Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Đề kiểm tra 15 phút Chương 1 Mệnh đề toán học. Tập hợp

Mô tả thêm:

Đề kiểm tra 15 phút Toán 10 Chương 1 Mệnh đề toán học. Tập hợp sách Cánh Diều giúp bạn học tổng hợp lại kiến thức của cả nội dung chương. Cùng nhau luyện tập nha!

  • Thời gian làm: 15 phút
  • Số câu hỏi: 20 câu
  • Số điểm tối đa: 20 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Bắt đầu làm bài
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
  • Câu 1: Vận dụng

    Định giao của ba tập hợp

    Cho ba tập hợp A = \left\{ x\mathbb{\in
R}\left| x^{2} - 4x + 3 = 0 \right.\  \right\}, B = \left\{ x\mathbb{\in Z}\left| - 3 < 2x <
4 \right.\  \right\},C = \left\{ x\mathbb{\in N}\left| x^{5} - x^{4} = 0
\right.\  \right\} khi đó tập A
\cap B \cap C là:

    Giải phương trình x^{2} - 4x + 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 3 \\
\end{matrix} \right.x\mathbb{\in R} nên A = \left\{ 1;3 \right\}

    Giải bất phương trình - 3 < 2x < 4
\Leftrightarrow - \frac{3}{2} < x < 2. mà x\mathbb{\in Z} nên chọn B = \left\{ - 1;0;1 \right\}

    Giải phương trình x^{5} - x^{4} = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
\end{matrix} \right.x\mathbb{\in N} nên C = \left\{ 0;1 \right\}

    Giải bất phương trình A \cap B \cap C =
\left\{ 1 \right\}.

  • Câu 2: Thông hiểu

    Chỉ ra tính chất đặc trưng của tập hợp

    Tính chất đặc trưng của tập hợp X =
\left\{ - 3; - 2; - 1;0;1;2;3 \right\}.

    Ta liệt kê các phần tử từng đáp án, đáp án nào thỏa yêu cầu bài toán ta sẽ chọn.

    Đáp án cần tìm là: \left\{ {x \in \mathbb{Z}\left| {\left| x \right| \leqslant 3} \right.} \right\}.

  • Câu 3: Nhận biết

    Tìm mệnh đề đúng.

    Tìm mệnh đề đúng.

    Tổng của hai số tự nhiên là một số chẵn khi và chỉ khi cả hai số đều là số chẵn. là mệnh đề sai: Ví dụ: 1 + 3 =
4 là số chẵn nhưng 1,\ 3 là số lẻ.

    Tích của hai số tự nhiên là một số chẵn khi và chỉ khi cả hai số đều là số chẵn. là mệnh đề sai: Ví dụ: 2.3 =
6 là số chẵn nhưng 3 là số lẻ.

    Tổng của hai số tự nhiên là một số lẻ khi và chỉ khi cả hai số đều là số lẻ. là mệnh đề sai: Ví dụ: 1 + 3 =
4 là số chẵn nhưng 1,3 là số lẻ.

    Chọn Tích của hai số tự nhiên là một số lẻ khi và chỉ khi cả hai số đều là số lẻ.

  • Câu 4: Thông hiểu

    Tìm câu sai

    Cho mệnh đề chứa biến P(x):”x + 10
\geq x^{2}” với x là số tự nhiên. Mệnh đề nào sau đây sai?

    P(1) = 11 \geq 1^{2}
\Rightarrowđúng.

    P(2) = 12 \geq 2^{2}
\Rightarrowđúng.

    P(3) = 13 \geq 3^{2} = 9
\Rightarrowđúng.

    P(4) = 14 \geq 4^{2} = 16
\Rightarrowsai.

  • Câu 5: Nhận biết

    Tìm số tập con của tập A

    Cho tập hợp A = \left\{ a,\ b,\ c,\ d
\right\}. Tập A có mấy tập con?

    Số tập hợp con của tập hợp có 4 phần tử là 2^{4} = 16 tập hợp con.

  • Câu 6: Vận dụng

    Hãy tìm mệnh đề sai trong các mệnh đề dưới đây:

    Cho ba mệnh đề: P: “số 20chia hết cho 5 và chia hết cho 2

    Q: “ Số 35 chia hết cho 9

    R: “ Số 17 là số nguyên tố ”

    Hãy tìm mệnh đề sai trong các mệnh đề dưới đây:

    P đúng, Q sai, R đúng.

    \overline{Q} đúng, R đúng nên \overline{Q} \Rightarrow Rđúng,

    P đúng, \overline{Q} \Rightarrow Rđúng nên P \Leftrightarrow \left( \overline{Q} \Rightarrow
R ight)đúng, \left( \overline{Q}
\Rightarrow R ight) \Rightarrow P đúng.

    R đúng, \overline{Q} đúng nên R \Leftrightarrow \overline{Q}đúng.

    R đúng, P đúng nên R
\Rightarrow P đúng,

    R \Rightarrow P đúng, Q sai nên (R
\Rightarrow P) \Rightarrow Q sai.

    Chọn đáp án (R \Rightarrow P) \Rightarrow
Q.

  • Câu 7: Nhận biết

    Liệt kê các phần tử của tập hợp

    Hãy liệt kê các phần tử của tập X =
\left\{ x\mathbb{\in R}\left| 2x^{2} - 5x + 3 = 0
\right.\  \right\}.

    Ta có:

    2x^{2} - 5x + 3 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = \frac{3}{2} \\
\end{matrix} \right.x\mathbb{\in R} nên cả hai giá trị đều thỏa mãn.

    Khi đó: Liệt kê các phần tử của tập X = \left\{
x\mathbb{\in R}\left| 2x^{2} - 5x + 3 = 0 \right.\  \right\} ta được kết quả là X = \left\{ 1;\frac{3}{2}
\right\}.

  • Câu 8: Thông hiểu

    Tìm câu sai

    Trong các mệnh đề sau, mệnh đề nào có mệnh đề đảosai?

    Đáp án sai là: “ABCD là hình bình hành thì AB song song với CD”.

  • Câu 9: Thông hiểu

    Phủ định mệnh đề P

    Mệnh đề P(x):"\forall x\mathbb{\in
R},\ x^{2} - x + 7 < 0". Phủ định của mệnh đề P

    Ta có:

    P(x):"\forall x\mathbb{\in R},\
x^{2} - x + 7 < 0" \Rightarrow \overline{P}(x):"\exists
x\mathbb{\in R},\ x^{2} - x + 7 \geq 0" .

  • Câu 10: Vận dụng cao

    Tìm số nhỏ nhất của tập hợp A

    Cho tập hợp A = {y\in\mathbb{ R}|y = \frac{a^{2} + b^{2} +c^{2}}{ab + bc + ca}, với a,b,c là số thực dương}. Tìm số nhỏ nhất của tập hợp A?

    Ta có:

    a^{2} + b^{2} + c^{2} \geq ab + bc +
ca

    \Leftrightarrow \frac{a^{2} + b^{2} +
c^{2}}{ab + bc + ca} \geq 1

    Đẳng thức xảy ra khi a = b =
c.

    Vậy số nhỏ nhất là 1

  • Câu 11: Nhận biết

    Chọn phương án thích hợp

    Phủ định của mệnh đề: “Có ít nhất một số vô tỷ là số thập phân vô hạn tuần hoàn” là mệnh đề nào sau đây:

    Phủ định của “có ít nhất” là “mọi”

    Phủ định của “tuần hoàn” là “không tuần hoàn”.

    Vậy đáp án cần tìm là: “Mọi số vô tỉ đều là số thập phân vô hạn không tuần hoàn”.

  • Câu 12: Nhận biết

    Tìm mệnh đề đúng

    Cho hai tập hợp A = \left\{ 0;1;2;3;4
\right\},\ B = \left\{ 1;3;4;6;8 \right\}. Mệnh đề nào sau đây đúng?

    Đáp án cần tìm là: A\backslash B =
\left\{ 0;2 \right\}.

  • Câu 13: Nhận biết

    Tìm tập A\B

    Cho tập A = \left\{ 0;2;4;6;8
\right\}; B = \left\{ 3;4;5;6;7
\right\}. Tập A\backslash
B

    Ta có A\backslash B = \left\{ 0;\ 2;\ 8
\right\}.

  • Câu 14: Thông hiểu

    Chọn phương án thích hợp

    Cho A, B, C là ba tập hợp được minh họa bằng biểu đồ ven như hình vẽ.

    A black and white logoDescription automatically generated

    Phần gạch sọc trong hình vẽ là tập hợp nào sau đây?

    Vì với mỗi phần tử x thuộc phần gạch sọc thì ta thấy:

    \left\{ \begin{matrix}
x \in A \\
x \in B \\
x \notin C
\end{matrix} \right.\  \Rightarrow x \in (A \cap B)\backslash
C.

  • Câu 15: Nhận biết

    Tìm x để có mệnh đề đúng

    Với giá trị thực nào của x mệnh đề chứa biến P(x):2x^{2} - 1 < 0 là mệnh đề đúng?

    Thay x = 0 vào P(x) ta được - 1 < 0 là mệnh đề đúng.

  • Câu 16: Nhận biết

    Chọn đáp án thích hợp

    Kí hiệu nào sau đây dùng để viết đúng mệnh đề “7 là số tự nhiên”?

    Đáp án đúng là: \mathbf{7}\mathbb{\in
N}\mathbf{.}

  • Câu 17: Thông hiểu

    Chọn phương án thích hợp

    Hai tập hợp nào dưới đây không bằng nhau?

    Theo bài ra: A = \left\{ x|x =
\frac{1}{2^{k}},k\mathbb{\in Z},x \geq \frac{1}{8} \right\}

    ta có :\frac{1}{2^{k}} \geq \frac{1}{8}
\Leftrightarrow \frac{1}{2^{k}} \geq \frac{1}{2^{3}} \Leftrightarrow
2^{k} \leq 2^{3} \Leftrightarrow k \leq 3, suy ra: A = \left\{ x|x = \frac{1}{2^{k}},k\mathbb{\in \mathbb{Z}},k \leq 3 \right\}\Leftrightarrow A = \left\{\frac{1}{8};\frac{1}{4};\frac{1}{2};... \right\} nên: A \neq B.

  • Câu 18: Nhận biết

    Chọn đáp án chính xác

    Viết mệnh đề sau bằng cách sử dụng kí hiệu \forall hoặc \mathbf{\exists}: “Có một số nguyên bằng bình phương của chính nó”.

    Đáp án cần tìm là: \exists x\mathbb{\in
Z},x = x^{2}.

  • Câu 19: Nhận biết

    Tìm mệnh đề đảo

    Cho mệnh đề: “Nếu 2 góc ở vị trí so le trong thì hai góc đó bằng nhau”. Trong các mệnh đề sau đây, đâu là mệnh đề đảo của mệnh đề trên?

    Đáp án cần tìm là: “Nếu 2 góc bằng nhau thì hai góc đó ở vị trí so le trong”.

  • Câu 20: Thông hiểu

    Xác định tập hợp

    Tập hợp B=(2;+∞)\cup [-3;8] bằng tập hợp nào sau đây?

     Xác định kết quả tập hợp bằng hình vẽ như sau:

    Xác định tập hợp

    Vậy B=(2;+∞)\cup [-3;8] =[-3;+∞)

Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay

Chúc mừng Bạn đã hoàn thành bài!

Đề kiểm tra 15 phút Chương 1 Mệnh đề toán học. Tập hợp Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • Điểm thưởng: 0
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo