begin{gathered}
  n \geqslant  - 5 \hfill \\
  \left[ \begin{gathered}
  n = \frac{{ - 1}}{3} \hfill \\
  n = 2 \hfill \\ 
\end{gathered}  \right. \hfill \\ 
\end{gathered}  \right. \Leftrightarrow \left[ \begin{gathered}
  n = \frac{{ - 1}}{3} \notin \mathbb{Z} \hfill \\
  n = 2 \in \mathbb{Z} \hfill \\ 
\end{gathered}  \right..

  • Câu 28: Nhận biết

    Tìm điểm không thuộc miền nghiệm

    Miền nghiệm của bất phương trình - 2x + 4y \geq 1 chứa điểm nào dưới đây?

    Xét điểm (0;1). Ta có: - 2.0 + 4.1 = 4 \geq 1 thỏa mãn. Do đó miền nghiệm của bất phương trình - 2x + 4y
\geq 1 chứa điểm (0;1).

  • Câu 29: Nhận biết

    Tìm một mệnh đề

    Phát biểu nào sau đây là một mệnh đề?

    Phát biểu ở “Mùa thu Hà Nội đẹp quá!”; “Bạn có đi học không?”; “Đề thi môn Toán khó quá1” là câu cảm và câu hỏi nên không là mệnh đề.

    Vậy mệnh đề cần tìm là: “Hà Nội là thủ đô của Việt Nam”.

  • Câu 30: Nhận biết

    Xác định tọa độ vectơ

    Trong mặt phẳng Oxy, cho A\left( x_{A};y_{A} \right)\ và\ \
B\left( x_{B};y_{B} \right). Tọa độ của vectơ \overrightarrow{AB}

    Theo công thức tọa độ vectơ \overrightarrow{AB} = \left( x_{B} - x_{A};y_{B} -
y_{A} \right).

  • Câu 31: Nhận biết

    Tính tổng các vectơ

    Cho hình bình hành ABCD tâm O. Khi đó \overrightarrow{OA}+\overrightarrow{BO} bằng:

     

    Ta có: \overrightarrow {BO}  + \overrightarrow {OA}  = \overrightarrow {BA}  = \overrightarrow {CD}

  • Câu 32: Thông hiểu

    Chọn kết luận đúng

    Cho tam giác ABCa^{2} + b^{2} - c^{2} > 0. Khi đó:

    Ta có:

    \cos C = \frac{a^{2} + b^{2} -
c^{2}}{2ab}.

    Mà: a^{2} + b^{2} - c^{2} > 0 suy ra: \cos C > 0 \Rightarrow C <
90^{0}.

  • Câu 33: Nhận biết

    Tính số đo góc A

    Tam giác ABCAB =
5,\ \ BC = 7,\ \ CA = 8. Số đo góc \widehat{A} bằng:

    Theo định lí hàm cosin, ta có \cos\widehat{A} = \frac{AB^{2} + AC^{2} -
BC^{2}}{2AB.AC} = \frac{5^{2} +
8^{2} - 7^{2}}{2.5.8} = \frac{1}{2}.

    Do đó, \widehat{A} =
60{^\circ}.

  • Câu 34: Vận dụng cao

    Tìm giá trị lớn nhất

    Một xưởng cơ khí có hai công nhân là Chiến và Bình. Xưởng sản xuất loại sản phẩm III. Mỗi sản phẩm I bán lãi 500 nghìn đồng, mỗi sản phẩm II bán lãi 400 nghìn đồng. Để sản xuất được một sản phẩm I thì Chiến phải làm việc trong 3 giờ, Bình phải làm việc trong 1 giờ. Để sản xuất được một sản phẩm II thì Chiến phải làm việc trong 2 giờ, Bình phải làm việc trong 6 giờ. Một người không thể làm được đồng thời hai sản phẩm. Biết rằng trong một tháng Chiến không thể làm việc quá 180 giờ và Bình không thể làm việc quá 220 giờ. Số tiền lãi lớn nhất trong một tháng của xưởng là.

    Gọi x, y lần lượt là số sản phẩm loại I và loại II được sản xuất ra. Điều kiện x, y nguyên dương.

    Ta có hệ bất phương trình sau: \left\{
\begin{matrix}
3x + 2y \leq 180 \\
x + 6y \leq 220 \\
x > 0 \\
y > 0 \\
\end{matrix} ight.

    Miền nghiệm của hệ trên là

    Tiền lãi trong một tháng của xưởng là T =
0,5x + 0,4y .

    Ta thấy T đạt giá trị lớn nhất chỉ có thể tại các điểm A, B, C. Vì C có tọa độ không nguyên nên loại.

    Tại A(60;\ 0) thì T = 30 triệu đồng.

    Tại B(40;\ 30) thì T = 32 triệu đồng.

    Vậy tiền lãi lớn nhất trong một tháng của xưởng là 32 triệu đồng.

  • Câu 35: Vận dụng cao

    Tìm số nghiệm nguyên của phương trình

    Phương trình x^{2} = \sqrt{2 - x} + 2 có mấy nghiệm nguyên ?

    Đặt t = \sqrt{2 - x}\ \ \ (t \geq
0). Ta có hệ phương trình:

    \left\{ \begin{matrix}
x^{2} = t + 2 \\
t^{2} = - x + 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
t = - x \\
t = x - 1 \\
\end{matrix} ight.

    Với t =  − x ta được \left\lbrack \begin{matrix}
x = 1 \Rightarrow t = - 1(L) \\
x = - 2 \Rightarrow t = 2(TM) \\
\end{matrix} ight.

    Với t = x − 1 ta được \left\lbrack \begin{matrix}
x = \frac{1 + \sqrt{5}}{2} \Rightarrow t = \frac{\sqrt{5} - 1}{2}(TM) \\
x = \frac{1 - \sqrt{5}}{2} \Rightarrow t = \frac{- \sqrt{5} - 1}{2}(L)
\\
\end{matrix} ight.

    Vậy phương trình có 2 nghiệm x =  − 2x = \frac{1 + \sqrt{5}}{2}.

  • Câu 36: Nhận biết

    Tìm đẳng thức sai

    Gọi O là giao điểm của hai đường chéo của hình bình hành ABCD. Đẳng thức nào sau đây sai?

    Đẳng thức sai là \overrightarrow{OA} =
\overrightarrow{OC}.

  • Câu 37: Thông hiểu

    Tìm số tập X thỏa mãn yêu cầu bài toán

    Cho tập hợp A = \left\{ 1;2;3;4;5
\right\}. Tìm số tập hợp X sao cho A\backslash X = \left\{ 1;3;5 \right\}X\backslash A = \left\{ 6;7
\right\}.

    A\backslash X = \left\{ 1;3;5
\right\} nên X phải chứa hai phần tử 2; 4 và X không chứa các phần tử 1; 3; 5.

    Mặt khác X\backslash A = \left\{ 6;7
\right\} vậy X phải chứa 6; 7 và các phần tử khác nếu có phải thuộc A.

    Vậy X = \left\{ 2;4;6;7
\right\}.

  • Câu 38: Nhận biết

    Tính độ dài BC

    Cho tam giác ABCAB=1;AC=\sqrt2;\hat A=45^{\circ}. Tính độ dài cạnh BC.

     Áp dụng định lí côsin:

    BC^2=AB^2+AC^2-2.AB.AC.\cos A=1+2-2.1.\sqrt2.\cos45^{\circ} =1.

    Suy ra BC=1.

  • Câu 39: Thông hiểu

    Tìm tập xác định

    Tìm tập xác định D của hàm số y = \frac{3 - x}{\sqrt{4 - 3x -
x^{2}}}.

    Hàm số xác định khi và chỉ khi 4 − 3x − x2 > 0.

    Phương trình 4 - 3x - x^{2} = 0
\Leftrightarrow (x - 1)(x + 4) = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = - \ 4 \\
\end{matrix} ight.\ .

    Bảng xét dấu:

    Dựa vào bảng xét dấu, ta thấy 4 − 3x − x2 > 0 ⇔ x ∈ (− 4; 1).

    Vậy tập xác định của hàm số là D = (− 4;1).

  • Câu 40: Nhận biết

    Tam thức bậc hai nhận giá trị không âm khi và chỉ khi

    Tam thức bậc hai f(x) =  − x2 + 3x − 2 nhận giá trị không âm khi và chỉ khi

    f(x) = - x^{2} + 3x - 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 2 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp ánx ∈ [1; 2] .

  • Câu 41: Vận dụng

    Phân tích một vectơ theo hai vectơ khác

    Trong mặt phẳng tọa độ Oxy cho\overrightarrow{a} = (2;1),\overrightarrow{\ b} =
(3;4),\ \overrightarrow{c} = (7;2). Cho biết \overrightarrow{c} = m.\overrightarrow{a} +
n.\overrightarrow{b}. Khi đó

    Ta có: \overrightarrow{c} =m.\overrightarrow{a} + n.\overrightarrow{b} \Leftrightarrow \left\{\begin{matrix}7 = 2m + 3n \\2 = m + 4n \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m = \frac{22}{5} \ = - \frac{3}{5} \\\end{matrix} ight..

  • Câu 42: Nhận biết

    Chọn phương án đúng

    Cho A = \lbrack a;a + 1). Lựa chọn phương án đúng.

    Ta có C_{\mathbb{R}}A\mathbb{=
R}\backslash A = ( - \infty;a) \cup \lbrack a + 1; +
\infty).

  • Câu 43: Nhận biết

    Chọn đáp án sai

    Cho hàm số có đồ thị như hình vẽ.

    Chọn đáp án sai.

    Từ đồ thị hàm số ta thấy:

    Hàm số nghịch biến trong các khoảng: (−∞;−1)(0;1).

    Hàm số đồng biến trong các khoảng: (−1;0)(1;+∞).

    Đáp án sai là Hàm số nghịch biến trên khoảng (−1;1).

  • Câu 44: Thông hiểu

    Xét tính đúng sai của các khẳng định

    Cho tứ giác ABCD. Gọi E,F,G,H theo thứ tự là trung điểm của BC,BD, AD,AC. Khi đó:

    a) \overrightarrow{EH} cùng hướng \overrightarrow{AB}. Sai||Đúng

    b) EF là đường trung bình của các tam giác BCD. Đúng||Sai

    c) \overrightarrow{EH} =
\overrightarrow{FG}.Đúng||Sai

    d) EFGH là hình bình hành. Đúng||Sai

    Đáp án là:

    Cho tứ giác ABCD. Gọi E,F,G,H theo thứ tự là trung điểm của BC,BD, AD,AC. Khi đó:

    a) \overrightarrow{EH} cùng hướng \overrightarrow{AB}. Sai||Đúng

    b) EF là đường trung bình của các tam giác BCD. Đúng||Sai

    c) \overrightarrow{EH} =
\overrightarrow{FG}.Đúng||Sai

    d) EFGH là hình bình hành. Đúng||Sai

    a) Sai

    Hình vẽ minh họa

    A diagram of a triangle with Great Pyramid of Giza in the backgroundDescription automatically generated

    Ta có: \overrightarrow{EH} ngược hướng \overrightarrow{AB}.

    b) Đúng

    E là trung điểm BC

    F là trung điểm BD

    Suy ra EF là đường trung bình tam giác BCD

    c) Đúng

    Ta có EH,FG lần lượt là đường trung bình của các tam giác ABC,ABD nên EH//FG//ABEH = FG = \frac{1}{2}AB.

    Do đó \overrightarrow{EH} =
\overrightarrow{FG}.

    d) Đúng

    Ta có EH,FG lần lượt là đường trung bình của các tam giác ABC,ABD nên EH//FG//ABEH = FG = \frac{1}{2}AB.

    Do đó EFGH là hình bình hành.

  • Câu 45: Nhận biết

    Tìm câu sai

    Cho \alpha\beta là hai góc khác nhau và bù nhau, trong các đẳng thức sau đây đẳng thức nào sai?

    Mối liên hệ hai cung bù nhau.

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 10 Cánh Diều Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo